JPH0365619B2 - - Google Patents

Info

Publication number
JPH0365619B2
JPH0365619B2 JP60020372A JP2037285A JPH0365619B2 JP H0365619 B2 JPH0365619 B2 JP H0365619B2 JP 60020372 A JP60020372 A JP 60020372A JP 2037285 A JP2037285 A JP 2037285A JP H0365619 B2 JPH0365619 B2 JP H0365619B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
mercury
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020372A
Other languages
English (en)
Other versions
JPS61181068A (ja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60020372A priority Critical patent/JPS61181068A/ja
Priority to EP85308930A priority patent/EP0185497B1/en
Priority to AU51012/85A priority patent/AU558729B2/en
Priority to DE8585308930T priority patent/DE3562307D1/de
Priority to CN85109759.6A priority patent/CN1004391B/zh
Publication of JPS61181068A publication Critical patent/JPS61181068A/ja
Priority to US07/029,343 priority patent/US4861688A/en
Publication of JPH0365619B2 publication Critical patent/JPH0365619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】
産業上の利用分野 本発明は、負極活物質として亜鉛、電解液とし
てアルカリ水溶液、正極活物質として二酸化マン
ガン、酸化銀、酸化水銀、酸素、水酸化ニツケル
等を用いる亜鉛アルカリ電池の負極の改良に関す
るものである。 従来の技術 亜鉛アルカリ電池の共通した問題点として、保
存中の負極亜鉛の電解液による腐食が挙げられ
る。従来、亜鉛に5〜10重量%程度の水銀を添加
した汞化亜鉛粉末を用いて水素過電圧を高め、実
用的に問題のない程度に腐食を抑制することが工
業的な手法として採用されている。しかし近年、
低公害化のため、電池内の含有水銀量を低減させ
ることが社会的ニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛、カドミウ
ム、インジウム、ガリウムなどを添加した合金粉
末を用いて耐食性を向上させ、汞化率を低減させ
る方法が提案されている。これらの腐食抑制効果
は、添加元素の単体の効果以外に複数の添加元素
による複合効果も大きく、インジウムと鉛あるい
はこれにさらにガリウムを添加したもの、さらに
はガリウムと鉛を添加した亜鉛合金などが従来、
有望な系として提案されている。 これらはいずれもある程度の耐食性が期待で
き、汞化率の低減もある程度見込めるものの、さ
らに一層、耐食性のよい合金系の探索が必要であ
る。 また、主にマンガン乾電池の改良をめざして、
亜鉛又は亜鉛合金にインジウムを添加した亜鉛合
金を負極に使用することが防食上の効果が大きい
という提案がある(特公昭33−3204号)。 発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、
インジウムの他にFe、Cd、Cr、Pb、Ca、Hg、
Bi、Sb、Al、Ag、Mg、Si、Ni、Mn等を不純
物又は添加物として一又は二種以上を含む場合を
包含して記載されているが、インジウムと鉛を添
加元素として併用した場合の有効性以外には、上
記の雑多な各元素を不純物として含むのか、有効
な元素として添加するのかの区分は明示されてい
なく、どの元素が防食に有効なのかさえ不明であ
り、その適切な添加量についてはインジウム、鉛
以外の記載はない。 これらの元素の組合せの効果について、しかも
これを亜鉛アルカリ電池において検討し、有効な
合金組成を求めることは、なお今後の課題であ
る。 本発明は、負極亜鉛の耐食性、放電性能を劣化
させることなく汞化率を低減させ、低公害で放電
性能、貯蔵性、耐漏液性などの総合性能のすぐれ
た亜鉛アルカリ電池を提供することを目的とす
る。 問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなど
を主成分とするアルカリ水溶液、負極活物質に亜
鉛、正極活物質に二酸化マンガン、酸化銀、酸化
水銀、酸素などを用いるいわゆる亜鉛アルカリ系
電池の負極に、亜鉛を主成分とし、ニツケル
(Ni)を0.01〜0.5重量%、インジウム(In)、タ
リウム(Tl)の一種または二種を総量で0.01〜
0.5重量%、鉛(Pb)、カドミウム(Cd)の一種
または二種総量で0.01〜0.5重量%含有する亜鉛
合金を用いたことを特徴とする。 本発明は、前記の従来例の亜鉛合金中の添加元
素又は不純物のうち、これまで添加効果の知られ
ていないNiに注目して実験を行ないNi単独で添
加した亜鉛合金は耐食性に乏しいが、他の添加元
素との複合効果が大きく、とりわけ上記の元素と
組合わせ適正な含有量を設定した場合に、顕著な
複合的防食効果が得られることを見出して完成し
たものである。 作 用 Ni、或いはPb、Cd或いはIn、Tlのの単独添加
による防食効果、及びこれらの元素の複合効果に
ついての作用機構は不明確であるが、次のように
推察される。 まず、亜鉛に対するNiの溶解度は小さいが噴
射法で粉体化する際の冷却速度が103℃/secのオ
ーダーで非常に大きいため、後述の実施例での適
正な含有量の程度の亜鉛合金粉においてはNiが
亜鉛と溶体化する可能性がある。従つて、亜鉛合
金を表面から汞化した場合、水銀と親和性の小さ
いNiが、結晶内への水銀の拡散を抑制し、亜鉛
合金表面の水銀濃度を高く維持することに寄与す
