JPH0246044A - 連続位相及び一定エンベロープを有しディジタル的に変調された信号のコヒーレント復調方法 - Google Patents

連続位相及び一定エンベロープを有しディジタル的に変調された信号のコヒーレント復調方法

Info

Publication number
JPH0246044A
JPH0246044A JP1163609A JP16360989A JPH0246044A JP H0246044 A JPH0246044 A JP H0246044A JP 1163609 A JP1163609 A JP 1163609A JP 16360989 A JP16360989 A JP 16360989A JP H0246044 A JPH0246044 A JP H0246044A
Authority
JP
Japan
Prior art keywords
phase
bit
evaluation
synchronization
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1163609A
Other languages
English (en)
Other versions
JP3031922B2 (ja
Inventor
Benoit Gelin
ブノイ ゲラン
Michel Lebourg
ミシェル ルブール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPH0246044A publication Critical patent/JPH0246044A/ja
Application granted granted Critical
Publication of JP3031922B2 publication Critical patent/JP3031922B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/003Correction of carrier offset at baseband only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0089In-band signals
    • H04L2027/0093Intermittant signals
    • H04L2027/0095Intermittant signals in a preamble or similar structure

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
本発明は、連続位相及び一定エンベロープを有しディジ
タル的に変調された信号をディジタル的に処理し、前記
位相の被変調項はパケットとして伝送された2進情報に
よる複数のビット周期分にわたり延在する位相インパル
ス応答のたたみこみ積に等しく、受信信号は2つの直交
チャンネル上ベースバンドへ転換され、ディジタル信号
に変換され、II調方法を実行する信号処理器へ送られ
るコヒーレント復調方法に関する。 この方法は、前述の種類のどの位相変調(GMSK、M
SK、2SRC,TFM、GTFM、−・・)。 にも適用可能であり、その漸進的変化に伴う位相進行規
則には周波数スペクトルを削減するという利点がある。 また伝送エネルギーが一定であるという利点もある。 特に最長の期間(5ビット周期分)にわたり延在する位
相変動を有するGMSK型の変調では、スペクトル効率
が最良である。しかし゛この場合にはシンボル間干渉が
大幅に増えてしまう。 この狭帯域変調は、保護V)(F及びLll−IF通信
方式、衛星伝送又は移動無線ネットワーク等の多くの分
野で使用できる。上述の利点のため、CEP丁のパグル
ブ スベスヤル モビル”(GSM)は、1992年か
ら実施される従来のディジタル式全ヨーロッパ移動ネッ
トワークで用いるためこの狭帯域変調を保有している。 様々な従来技術復調処理は、差動式の方法又はコヒーレ
ント式の方法を実行するものである。 差動復調方法は、比較的単純であるという利点があるが
、項又はエラーレートについての性能が劣悪である。 コヒーレント復調方法は、性能はよりよいが、キャリヤ
位相の回復のために刊加的な回路が必要である。 この種のIIにおける欠点の1つとしては、キャリャ及
びクロック信号を回復するための7エーズロツタトルー
プを使用する適宜の同期方法を用いることがある。 実際、シスアムが時分割多重アクセス(’「ime−1
) ivision−Multiple−Acces 
: T D M A )モード又は周波数ホッピング(
F requency−)−1oppina :F H
)モードで動作する場合、信号がチャンネルに起因する
フェージングを受けると、アナログループの再同期化時
間は長くなりすぎ、信号に有用な時間が減少する(R,
Bギブソン及びB、ヒルによる米国特許第4,570.
125号を参照)。 ディジタル信号処理によりコヒーレントWa方法を実行
する場合の主たる利点は、伝送された2進情報について
の決定を行なう順次操作が各々に対して行なわれるパケ
ットとして信号を記憶及び処理することが可能なことで
ある。 順次操作の最初の操作はパケットの冒頭を発見すること
