JPH0355980B2 - - Google Patents

Info

Publication number
JPH0355980B2
JPH0355980B2 JP22971082A JP22971082A JPH0355980B2 JP H0355980 B2 JPH0355980 B2 JP H0355980B2 JP 22971082 A JP22971082 A JP 22971082A JP 22971082 A JP22971082 A JP 22971082A JP H0355980 B2 JPH0355980 B2 JP H0355980B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
value
graded
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22971082A
Other languages
Japanese (ja)
Other versions
JPS59123272A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22971082A priority Critical patent/JPS59123272A/en
Publication of JPS59123272A publication Critical patent/JPS59123272A/en
Publication of JPH0355980B2 publication Critical patent/JPH0355980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ヘテロ接合構造を有し、2次元電子
ガスを利用して高速動作を可能とした化合物半導
体装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement in a compound semiconductor device having a heterojunction structure and capable of high-speed operation using two-dimensional electron gas.

従来技術と問題点 一般に、前記種類の化合物半導体装置として、
半絶縁性GaAs基板上にノン・ドープGaAs半導
体層、n型AlxGa1-xAs半導体層を順に形成し、
表面に金・ゲルマニウム/金からなり前記n型
AlxGa1-xAs半導体層とオーミツク・コンタクト
しているソース電極、ドレイン電極及び例えば
AlからなりドープAlxGa1-xAs半導体層とシヨツ
トキ・コンタクトしているゲート電極を備えた構
造が基本になつている。そして、オーミツク・コ
ンタクトしているソース電極、ドレイン電極は、
オーミツク金属と化合物半導体結晶との合金化層
を利用して前記ノン・ドープGaAs半導体層及び
前記n型AlxGa1-xAs半導体層の界面に生成され
る2次元電子ガス層とコンタクトを採つているも
のである。
Prior Art and Problems In general, as the above-mentioned type of compound semiconductor device,
A non-doped GaAs semiconductor layer and an n-type Al x Ga 1-x As semiconductor layer are sequentially formed on a semi-insulating GaAs substrate,
The surface is made of gold/germanium/gold and the n-type
Source and drain electrodes in ohmic contact with the Al x Ga 1-x As semiconductor layer and e.g.
The basic structure includes a gate electrode made of Al and in direct contact with a doped Al x Ga 1-x As semiconductor layer. The source and drain electrodes that are in ohmic contact are
A contact is made with the two-dimensional electron gas layer generated at the interface of the non-doped GaAs semiconductor layer and the n-type Al x Ga 1-x As semiconductor layer by using an alloy layer of an ohmic metal and a compound semiconductor crystal. It is something that is present.

然し乍ら、この従来技法に依るオーミツク・コ
ンタクトしているソース電極及びドレイン電極の
形成は、コンタクト抵抗の再現性、抵抗値及び表
面ホモロジー等の面で問題が多く、半導体装置の
VLSI化の達成を妨げる一つの要因となりつつあ
る。
However, forming source and drain electrodes in ohmic contact using this conventional technique has many problems in terms of reproducibility of contact resistance, resistance value, surface homology, etc.
This is becoming one of the factors that hinders the achievement of VLSI.

発明の目的 本発明は、前記種類の化合物半導体装置に於い
て、オーミツク金属と化合物半導体結晶とを合金
化させる技術を用いることなくオーミツク・コン
タクト電極を形成することができる技術を実現
し、この種化合物半導体装置の特性、再現性、製
造の容易性を向上するとともに高集積化が容易で
あるようにするものである。
Purpose of the Invention The present invention realizes a technology capable of forming an ohmic contact electrode in the above type of compound semiconductor device without using the technology of alloying an ohmic metal and a compound semiconductor crystal, and The present invention aims to improve the characteristics, reproducibility, and ease of manufacturing of a compound semiconductor device, and to facilitate high integration.

発明の構成 本発明では、シヨツトキ金属とInxGa1-xAs半
導体結晶とのシヨツトキ障壁φBがx値に依存し
て小さくなることを利用し、低抵抗値で且つ再現
性が良いオーミツク・コンタクトを得ているもの
である。
Structure of the Invention The present invention takes advantage of the fact that the shot barrier φ B between the shot metal and the In x Ga 1-x As semiconductor crystal decreases depending on the x value, and creates an ohmic film with a low resistance value and good reproducibility. It is something that has been contacted.

第1図はInxGa1-xAs半導体結晶に対する金
(Au)のシヨツトキ障壁φBの関係を表わす線図で
ある。
FIG. 1 is a diagram showing the relationship between the shot barrier φ B of gold (Au) and the In x Ga 1-x As semiconductor crystal.

