JPH0377667B2 - - Google Patents
Info
- Publication number
- JPH0377667B2 JPH0377667B2 JP56124903A JP12490381A JPH0377667B2 JP H0377667 B2 JPH0377667 B2 JP H0377667B2 JP 56124903 A JP56124903 A JP 56124903A JP 12490381 A JP12490381 A JP 12490381A JP H0377667 B2 JPH0377667 B2 JP H0377667B2
- Authority
- JP
- Japan
- Prior art keywords
- diffusion region
- insulating film
- conductivity type
- type diffusion
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009792 diffusion process Methods 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 230000000295 complement effect Effects 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012421 spiking Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- -1 phosphorus ions Chemical class 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0925—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は多層金属配線を有する微細化構造の
相補型MOS集積回路の製造方法に関するもので
ある。
相補型MOS集積回路の製造方法に関するもので
ある。
従来、相補型MOS集積回路はPチヤネルの
MOSトランジスタとNチヤネルのMOSトランジ
スタを同一基板上に形成し、このPチヤネルおよ
びNチヤネルのMOSトランジスタを相互に接続
するため、ソース・ドレインの拡散領域につなが
るコンタクトホールを設け、Alなどの配線金属
を使用し、この配線金属と拡散領域とを直接接続
するものである。一方、近年集積回路における微
細化技術が進歩すると共に縦方向の構造も微細化
する必要が出てきた。例えばnチヤネルのMOS
トランジスタのソース・ドレインの接合深さは
0.3μm程度の浅い接合が必要とされ、これは砒素
のイオン注入の技術によつて実現することができ
る。しかし、このような浅い接合にAlなどの金
属を接触させ熱処理を行なうと、Alとシリコン
が反応し、Alがこの接合を突き抜け基板に達す
るスパイク現象が発生し、接合のリーク電流が増
大するなどの特性を劣化させる。これを避けるた
め、NチヤネルのシングルチヤネルMOSICなど
においてはこの接触部にリンなどの拡散定数の大
きい不純物を拡散させて接触部のみ深い接合部と
し、スパイクの問題を避けている。
MOSトランジスタとNチヤネルのMOSトランジ
スタを同一基板上に形成し、このPチヤネルおよ
びNチヤネルのMOSトランジスタを相互に接続
するため、ソース・ドレインの拡散領域につなが
るコンタクトホールを設け、Alなどの配線金属
を使用し、この配線金属と拡散領域とを直接接続
するものである。一方、近年集積回路における微
細化技術が進歩すると共に縦方向の構造も微細化
する必要が出てきた。例えばnチヤネルのMOS
トランジスタのソース・ドレインの接合深さは
0.3μm程度の浅い接合が必要とされ、これは砒素
のイオン注入の技術によつて実現することができ
る。しかし、このような浅い接合にAlなどの金
属を接触させ熱処理を行なうと、Alとシリコン
が反応し、Alがこの接合を突き抜け基板に達す
るスパイク現象が発生し、接合のリーク電流が増
大するなどの特性を劣化させる。これを避けるた
め、NチヤネルのシングルチヤネルMOSICなど
においてはこの接触部にリンなどの拡散定数の大
きい不純物を拡散させて接触部のみ深い接合部と
し、スパイクの問題を避けている。
しかしながら、従来の相補型MOS集積回路で
はPチヤネルとNチヤネルはソース・ドレイン不
純物のタイプが異なるため、この接触部に穴明し
たのち同時に深い拡散を行なうことができない。
従つてPチヤネルとNチヤネルとはそれぞれ独立
に深い拡散を行なう必要があり、このため特別の
