JPS60210880A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS60210880A JPS60210880A JP6586984A JP6586984A JPS60210880A JP S60210880 A JPS60210880 A JP S60210880A JP 6586984 A JP6586984 A JP 6586984A JP 6586984 A JP6586984 A JP 6586984A JP S60210880 A JPS60210880 A JP S60210880A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- potential well
- lamination
- negative resistance
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 5
- 230000005540 biological transmission Effects 0.000 claims abstract description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 5
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 229910005542 GaSb Inorganic materials 0.000 abstract 4
- 238000003475 lamination Methods 0.000 abstract 3
- 238000010276 construction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000011347 resin Substances 0.000 abstract 1
- 229920005989 resin Polymers 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Pressure Sensors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は負性抵抗を利用した゛半導体装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a semiconductor device using negative resistance.
現在半導体装置として多く用いられているのはバイポー
ラトランジスタと電界効果トランジスタである。どちら
の装置も高速化−二向けて努力が続けられているが、バ
イポーラトランジスタでは少数キャリアの蓄積効果のた
め、電界効果トランジスタではチャンネルを流れる電子
又は正孔の移動度に制限があるため、高速化が難しいの
が現状である。これf二対して負性抵抗を利用する装置
は本質的に高速化に適しているので注目を集めている。Bipolar transistors and field effect transistors are currently widely used as semiconductor devices. Efforts are being made to increase the speed of both devices, but bipolar transistors have a minority carrier accumulation effect, and field effect transistors have limitations on the mobility of electrons or holes flowing through the channel. The current situation is that it is difficult to On the other hand, devices using negative resistance f2 are attracting attention because they are inherently suitable for increasing speed.
負性抵抗を利用する半導体装置としては、ガン・ダイオ
ード、トンネルダイオード等があるが、以下に説明する
本発明は全く別の原理に基ずくものである。Gunn diodes, tunnel diodes, and the like are examples of semiconductor devices that utilize negative resistance, but the present invention described below is based on a completely different principle.
高速化に適している負性抵抗を利用する半導体装置の問
題点としては、(1)ガンダイオードの場合。Problems with semiconductor devices that use negative resistance, which are suitable for high-speed operation, include (1) Gunn diodes.
高電界のドメインが素子領域を走ること1二よt】。A high electric field domain runs through the device region.
増巾作用1発振作用を行なうので、消費電力が太きくな
ることが上げられる。Since a single oscillation effect is performed, the power consumption increases.
一方、(21)ンネルダイオードでは、トンネルのくり
返しにより素子特性が変化するという問題がある。On the other hand, the (21) tunnel diode has a problem in that element characteristics change due to repeated tunneling.
本発明は前記゛ガンダイオード及びトンネルダイオード
とは全く異なる原理に基すき、前記のような問題点を有
しない、高速化を可能とした半導体装置を提供すること
を目的とする。An object of the present invention is to provide a semiconductor device which is based on a completely different principle from that of the gun diode and tunnel diode, does not have the above-mentioned problems, and is capable of increasing speed.
本発明は第1図の如く半導体材料の間に異なった半導体
材料をはさんだ構造(いわゆるヘテロ接合)を特徴とす
る。このような構造をとると、材料を適当に選択するこ
とにより、この構造のハンド・ダイヤグラムを第2図の
ようにすることが可能となる。第2図のポテンシャルの
井戸の深さをVQ +厚さをLとする。このポテンシャ
ルの井戸にエネルギーEをもった電子が左から入ってく
る場合を想定する。電子は製部左へ反射され、一部右へ
透過する。この透過率Tは、鷲子力学的計算により
と表わされる。ここに、hはブランク定数りを2πで割
ったもの1m は半導体中の電子の有効質量である。こ
の透過率を電子のエネルギーEに対してプロットすると
、第3図のようになる。この第3図及び(1)式から明
らかなようにNを整数として、又は書き直して
のときには、透過率T=1と々る。すなわち、左の)ら
ポテンシャルの井戸に入射した電子は、このポテンシャ
ルにより何らの影響を受けないが、その他の場合はT<
1となり、一部は左へ反射される。したがってこの半導
体装置に入射する電子のエネルギーEを外部からの電圧
Vで制御することができれは、負性抵抗の半導体装置を
作ることができる。この説明を第3図で行なう。電圧v
1のとき電子のエネルギーがE、でT=1であったとす
る。The present invention is characterized by a structure (so-called heterojunction) in which different semiconductor materials are sandwiched between semiconductor materials as shown in FIG. With such a structure, the hand diagram of this structure can be made as shown in FIG. 2 by selecting appropriate materials. Let the depth of the potential well in FIG. 2 be VQ + the thickness L. Let us assume that an electron with energy E enters this potential well from the left. The electrons are reflected to the left of the manufacturing section and partially transmitted to the right. This transmittance T is expressed by Washiko's mechanical calculation. Here, h is the blank constant divided by 2π and 1m is the effective mass of electrons in the semiconductor. When this transmittance is plotted against the electron energy E, the result is as shown in FIG. As is clear from FIG. 3 and equation (1), when N is an integer or rewritten, the transmittance T=1. In other words, electrons incident on the well of potential from ) on the left are not affected by this potential in any way, but in other cases T<
1, and some of it is reflected to the left. Therefore, if the energy E of electrons incident on this semiconductor device can be controlled by an external voltage V, a negative resistance semiconductor device can be manufactured. This explanation will be given with reference to FIG. voltage v
1, the electron energy is E, and T=1.