図から判るように、或るx値を有しているInx
Ga1-xAs半導体結晶のシヨツトキ障壁φBが2次元
電子ガス層界面に生ずるヘテロ障壁ポテンシヤル
δに比較して小さければ表面に於けるコンタクト
抵抗Rcはヘテロ障壁ポテンシヤルに依り生ずる
抵抗Rδに比較して無視出来る程度に小さくなる。
ここで抵抗Rδは、通常、抵抗成分として働かな
い程度に小さい。
As can be seen from the figure, In x with a certain x value
If the shot barrier φB of the Ga 1-x As semiconductor crystal is smaller than the heterobarrier potential δ generated at the interface of the two-dimensional electron gas layer, the contact resistance Rc at the surface is smaller than the resistance Rδ generated due to the heterobarrier potential. It becomes so small that it can be ignored.
Here, the resistance Rδ is usually so small that it does not function as a resistance component.

然し乍ら、GaAs半導体層上に所定x値を有す
るInxGa1-xAs半導体層を形成するとGaAsとInx
Ga1-xAsとの電子親和力の差及び格子ミス・マツ
チングに依り、この接合界面に新たな障壁ポテン
シヤルが生じ、コンタクト抵抗が極端に大きくな
つてしまう。
However, if an In x Ga 1-x As semiconductor layer with a predetermined x value is formed on a GaAs semiconductor layer, GaAs and In x
Due to the difference in electron affinity with Ga 1-x As and lattice mismatching, a new barrier potential is generated at this junction interface, resulting in an extremely large contact resistance.

そこで、この現象を除く為、本発明に於いては
InxGa1-xAs半導体層のx値をx=0より徐々に
所望のx値まで変化させる構造(以下この構造を
グレーデツドと呼ぶ)を採用しているものであ
る。即ち、本発明ででは、InxGa1-xAs半導体層
内に生ずる障壁ポテンシヤル△(=EC−EF)に
ついて、△≦δとなるようにx値を徐々に変化さ
せるようにしている。尚、ECはInxGa1-xAsの伝
導帯の電子エネルギ、EFはInxGa1-xAsのフエル
ミ準位を表わす。
Therefore, in order to eliminate this phenomenon, in the present invention,
This structure employs a structure in which the x value of the In x Ga 1-x As semiconductor layer is gradually changed from x=0 to a desired x value (hereinafter this structure is referred to as graded). That is, in the present invention, with respect to the barrier potential △ (=E C −E F ) generated in the In x Ga 1-x As semiconductor layer, the x value is gradually changed so that △≦δ. . Note that E C represents the electron energy in the conduction band of In x Ga 1-x As, and E F represents the Fermi level of In x Ga 1-x As.

ところで、シヨツトキ障壁φBが負となるまで
InxGa1-xAs半導体層に於けるx値を増加させる
と格子ミス・マツチングを緩和する為に必要とさ
れるInxGa1-xAs半導体層の厚みが大になるので、
半導体装置の構成上好ましくない。従つて、でき
る限りx値が小さい範囲で前記条件を充足する
InxGa1-xAs半導体層に於けるx値を設定するこ
とが肝要である。
By the way, until the shot barrier φ B becomes negative,
Increasing the x value in the In x Ga 1-x As semiconductor layer increases the thickness of the In x Ga 1-x As semiconductor layer required to alleviate lattice mismatching.
This is not preferable in terms of the structure of the semiconductor device. Therefore, the above conditions are satisfied within the range where the x value is as small as possible.
It is important to set the x value in the In x Ga 1-x As semiconductor layer.

発明の実施例 第2図は本発明一実施例の要部切断側面図であ
る。
Embodiment of the Invention FIG. 2 is a cutaway side view of essential parts of an embodiment of the invention.