マスクとフオトリソグラフイ工程の追加か必要と
している。
はPチヤネルとNチヤネルはソース・ドレイン不
純物のタイプが異なるため、この接触部に穴明し
たのち同時に深い拡散を行なうことができない。
従つてPチヤネルとNチヤネルとはそれぞれ独立
に深い拡散を行なう必要があり、このため特別の
マスクとフオトリソグラフイ工程の追加か必要と
している。
従来の相補型MOS集積回路の製造方法は以上
のようであつたので、特別のマスクと余分な製造
工程を必要とするなどの欠点があつた。この発明
の目的は上記のような問題点を解消するためにな
されたものでマスクの枚数を増大させることな
く、浅い拡散領域と金属の接合部のみ拡散接合深
さをPチヤネル、Nチヤネル別に大きくとること
ができるようにし、配線金属の基板へのスパイク
を防止することができる相補型MOS集積回路の
製造方法を提供するものである。
のようであつたので、特別のマスクと余分な製造
工程を必要とするなどの欠点があつた。この発明
の目的は上記のような問題点を解消するためにな
されたものでマスクの枚数を増大させることな
く、浅い拡散領域と金属の接合部のみ拡散接合深
さをPチヤネル、Nチヤネル別に大きくとること
ができるようにし、配線金属の基板へのスパイク
を防止することができる相補型MOS集積回路の
製造方法を提供するものである。
この発明に係る多層金属配線を有する相補型
MOS集積回路の製造方法は、基板上に浅い接合
の第1、第2導電型拡散領域を形成する工程と、
この拡散領域上に第1絶縁膜を形成する工程と、
この絶縁膜を開孔し上記第1導電型拡散領域に達
するコンタクトホールを形成する工程と、上記第
1絶縁膜をマスクとして、上記第1導電型拡散領
域にイオン注入して深い接合の第1導電型拡散領
域を形成する工程と、上記コンタクトホールを第
1金属配線層で埋める工程と、この配線層上に第
2絶縁膜を形成した後、この第2絶縁膜および上
記第1絶縁膜を開孔し、上記第1金属配線層およ
び上記第2導電型拡散領域に達するコンタクトホ
ールを形成する工程と、上記第1、第2の絶縁膜
をマスクとして上記第2導電型拡散領域にイオン
注入して深い接合の第2導電型拡散領域を形成す
る工程と、この第2導電型拡散領域に達するコン
タクトホールを埋め上記第1金属配線層とを接続
する第2金属配線層を形成する工程とを備えたも
のである。
MOS集積回路の製造方法は、基板上に浅い接合
の第1、第2導電型拡散領域を形成する工程と、
この拡散領域上に第1絶縁膜を形成する工程と、
この絶縁膜を開孔し上記第1導電型拡散領域に達
するコンタクトホールを形成する工程と、上記第
1絶縁膜をマスクとして、上記第1導電型拡散領
域にイオン注入して深い接合の第1導電型拡散領
域を形成する工程と、上記コンタクトホールを第
1金属配線層で埋める工程と、この配線層上に第
2絶縁膜を形成した後、この第2絶縁膜および上
記第1絶縁膜を開孔し、上記第1金属配線層およ
び上記第2導電型拡散領域に達するコンタクトホ
ールを形成する工程と、上記第1、第2の絶縁膜
をマスクとして上記第2導電型拡散領域にイオン
注入して深い接合の第2導電型拡散領域を形成す
る工程と、この第2導電型拡散領域に達するコン
タクトホールを埋め上記第1金属配線層とを接続
する第2金属配線層を形成する工程とを備えたも
のである。
この発明における多層金属配線を有する相補型
MOS集積回路の製造方法では、ソース・ドレイ
ンへのコンタクト電極接続において、 (1) NチヤネルMOSトランジスタとPチヤネル
MOSトランジスタのコンタクト開孔を別々に
行ない、 (2) 上記トランジスタの拡散領域と配線金属との
コンタクト部のみ、別々に拡散接合深さを大き
くとり、 (3) さらに配線金属層を第1の配線をNチヤネル
に、第2の配線をPチヤネルおよび上記第1の
配線との接合用とに分けている。
MOS集積回路の製造方法では、ソース・ドレイ
ンへのコンタクト電極接続において、 (1) NチヤネルMOSトランジスタとPチヤネル
MOSトランジスタのコンタクト開孔を別々に
行ない、 (2) 上記トランジスタの拡散領域と配線金属との
コンタクト部のみ、別々に拡散接合深さを大き
くとり、 (3) さらに配線金属層を第1の配線をNチヤネル
に、第2の配線をPチヤネルおよび上記第1の
配線との接合用とに分けている。
以下この発明の一実施例を図について説明す
る。図はこの発明により製造された相補型MOS
集積回路の一実施例を示す断面図である。同図に
おいて、1はP型のシリコン単結晶の基板、2は
PチヤネルMOSトランジスタの基板を構成する
通常nウエルと称するn型の拡散領域、3はNチ
ヤネルMOSトランジスタのソースとドレインを