次に7重より大きい電圧V!のときに電子のエネルギー
がE:になったとすると、第3図から明らかなようにT
くlとなり、電子はかなり反射され、透過する電子は少
なくなる。電流は透過率Tに比例するので電圧が大きく
なったときに電流が減少する。Next, voltage V greater than 7 times! If the energy of the electron becomes E:, as is clear from Figure 3, T
As a result, a large amount of electrons are reflected, and fewer electrons are transmitted. Since the current is proportional to the transmittance T, the current decreases when the voltage increases.
すなわち第4図の如き負性抵抗が実現できる。That is, negative resistance as shown in FIG. 4 can be realized.
電圧が■1の場合のエネルギーE1より、■、より大き
い電圧V、の場合の電子のエネルギー均の方を大きくす
る6二は、半導体装置の寸法を小さくして。(2) The energy average of electrons at a larger voltage V is made larger than the energy E1 at a voltage (1).62 The size of the semiconductor device is reduced.
第1図のLlの領域で、電子が散乱されないようにすれ
ば実現できる。This can be achieved by preventing electrons from being scattered in the region Ll in FIG.
本発明によれば、ヘテロ接合と用いて透過共鳴を生せし
めることにより負性抵抗な持つ半導体装置を実現させる
ことができる。According to the present invention, a semiconductor device having negative resistance can be realized by using a heterojunction to generate transmission resonance.
本発明をGa8b −InAs ヘテロ接合を利用した
実施例f二ついて第5図を参照して説明する。まず。The present invention will be described with reference to FIG. 5 with reference to two embodiments f using a Ga8b-InAs heterojunction. first.
Teドープのn−Ga8b基板2】用意し、このように
ノンドープGarb層nを積層し、その上にポテンシャ
ルの井戸となるべきl nAs層囚1積層する。 。A Te-doped n-Ga8b substrate 2 is prepared, a non-doped Garb layer n is laminated as described above, and an lnAs layer 1 which is to become a potential well is laminated thereon. .
更C:箪子が加速を受けるノンドープGarb層囚。Sara C: Non-doped Garb layer prisoner where Tanoko receives acceleration.
オーミックコンタクトをとるためのn Garb l@
25を順次積層形成する。このようなGa8b−In
Asの積li1構造は分子線エピタキシー法により、容
易に形成することができる。次冨二必要な領域をレジス
トでお\い、エツチングをして第5南のよう虚構造にし
た後、電極加をつける。Garb l@ for making ohmic contact
25 are sequentially laminated. Such Ga8b-In
The As product li1 structure can be easily formed by molecular beam epitaxy. Next, cover the necessary areas with resist, and after etching to create an imaginary structure like the 5th south, add electrodes.
各層の寸法は例えはノンドープGarb層nは2000
A’、 InAs層幻は1O0A’、 1<子が加速を
受けるGa8bm24は2000 A−オーミック・コ
ンタクトをとるためのn Garb f@2Bは200
0A’とする。The dimensions of each layer are, for example, the non-doped Garb layer n is 2000
A', InAs layer illusion is 1O0A', 1< Ga8bm24 where the child is accelerated is 2000 A- n Garb f@2B for making ohmic contact is 200
It is assumed to be 0A'.
この実施例ではポテンシャルの井戸の深さ焉は0.83
e Vとなり、負性抵抗が実現できる。In this example, the depth of the potential well is 0.83
e V, and negative resistance can be achieved.
なお1以上の実施例では、 Garb−InAs系につ
いて説明したが1本発明はこれに限られるものではなく
、他の半導体例えばGaP−8i、GaA/入5−Ga
As、InP基板上のA/In入5−GaInAs等の
へテロ接合構造を用いて第5図同様の半導体装置を実現
することが可能である。In one or more embodiments, a Garb-InAs system has been described; however, the present invention is not limited thereto, and may be applied to other semiconductors such as GaP-8i, GaA/5-Ga, etc.