図に於いて、1は厚さ1〔μm〕のノン・ドー
プGaAs基板、2は厚さ0.03〔μm〕のn型Al0.3
Ga0.7As半導体層、3は厚さ0.03〔μm〕のn型グ
レーデツドAlxGa1-xAs(0<x<0.3)半導体層、
4は厚さ0.05〔μm〕のn+型GaAs半導体層、5は
厚さ0.3〔μm〕のn+型グレーデツドInxGa1-xAs
(0.65>x>0)半導体層、6は厚さ0.05〔μm〕
のn+型In0.65Ga0.35As半導体層(一般的に表わす
際は、n+型InyGa1-yAs半導体層とする)、7は2
次元電子ガス層、8SはAsからなるソース電極、
8DはAuからなるドレイン電極、9はアルミニ
ウムからなるシヨツトキ・ゲート電極をそれぞれ
示し、また、ここでn+は3×1018〔cm-3〕程度、
nは1×1018〔cm-3〕程度の不純物濃度である。
尚、本明細書では、基板及びその上の各半導体層
を含めてウエハと呼ぶことにする。
In the figure, 1 is a non-doped GaAs substrate with a thickness of 1 [μm], and 2 is an n-type Al 0.3 with a thickness of 0.03 [μm].
Ga 0.7 As semiconductor layer, 3 is an n-type graded Al x Ga 1-x As (0<x<0.3) semiconductor layer with a thickness of 0.03 [μm],
4 is an n + type GaAs semiconductor layer with a thickness of 0.05 [μm], and 5 is an n + type graded In x Ga 1-x As with a thickness of 0.3 [μm].
(0.65>x>0) Semiconductor layer, 6 has a thickness of 0.05 [μm]
n + type In 0.65 Ga 0.35 As semiconductor layer (generally expressed as n + type In y Ga 1-y As semiconductor layer), 7 is 2
Dimensional electron gas layer, 8S is a source electrode made of As,
8D indicates a drain electrode made of Au, and 9 indicates a shot gate electrode made of aluminum, where n + is approximately 3×10 18 [cm -3 ],
n is an impurity concentration of about 1×10 18 [cm −3 ].
In this specification, the term wafer includes the substrate and each semiconductor layer thereon.

本実施例に於けるソース電極8S及びドレイン
電極8D直下のエネルギ・バンド・モデルが第3
図に示されている。
The energy band model directly below the source electrode 8S and drain electrode 8D in this example is the third one.
As shown in the figure.

図に於いて、各記号は第2図について説明した
部分と同部分を指示している。
In the figure, each symbol indicates the same part as described with respect to FIG.

図から判るように、シヨツトキ障壁φB(55〔m
eV〕)がヘテロ接合障壁δ(〜150〔meV〕)に比
較して小さいから、低抵抗オーミツク・コンタク
ト特性が得られていることは明かである。
As can be seen from the figure, the shot barrier φ B (55 [m
Since the heterojunction barrier δ (~150 [meV]) is small compared to the heterojunction barrier δ (~150 [meV]), it is clear that low resistance ohmic contact characteristics are obtained.

第4図は他の実施例を表わす要部切断側面図で
ある。
FIG. 4 is a main part cutaway side view showing another embodiment.

図に於いて、11はノン・ドープGaAs基板、
12はn型Al0.3Ga0.7As半導体層、13はn型グ
レーデツドAlxGa1-xAs(0<x<0.3)半導体層、
14はn+型GaAs半導体層、15はn+型グレーデ
ツドInxGa1-xAs(0.8>x>9)半導体層、16は
n+型In0.8Ga0.2As半導体層、17は2次元電子ガ
ス層、18SはAuからなるソース電極、18D
はAuからなるドレイン電極、19はAlからなる
ゲート電極である。
In the figure, 11 is a non-doped GaAs substrate,
12 is an n-type Al 0.3 Ga 0.7 As semiconductor layer, 13 is an n-type graded Al x Ga 1-x As (0<x<0.3) semiconductor layer,
14 is an n + type GaAs semiconductor layer, 15 is an n + type graded In x Ga 1-x As (0.8>x>9) semiconductor layer, and 16 is an n + type graded In x Ga 1-x As (0.8>x>9) semiconductor layer.
n + type In 0.8 Ga 0.2 As semiconductor layer, 17 is a two-dimensional electron gas layer, 18S is a source electrode made of Au, 18D
19 is a drain electrode made of Au, and 19 is a gate electrode made of Al.