構成するn+拡散領域、4はPチヤネルMOSトラ
ンジスタのソースとドレインを構成するP+拡散
領域、5は後述する配線層7,9とトランジスタ
を構成する拡散領域3または4と後述するゲート
電極6とを絶縁するシリコン酸化膜などの絶縁
膜、6はポリシリコンで形成したMOSトランジ
スタのゲート電極7はAlまたはAlSiなどを蒸着
したのち通常のフオトリソグラフイによつて形成
された第1の配線層金属、8は例えばシリコン窒
化膜などの絶縁層、9はAlまたはAlsiなどを蒸
着したのち通常のフオトリソグラフイによつて形
成された第2の配線層金属である。
る。図はこの発明により製造された相補型MOS
集積回路の一実施例を示す断面図である。同図に
おいて、1はP型のシリコン単結晶の基板、2は
PチヤネルMOSトランジスタの基板を構成する
通常nウエルと称するn型の拡散領域、3はNチ
ヤネルMOSトランジスタのソースとドレインを
構成するn+拡散領域、4はPチヤネルMOSトラ
ンジスタのソースとドレインを構成するP+拡散
領域、5は後述する配線層7,9とトランジスタ
を構成する拡散領域3または4と後述するゲート
電極6とを絶縁するシリコン酸化膜などの絶縁
膜、6はポリシリコンで形成したMOSトランジ
スタのゲート電極7はAlまたはAlSiなどを蒸着
したのち通常のフオトリソグラフイによつて形成
された第1の配線層金属、8は例えばシリコン窒
化膜などの絶縁層、9はAlまたはAlsiなどを蒸
着したのち通常のフオトリソグラフイによつて形
成された第2の配線層金属である。
次に、上記構成による相補型MOS集積回路の
製造方法について説明する。
製造方法について説明する。
まず、P型のシリコン単結晶の基板1の主面に
従来からよく知られている製造法によつてPチヤ
ネルMOSトランジスタを構成するn拡散領域2、
ソース・ドレインである浅い接合のP+拡散領域
4、ゲート電極6およびNチヤネルMOSトラン
ジスタを構成するソース・ドレインである浅い接
合のn+拡散領域3、ゲート電極6を形成する。
そして第1の絶縁層である絶縁膜5をその上に積
層する。次に、NチヤネルMOSトランジスタの
ソース・ドレインである浅いn+拡散領域3に達
するよう絶縁膜5に通常のフオトリソグラフイと
エツチングによつてコンタクトホール5aを設け
る。そして、絶縁膜5をマスクとしこのコンタク
トホール5aからイオン注入法により例えばリン
を5×1015/cm2注入し、レジスト膜を除去した
後、1000℃で30分熱処理を行なう。この結果、前
記浅い接合のn+拡散領域3には約1μmの局所的に
深い接合が得られる。この値は配線金属7の基板
1へのスパイクに対して十分な深さである。次
に、AlまたはAlsiなどの第1の配線層金属7を
蒸着し、通常のフオトリソグラフイを行なう。そ
して、プラズマCVD法により第2の絶縁層であ
るシリコン窒化膜8を全面に積層する。次に、第
1の配線層金属7に第2の配線層金属9を接続す
るためのコンタクトホール5bを上記シリコン窒
化膜8にフオトリソグラフイとエツチングで設け
ると共にPチヤネルMOSトランジスタのソー
ス・ドレインである浅い接合のp+拡散領域4に
達するよう絶縁膜5,8にコンタクトホール5C
を設ける。このときの絶縁膜8のエツチングは例
えばCF4のプラズマエツチングであり、絶縁膜5
のエツチングは例えばC3F8のプラズマエツチン
グである。このようにすれば第1の配線層金属7
はエツチングされることはない。そして、上記P
チヤネルMOSトランジスタのソース・ドレイン
の浅いp+拡散領域に、コンタクトホール5cか
らリンイオン注入を行つたのち第2の配線層金属
9を蒸着し、フオトリソグラフイを行なう。
従来からよく知られている製造法によつてPチヤ
ネルMOSトランジスタを構成するn拡散領域2、
ソース・ドレインである浅い接合のP+拡散領域
4、ゲート電極6およびNチヤネルMOSトラン
ジスタを構成するソース・ドレインである浅い接
合のn+拡散領域3、ゲート電極6を形成する。
そして第1の絶縁層である絶縁膜5をその上に積
層する。次に、NチヤネルMOSトランジスタの
ソース・ドレインである浅いn+拡散領域3に達
するよう絶縁膜5に通常のフオトリソグラフイと
エツチングによつてコンタクトホール5aを設け
る。そして、絶縁膜5をマスクとしこのコンタク
トホール5aからイオン注入法により例えばリン
を5×1015/cm2注入し、レジスト膜を除去した
後、1000℃で30分熱処理を行なう。この結果、前
記浅い接合のn+拡散領域3には約1μmの局所的に
深い接合が得られる。この値は配線金属7の基板
1へのスパイクに対して十分な深さである。次