It is possible to realize a semiconductor device similar to that shown in FIG. 5 by using a heterojunction structure such as A/In-containing 5-GaInAs on an As or InP substrate.
第1図は本発明による半導体構造な示す図、第2図は半
導体構造のエネルギー・レベルを示す図。
第3図は本発明の半導体装置構造C二おいての電子の透
過率を示す図、第4図は本発明の半導体装置の電流−電
圧特性を示す図、第5図は本発明半導体装置の実施例を
示す図である。
2] : Garb基板、22=ノンド一プGarb層
。
Z3 : InAs層、 24:′&M、子が加速を受
けるノンドープGarb層。
25 : n GaSb#、 26 :電極。
代理人 弁理士 則近憲佑(ほか1名)第 1 図
第2図
第 3 図
@、″!rのエオルヤーF
第 4 図
1五V−
第 5 図
?ムFIG. 1 is a diagram showing a semiconductor structure according to the present invention, and FIG. 2 is a diagram showing energy levels of the semiconductor structure. FIG. 3 is a diagram showing the electron transmittance in the semiconductor device structure C2 of the invention, FIG. 4 is a diagram showing the current-voltage characteristics of the semiconductor device of the invention, and FIG. 5 is a diagram showing the current-voltage characteristics of the semiconductor device of the invention. It is a figure showing an example. 2]: Garb substrate, 22 = non-doped Garb layer. Z3: InAs layer, 24:'&M, non-doped Garb layer whose particles undergo acceleration. 25: nGaSb#, 26: electrode. Agent Patent attorney Kensuke Norichika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure @, Eolya F of ``!r Figure 4 Figure 15V- Figure 5?
Claims (1)
て、井戸の深さと厚さを調整することにより透過共鳴を
生ぜしめもって負性抵抗を生せしめることを特徴とする
半導体装置。[Claims] Different semiconductor layers are sandwiched between semiconductor materials. A semiconductor device having a structure in which a potential well is created, characterized in that by adjusting the depth and thickness of the well, transmission resonance is produced and negative resistance is produced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6586984A JPS60210880A (en) | 1984-04-04 | 1984-04-04 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6586984A JPS60210880A (en) | 1984-04-04 | 1984-04-04 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60210880A true JPS60210880A (en) | 1985-10-23 |
Family
ID=13299421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6586984A Pending JPS60210880A (en) | 1984-04-04 | 1984-04-04 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60210880A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021863A (en) * | 1988-09-12 | 1991-06-04 | Fujitsu Limited | Semiconductor quantum effect device having negative differential resistance characteristics |
US5298763A (en) * | 1992-11-02 | 1994-03-29 | Motorola, Inc. | Intrinsically doped semiconductor structure and method for making |
-
1984
- 1984-04-04 JP JP6586984A patent/JPS60210880A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021863A (en) * | 1988-09-12 | 1991-06-04 | Fujitsu Limited | Semiconductor quantum effect device having negative differential resistance characteristics |
US5298763A (en) * | 1992-11-02 | 1994-03-29 | Motorola, Inc. | Intrinsically doped semiconductor structure and method for making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6127681A (en) | Field effect transistor having channel part of superlattice construction | |
US4704622A (en) | Negative transconductance device | |
US5227644A (en) | Heterojunction field effect transistor with improve carrier density and mobility | |
JPH0355980B2 (en) | ||
JPS60210880A (en) | Semiconductor device | |
US6952019B2 (en) | Electron device which controls quantum chaos and quantum chaos controlling method | |
JPH04296059A (en) | Resonance tunnel device | |
JPS6354777A (en) | Resonance tunnel device | |
JPH07161965A (en) | Semiconductor device and multivalued logical circuit | |
JP2817718B2 (en) | Tunnel transistor and manufacturing method thereof | |
JP2675362B2 (en) | Semiconductor device | |
JP3119207B2 (en) | Resonant tunnel transistor and method of manufacturing the same | |
JPS6331165A (en) | Resonant tunneling semiconductor device | |
JPH0227739A (en) | Semiconductor device | |
JPH088360B2 (en) | Tunnel transistor and manufacturing method thereof | |
JPS6255314B2 (en) | ||
JPH10321896A (en) | Avalanche diode | |
JPS6179266A (en) | Semiconductor device | |
JPH03196573A (en) | Semiconductor device | |
JP2513118B2 (en) | Tunnel transistor and manufacturing method thereof | |
JPH0298967A (en) | Semiconductor device | |
KR880010485A (en) | Integrated circuit for high speed signal transmission | |
JPH01251662A (en) | High speed semiconductor device | |
JPH10107274A (en) | Tunnel transistor and fabrication thereof | |
JPH06326408A (en) | Semiconductor infrared-emitting device |