発明の効果 本発明は、AlGaAs/CaAsヘテロ接合構造を
有し、2次元電子ガスを利用して高速動作を行な
う化合物半導体装置に於いて、2次元電子ガスを
供給するAlGaAs半導体層を含むウエハ上に基板
側から順にn+型GaAs半導体層及びn型グレーデ
ツドInxGa1-xAs(1>x>0)半導体層を形成
し、更に要すればその上にn型InyGa1-yAs半導
体層を形成し、そのn型グレーデツドInxGa1-x
As半導体層のx値、またn型InyGa1-yAs半導体
層を形成してある場合はx値及びy値を適宜に選
択し、n型グレーデツドInxGa1-xAs半導体層或
いはn型InyGa1-yAs半導体層及それとコンタク
トする金属材料とのシヨツトキ障壁φB及び前記
n型InxGa1-xAs半導体層内に生ずる障壁ポテン
シヤル△(EC−EF)が2次元電子ガス層界面に
生ずるヘテロ接合障壁ポテンシヤルδに比較して
φB≦δ且つ△≦δであるようにすることにより、
前記金属材料を前記n型グレーデツドInxGa1-x
As半導体層或はn型InyGa1-yAs半導体層に被着
するのみで良好なオーミツク・コンタクトを簡単
に得ることができ、従来の如き合金化処理は全く
不要である。その結果、本発明に依る化合物半導
体装置では、ソース電極、ドレイン電極のコンタ
クト抵抗はその値が均一であり、再現性が良好で
且つ製造が容易であるから、前記種類の化合物半
導体装置を高集積化する際に適用して有効であ
る。
Effects of the Invention The present invention provides a compound semiconductor device that has an AlGaAs/CaAs heterojunction structure and performs high-speed operation using two-dimensional electron gas. Then, an n + type GaAs semiconductor layer and an n type graded In x Ga 1-x As (1>x>0) semiconductor layer are formed in order from the substrate side, and if necessary, an n type In y Ga 1-y layer is formed thereon. Form an As semiconductor layer, and its n-type graded In x Ga 1-x
The x value of the As semiconductor layer, or if an n-type In y Ga 1-y As semiconductor layer is formed, the x value and y value are appropriately selected, and the n-type graded In x Ga 1-x As semiconductor layer or The shot barrier φ B between the n-type In y Ga 1-y As semiconductor layer and the metal material in contact with it and the barrier potential Δ(E C −E F ) generated within the n-type In y Ga 1-x As semiconductor layer are By making φ B ≦δ and △≦δ compared to the heterojunction barrier potential δ occurring at the interface of the two-dimensional electron gas layer,
The metal material is the n-type graded In x Ga 1-x
A good ohmic contact can be easily obtained by simply depositing it on an As semiconductor layer or an n-type In y Ga 1-y As semiconductor layer, and conventional alloying treatment is not required at all. As a result, in the compound semiconductor device according to the present invention, the contact resistance of the source electrode and the drain electrode is uniform in value, has good reproducibility, and is easy to manufacture, so that the above type of compound semiconductor device can be highly integrated. It is effective when applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図はInxGa1-xAs半導体結晶に対する金の
シヨツトキ障壁φBの関係を表わす線図、第2図
は本発明一実施例の要部切断側面図、第3図は第
2図に示した実施例のエネルギ・バンド・モデ
ル、第4図は本発明に於ける他の実施例の要部切
断側面図である。 図に於いて、1はノン・ドープGaAs基板、2
はn型Al0.3Ga0.7As半導体層、3はn型グレーデ
ツドAlxGa1-xAs(0<x<0.3)半導体層、4は
n+型GaAs半導体層、5はn+型グレーデツドInx
Ga1-xAs(0.65>x>0)半導体層、6はn+
In0.65Ga0.35As半導体層(InyGa1-yAs半導体層)、
7は2次元電子ガス層、8Sはソース電極、8D
はドレイン電極、9はゲート電極である。
FIG. 1 is a diagram showing the relationship of gold shot barrier φ B to In x Ga 1-x As semiconductor crystal, FIG. 2 is a cutaway side view of essential parts of an embodiment of the present invention, and FIG. FIG. 4 is a cutaway side view of a main part of another embodiment of the present invention. In the figure, 1 is a non-doped GaAs substrate, 2
is an n-type Al 0.3 Ga 0.7 As semiconductor layer, 3 is an n-type graded Al x Ga 1-x As (0<x<0.3) semiconductor layer, and 4 is an n-type graded Al x Ga 1-x As (0<x<0.3) semiconductor layer.
n + type GaAs semiconductor layer, 5 is n + type graded In x
Ga 1-x As (0.65>x>0) semiconductor layer, 6 is n + type
In 0.65 Ga 0.35 As semiconductor layer (In y Ga 1-y As semiconductor layer),
7 is a two-dimensional electron gas layer, 8S is a source electrode, 8D
is a drain electrode, and 9 is a gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 AlGaAs/CaAsのヘテロ接合構造を有し2
次元電子ガスを利用して高速動作を行なう化合物
半導体装置に於いて、2次元電子ガスを供給する
AlGaAs半導体層を含むウエハ上に基板側から順
に形成されたn型GaAs半導体層及びn型グレー
デツドInxGa1-xAs(1>x>0)半導体層(或い
はn型GaAs半導体層及びn型グレーデツドInx
Ga1-xAs半導体層及びn型InyGa1-yAs半導体層)
を備え、前記n型グレーデツドInxGa1-xAs半導
体層(或いはn型InyGa1-yAs半導体層及びn型
グレーデツドInxGa1-xAs半導体層)に於けるx
値(或いはx値及びy値)は、前記n型InxGa1-x
As半導体層(或いはn型InyGa1-yAs半導体層)
及びそれとコンタクトする金属材料とのシヨツト
キ障壁φB及び前記n型グレーデツドInxGa1-xAs
半導体層内に生ずる障壁ポテンシヤル△(=EC
−EF)が2次元電子ガス層界面に生ずるヘテロ
接合障壁ポテンシヤルδに比較してφB≦δ且つ
△≦δであるように選択されてなることを特徴と
する化合物半導体装置。
1 Has a heterojunction structure of AlGaAs/CaAs 2
Supplying two-dimensional electron gas in compound semiconductor devices that operate at high speed using dimensional electron gas
An n-type GaAs semiconductor layer and an n-type graded In x Ga 1-x As (1>x>0) semiconductor layer (or an n-type GaAs semiconductor layer and an n-type Graded In x
Ga 1-x As semiconductor layer and n-type In y Ga 1-y As semiconductor layer)
x in the n-type graded In x Ga 1-x As semiconductor layer (or the n-type In y Ga 1-y As semiconductor layer and the n-type graded In x Ga 1-x As semiconductor layer).
The value (or x value and y value) is the n-type In x Ga 1-x
As semiconductor layer (or n-type In y Ga 1-y As semiconductor layer)
and the shot barrier φ B with the metal material in contact with it and the n-type graded In x Ga 1-x As
Barrier potential △ (=E C
-E F ) is selected so that φ B ≦δ and △≦δ as compared to a heterojunction barrier potential δ occurring at the interface of a two-dimensional electron gas layer.
JP22971082A 1982-12-28 1982-12-28 Compound semiconductor device Granted JPS59123272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22971082A JPS59123272A (en) 1982-12-28 1982-12-28 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22971082A JPS59123272A (en) 1982-12-28 1982-12-28 Compound semiconductor device