に、AlまたはAlsiなどの第1の配線層金属7を
蒸着し、通常のフオトリソグラフイを行なう。そ
して、プラズマCVD法により第2の絶縁層であ
るシリコン窒化膜8を全面に積層する。次に、第
1の配線層金属7に第2の配線層金属9を接続す
るためのコンタクトホール5bを上記シリコン窒
化膜8にフオトリソグラフイとエツチングで設け
ると共にPチヤネルMOSトランジスタのソー
ス・ドレインである浅い接合のp+拡散領域4に
達するよう絶縁膜5,8にコンタクトホール5C
を設ける。このときの絶縁膜8のエツチングは例
えばCF4のプラズマエツチングであり、絶縁膜5
のエツチングは例えばC3F8のプラズマエツチン
グである。このようにすれば第1の配線層金属7
はエツチングされることはない。そして、上記P
チヤネルMOSトランジスタのソース・ドレイン
の浅いp+拡散領域に、コンタクトホール5cか
らリンイオン注入を行つたのち第2の配線層金属
9を蒸着し、フオトリソグラフイを行なう。
なお、以下の工程は本発明の本質とは関係ない
ので省略する。
ので省略する。
以上、詳細に説明したように、この発明による
相補型MOS集積回路の製造方法によれば多層金
属配線を有する微細構造CMOSICにおいて、N
チヤネルMOSトランジスタとPチヤネルMOSト
ランジスタのコンタクト開孔が別々に行え、マス
ク枚数を増大させることなく、拡散領域と金属配
線のコンタクト部のみ拡散接合深さを大きくとる
ことができるため、配線金属の半導体基板へのス
パイクを防止することができ、特性の劣化を防止
することができるなどの効果がある。
相補型MOS集積回路の製造方法によれば多層金
属配線を有する微細構造CMOSICにおいて、N
チヤネルMOSトランジスタとPチヤネルMOSト
ランジスタのコンタクト開孔が別々に行え、マス
ク枚数を増大させることなく、拡散領域と金属配
線のコンタクト部のみ拡散接合深さを大きくとる
ことができるため、配線金属の半導体基板へのス
パイクを防止することができ、特性の劣化を防止
することができるなどの効果がある。
図はこの発明の一実施例を示す相補型MOS集
積回路の断面図である。 1は半導体基板、2はn型の拡散領域、3は
n+拡散領域、4はp+拡散領域、5は第1の絶縁
膜、5a,5b,5cはコンタクトホール、6は
MOSトランジスタのゲート電極、7は第1の配
線層金属、8は第2の絶縁層、9は第2の配線層
金属である。なお、図中、同一符号は同一、また
は相当部分を示す。
積回路の断面図である。 1は半導体基板、2はn型の拡散領域、3は
n+拡散領域、4はp+拡散領域、5は第1の絶縁
膜、5a,5b,5cはコンタクトホール、6は
MOSトランジスタのゲート電極、7は第1の配
線層金属、8は第2の絶縁層、9は第2の配線層
金属である。なお、図中、同一符号は同一、また
は相当部分を示す。
Claims (1)
- 1 半導体基板の一主面にソース・ドレン領域と
なる浅い接合の第1および第2導電型拡散領域を
形成する工程と、これらの領域上に第1絶縁膜を
形成する工程と、この第1絶縁膜を開孔し上記浅
い接合の第1導電型拡散領域に達するコンタクト
ホールを形成する工程と、上記第1絶縁膜をマス
クとして上記浅い接合の第1導電型拡散領域にイ
オンを注入し深い接合の第1導電型の拡散領域を
形成したのち、上記コンタクトホールを第1金属
配線層のAlまたはAlSi層で埋める工程と、第2
絶縁膜を全面に形成する工程と、この第2絶縁膜
および上記第1絶縁膜を開孔し上記第1金属配線
層および浅い接合の第2導電型拡散領域に達する
コンタクトホールを形成する工程と、上記第1,
第2絶縁膜をマスクとして上記浅い接合の第2導
電型拡散領域にイオンを注入し深い接合の第2導
電型拡散領域を形成する工程と、この深い接合の
第2導電型拡散領域に達するコンタクトホールを
埋めるとともに上記第1金属配線層と接続する第
2金属配線層のAlまたはAlSi層を形成する工程
とを備えたことを特徴とする多層配線を有する相
補型MOS集積回路の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124903A JPS5825258A (ja) | 1981-08-07 | 1981-08-07 | 相補形mos集積回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124903A JPS5825258A (ja) | 1981-08-07 | 1981-08-07 | 相補形mos集積回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5825258A JPS5825258A (ja) | 1983-02-15 |