ることが考えられる。その反面、亜鉛合金表面の
水銀のなじみを却つて悪くする懸念がある。ま
た、PbとCdと亜鉛合金の結晶粒界近傍に偏析し
易く、汞化亜鉛合金の表面層の水銀が粒界を通じ
て内部に拡散するのを抑制して表面の水銀濃度を
高く維持することに寄与するものと思われる。ま
た、In、Tlは亜鉛合金の水素過電圧を大きくす
るとともに、水銀となじみ易いため亜鉛合金を汞
化する場合、表面を汞化により均一化するために
有効である。さらに、亜鉛合金の表面や結晶粒界
に水銀を固定する役割も期待される。これらの各
元素は上述の通り、各々の異なつた作用が期待さ
れるが、汞化した亜鉛合金の表面層の水銀濃度を
高く維持し、或いは表面を均一化して、表面の水
素過電圧を十分に大きくして耐食性を高めるに
は、各々の元素の作用を複合させることがより効
果的であると考えられる。即ち、本発明は上記の
ようにNiによつて結晶粉内への水銀の拡散を抑
制し、Pb、Cdにより結晶粒界への拡散を抑制し、
In、Tlにより亜鉛合金の水素過電圧を大きくす
るとともに表面を均一化し、さらに表面や粒界に
水銀を固定するという各々の作用を想定し、それ
らの作用を総合的に複合させることによつて優れ
た耐食性の亜鉛合金が得られるものと考え、実験
的に検討して、適切な添加元素の組合わせとそれ
らの含有量を割り出すことにより完成したもので
ある。 以上のように、本発明は負極に用いる亜鉛合金
の耐食性を著しく改善し、低汞化率の耐食性亜鉛
負極を実現し、放電性能と貯蔵性にすぐれた低公
害の亜鉛アルカリ電池を提供したものである。以
下、実施例により詳細に説明する。 以上のように、本発明は負極に用いる亜鉛合金
の耐食性を著しく改善し、低汞化率の耐食性亜鉛
負極を実現し、放電性能と貯蔵性にすぐれた低公
害の亜鉛アルカリ電池を提供したものである。 以下、実施例により詳細に説明する。 実施例 純度99.997%の亜鉛地金に、次表に示す各種の
元素を添加した各種の亜鉛合金を作成し、約500
℃で溶融して圧縮空気により噴射して粉体化し、
50〜150メツシユの粒度範囲にふるい分けした。
次いで、か性カリの10重量%水溶液中に上記粉体
を投入し、攪拌しながら所定量の水銀を滴下して
汞化した。その後水洗し、アセトンで置換して乾
燥し、汞化亜鉛合金粉を作成した。さらに本発明
の実施例以外の汞化亜鉛粉、又は汞化亜鉛合金粉
についても比較例として同様の方法で作成した。 これらの汞化粉末を用い、図に示すボタン形酸
化銀電池を製作した。図において、1はステンレ
ス鋼製の封口板で、その内面には銅メツキ1′が
施されている。2はか性カリの40重量%水溶液に
酸化亜鉛を飽和させた電解液をカルボキシメチル
セルロースによりゲル化し、このゲル中に汞化亜
鉛合金粉末を分散させた亜鉛負極である。3はセ
ルロース系の保液材、4は多孔性ポリプロピレン
製のセパレータ、5は酸化銀に黒鉛を混合して加
圧成形した正極、6は鉄にニツケルメツキを施し
た正極リング、7はステンレス鋼製の正極缶で、
その内外面にはニツケルメツキが施されている。
8はポリプロピレン製のガスケツトで、正極缶の
折り曲げにより正極缶と封口板との間に圧縮され
ている。 試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、また水
銀の添加量(汞化率)は、亜鉛合金粉に対し、い
ずれも1重量%とした。 試作した電池の亜鉛合金の組成と、60℃で1カ
月間保存した後の放電性能と電池総高の変化を次
表に示す。なお放電性能は、20℃において510Ω
で0.9Vを終止電圧として放電したときの放電持
続時間で表わした。
【表】
【表】
【表】 この表における、電池総高の変化については、
電池封口後、経時的に各電池構成要素間への応力
の関係が安定化するまでの期間は電池総高が減少
するのが通例である。しかし、亜鉛負極の腐食に
伴う水素ガス発生の多い電池では、上記の電池総
高の減少力に対抗する電池内圧の上昇により電池
総高を増大させる傾向が強くなる。従つて、貯蔵
による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な
電池では、電池総高が増大するほか、電池内圧の
上昇により耐漏液性が劣化するとともに、腐食に
よる亜鉛の消耗、亜鉛表面の酸化膜の形成や、水
素ガスの内在による放電反応の阻害等により放電
性能が著しく劣化することになり、放電持続時間
も又亜鉛負極の耐食性に依存する要素が大きい。 表において、本発明の比較例として挙げたNo.1
〜5のうち、Niを単独で添加した場合(No.1)
よりもNiとともにもう一種の元素を添加した場
合(No.1、2、3、4、5)の方が亜鉛負極の耐
食性、放電性能と幾分改善されている。しかし
Niに加え、InおよびTlの一種または二種と、Pb
およびCdの一種または二種の元素を適正な含有
量で併存させた本発明の実施例(No.7、8、9、
12、13、16、17、18、20、21、22、23、24、25、
26)の場合には前記の比較例に較べ、一段と耐食
性、放電性能がすぐれ、添加元素の複合効果が顕
著に示される。一方、上記の元素を併存させた場
合でも含有量に過不足のある場合(No.6、10、
11、14、15、18)は比較例と大差なく、複合効果
が乏しい。上述の通り、本発明は上記の五元素を
適切な組合わせ、適正な含有量で併存させた亜鉛
合金を負極に用いることにより低汞化率化に成功
したもので、各元素の含有量はInおよびTlの一
種または二種の総量が0.01〜0.5重量%、Pbおよ
びCdの一種または二種の総量が0.01〜0.5重量%、
Niが0.01〜0.5重量%とするのが適切である。 以上のように、本発明は前述の添加元素の組合
わせによる相乗効果により負極に用いる亜鉛合金
の耐食性が向上することを見出し、適切な含有量
を割り出して低公害で実用性能のすぐれた亜鉛ア
ルカリ電池を実現したものである。なお、実施例
においては汞化亜鉛負極を用いた電池について説
明したが、開放式の空気電池や水素吸収機構を備
えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このよ
うな場合に本発明を適用する場合は、さらに低汞
化率、場合によつては無汞化のまま実施すること
もできる。 発明の効果 以上のように本発明は、負極亜鉛の汞化率を低
減でき、低公害の亜鉛アルカリ電池を得るに極め
て効果的である。
【図面の簡単な説明】
図は本発明の実施例に用いたボタン形酸化銀電
池の一部を断面にした側面図である。 2……亜鉛負極、4……セパレータ、5……酸
化銀正極。