Publications (2)

Publication Number Publication Date
JPS59123272A JPS59123272A (en) 1984-07-17
JPH0355980B2 true JPH0355980B2 (en) 1991-08-27

Family

ID=16896479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22971082A Granted JPS59123272A (en) 1982-12-28 1982-12-28 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS59123272A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645993B2 (en) * 1986-06-12 1997-08-25 富士通株式会社 Field effect type semiconductor device and method of manufacturing the same
US4827320A (en) * 1986-09-19 1989-05-02 University Of Illinois Semiconductor device with strained InGaAs layer
KR920006875B1 (en) * 1987-03-18 1992-08-21 후지쓰 가부시끼가이샤 Compound semiconductor device having non-alloyed ohmic contacts
JPH0750781B2 (en) * 1987-03-18 1995-05-31 富士通株式会社 Compound semiconductor integrated circuit device
JPH01120871A (en) * 1987-11-05 1989-05-12 Fujitsu Ltd Semiconductor device
JP2765843B2 (en) * 1987-12-18 1998-06-18 株式会社日立製作所 Semiconductor device
JPH01199475A (en) * 1988-02-03 1989-08-10 Sanyo Electric Co Ltd Heterojunction field-effect transistor
JPH02232942A (en) * 1989-03-07 1990-09-14 Sony Corp Compound semiconductor device
JPH05198598A (en) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp Compound semiconductor device and manufacture thereof
JPH06163600A (en) * 1992-11-26 1994-06-10 Nec Corp Field-effect transistor

Also Published As

Publication number Publication date
JPS59123272A (en) 1984-07-17

Similar Documents

Publication Publication Date Title
JP2786327B2 (en) Heterojunction field effect transistor
JPS58127383A (en) Hetero junction transistor semiconductor device
JPS61121369A (en) Semiconductor device
JPH0355980B2 (en)
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
JPS6359272B2 (en)
JPS6353711B2 (en)
JPS6330788B2 (en)
JPH0355978B2 (en)
JPS62298181A (en) Semiconductor device
JPS594085A (en) Semiconductor device
JPH0227739A (en) Semiconductor device
JPS627159A (en) Semiconductor device
JPS59968A (en) Semiconductor device
JPS6376380A (en) Semiconductor device
FR2504732A1 (en) Tunnel transistor having double heterojunction - producing reduced resistance
JP2600228B2 (en) Semiconductor device
JP2664174B2 (en) Field effect transistor
JP2508173B2 (en) Method for manufacturing semiconductor device
JPS6359267B2 (en)
JPS59149063A (en) Semiconductor device
JPS60210880A (en) Semiconductor device
JP2834172B2 (en) Field effect transistor
JPS63155772A (en) Field effect transistor
JPH0346973B2 (en)