JPH0377667B2 true JPH0377667B2 (ja) | 1991-12-11 |
Family
ID=14896955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56124903A Granted JPS5825258A (ja) | 1981-08-07 | 1981-08-07 | 相補形mos集積回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825258A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2509173B2 (ja) * | 1985-02-08 | 1996-06-19 | 株式会社日立製作所 | 相補型misfetを有する半導体集積回路装置の製造方法 |
-
1981
- 1981-08-07 JP JP56124903A patent/JPS5825258A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5825258A (ja) | 1983-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5945712A (en) | Semiconductor device having a SOI structure with substrate bias formed through the insulator and in contact with one of the active diffusion layers | |
US4663825A (en) | Method of manufacturing semiconductor device | |
JPH05267604A (ja) | 半導体装置の製造方法 | |
US6274914B1 (en) | CMOS integrated circuits including source/drain plug | |
KR0178551B1 (ko) | 반도체 집적 회로 제조 방법 | |
US5032537A (en) | Method of doping gate electrodes discretely with either P-type or N-type impurities to form discrete semiconductor regions | |
US4818719A (en) | Method of manufacturing an integrated CMOS of ordinary logic circuit and of high voltage MOS circuit | |
US5506159A (en) | Method for manufacturing a semiconductor memory device | |
JPH05865B2 (ja) | ||
US4564583A (en) | Method for manufacturing a semiconductor device | |
JPS61242064A (ja) | 相補型半導体装置の製造方法 | |
KR100293052B1 (ko) | 반도체 소자 제조 방법 | |
US6232640B1 (en) | Semiconductor device provided with a field-effect transistor and method of manufacturing the same | |
JPS6251216A (ja) | 半導体装置の製造方法 | |
US20060220155A1 (en) | Semiconductor device | |
JPH0377667B2 (ja) | ||
JPH03239368A (ja) | 半導体装置 | |
JP3845238B2 (ja) | 半導体装置の製造方法 | |
JPH021377B2 (ja) | ||
JPS5856450A (ja) | 相補型mos半導体装置 | |
JPH04242934A (ja) | 半導体装置の製造方法 | |
KR19980068505A (ko) | 적층형 인버터 및 그 제조방법 | |
JPS5940563A (ja) | 半導体装置の製造方法 | |
JP3279827B2 (ja) | Mos型半導体装置の製造方法 | |
JP2579923B2 (ja) | 半導体装置の製造方法 |