Claims (1)

    【特許請求の範囲】
  1. 1 ニツケルを0.01〜0.5重量%、インジウム、
    タリウムの一種または二種を総量で0.01〜0.5重
    量%、鉛、カドミウムの一種または二種を総量で
    0.01〜0.5重量%含有する亜鉛合金を負極活物質
    に用いた亜鉛アルカリ電池。
JP60020372A 1984-12-12 1985-02-05 亜鉛アルカリ電池 Granted JPS61181068A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60020372A JPS61181068A (ja) 1985-02-05 1985-02-05 亜鉛アルカリ電池
EP85308930A EP0185497B1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
AU51012/85A AU558729B2 (en) 1984-12-12 1985-12-09 Zinc alloy-alkaline battery including nickel
DE8585308930T DE3562307D1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
CN85109759.6A CN1004391B (zh) 1984-12-12 1985-12-11 锌—碱电池
US07/029,343 US4861688A (en) 1984-12-12 1987-03-19 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020372A JPS61181068A (ja) 1985-02-05 1985-02-05 亜鉛アルカリ電池

Publications (2)

Publication Number Publication Date
JPS61181068A JPS61181068A (ja) 1986-08-13
JPH0365619B2 true JPH0365619B2 (ja) 1991-10-14

Family

ID=12025234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020372A Granted JPS61181068A (ja) 1984-12-12 1985-02-05 亜鉛アルカリ電池

Country Status (1)

Country Link
JP (1) JPS61181068A (ja)

Also Published As

Publication number Publication date
JPS61181068A (ja) 1986-08-13

Similar Documents

Publication Publication Date Title
JPS60175368A (ja) 亜鉛アルカリ一次電池
JPH0365619B2 (ja)
JPH0365618B2 (ja)
JPH0142576B2 (ja)
JPH0365620B2 (ja)
JPH0622119B2 (ja) 亜鉛アルカリ電池
JPH0365621B2 (ja)
JPS6273565A (ja) 亜鉛アルカリ電池
JPH0143429B2 (ja)
JPS61253764A (ja) 亜鉛アルカリ電池
JPH0365622B2 (ja)
JPS6290860A (ja) 亜鉛アルカリ電池
JPH0365623B2 (ja)
JPS6290852A (ja) 亜鉛アルカリ電池
JPS61140068A (ja) 亜鉛アルカリ電池
JPH0365617B2 (ja)
JPS61140066A (ja) 亜鉛アルカリ電池
JPS6290859A (ja) 亜鉛アルカリ電池
JPS636749A (ja) 亜鉛アルカリ電池
JPS6290855A (ja) 亜鉛アルカリ電池
JPS61181070A (ja) 亜鉛アルカリ電池
JPS61140064A (ja) 亜鉛アルカリ電池
JPS636747A (ja) 亜鉛アルカリ電池
JPH0441470B2 (ja)
JPS61140065A (ja) 亜鉛アルカリ電池