、つまりフレーム同期である。次いでビット同期により
、決定時点が決められ、整合フィルタが時間的に正しく
調整される。このフィルタの役割は、有用情報を損なう
ことなく雑音を低減することである。 最後の操作は非常に重要であって、初期位相と残留周波
数オフセットとを評価することである。 初期位相は、伝送システム内では制卯されないパラメー
タである。このパラメータの評価に欠点があるとエラー
レートに重大な悪影響がある。。 残留周波数オフセットは、送信機と受信機との間の周波
数オフセットと、ドツプラー効果による周波数オフセッ
トとの結果である。この周波数オフセットの評価に欠陥
があると、位相が大きく回転していた場合パケットの最
後のビットについて決定に誤りが生じる。 初期位相及び残留周波数オフセットの評価がなされたな
ら補償が行なわれ、伝送されたビットについて最終的な
決定がなされる。 ルーバトン及びヴ?しによる[デモジ1ラション プシ
ュドー」エラント ド シノー ド チブ MSK  
アダプア オー トランスミッション アン EVFJ
ルヴ テクニク トムソン−C8F、第17巻、 19
85年9月第3号、  521−544頁には、2SR
C変漠に用いられるディジタル復調り法が提案されてい
る。 この方法では次の処理系列がなされる二部公的相関によ
るフレーム同期、差分位相のゼロ交差の検出によるビッ
ト同期、整合P波、サンプルの高速フーリエ変換による
残留周波数オフセットの評価、平均をとることによる初
期位相の評価、そして位相補償。 シミュレーションをしたところ、提案されたアルゴリズ
ムはGMSK変調に適合しにくいことがわかった。 実際無視しえなくなるシンボル間干渉の結果、200H
zを越える残留周波数オフセットがあるとビット同期は
劣化する。 また周波数オフセットの評価については平行演算を行な
っても変調は消去できない。 C,ヒーガード、J、A、ヘラ−及びA、J。 ヴイタービによる[ア マイクロプロセッサベースドP
SK  モデム フォア パケット トランスミッショ
ン オーク? サテライト チャンネルスIIEEE 
 トランザクション、第COH−26巻第5号、 19
78年5月、  552−564頁には、無線ににるパ
ケット伝送用の復調技術が示されている。 本発明は、シンボル間干渉を有ざないPSK型変講変調
み適用されるこの技術に触発されたものでシンボル間干
渉があり、高い雑音レベル及び大きな残留周波数オフセ
ットをも有する任意の種類の変調のコヒーレント復調を
可能とする同期化を得ることを目的とする。 この目的のため本発明の方法は、前記パケットの各々は
、Nビットの既知の基準信号を与え、差動位相での相関
によりフレーム同期とビット同期とが近似的に検出され
るようにし、また初期位相Oo及び残留周波数オフセッ
トΔfoのパラメータの評価が開始されるようにするプ
リアンプル列を含み、近似値の漸進的改善は、ビット同
期検出用Ial値が超過される場合に作動される低速ル
ープと、θ0及びΔr0の評価のため付加的ブロックの
ビットについて中間的決定をなす高速ループとの2つの
間挿されたループにより行なわれることを特徴とする。 フレーム同期及びビット同期についての前記の検出は、
王を1ビットの持続期間として前記パケットの伝送時点
を計T/4で得るようにする差動位相での第1の相図と
、T/4偏移された基準信号で行なわれる差動位相での
第2の相関により得られる。対応する相関機能はそれぞ
れ初期位相からは独立し残留周波数オフセットに僅かに
依存するピークを示し、最高ピーク及び最低ピークはそ
れぞれ1次的ビット局期値SYNP及び2次的ビット1
8IWi値SYNSを定める。こうしてビット同期値に
ついて得られる上丁/8の精度はサンプリング時点を知
るのに充分なものである。 上記のビット同期の検出後には、雑音帯域を制限するた
めガウス型の有限インパルス応答を有するノイルタによ
りtisYNPについて整合p波が行なわれる。 整合P波後の初期位相θ0及び残留周波数オフセットΔ
foの上記の評価は、 一受信イに号と基準信号の共役埴との積を形成して変調
器を消去する段階と、 一Δω0=2πΔfoとして式y=ΔωoX+θ0の線
型変動が得らるよう2π位相ジャンプを消去して位相を
展開する段階と、 一線型回帰法と、前記展開された位相と前記回帰直線と
の間の差 段階とにより行なわれる。 上記の差εが前記の閾値より小さい場合は、Δfo及び
θ0のこの評価は、高速ループを複数回周回し、各周回
毎に特定数の被決定ビットが付加されるNビットのプリ
アンプル列についての中筒決定を利用することで改善さ
れる。 上記の差εがビット同期の誤った評価の結果前記のl1
11riより大きい場合には、2次的ビット同期の(i
sYNsに等しいビット同期の他の値に基づいて整合濾
波及びΔf、及びθ0の評価を再び行なうため低速ルー
プによって前記の計算段階が再開される。 最後の周回後、残留周波数オフセットによっても初期位
相によっても影響されない信号の位相成分しか残さない
補償段階が行なわれる。 次いで、最終決定が行なわれた後差動デコードにより、
伝送2進情報のストリームが最終的に得られる。 本発明によるGMSK信号の復調は、機能ブロック図が
第1図に示されている変:1g器配置でシミュレートさ
れた。この復調器配置は順次次の素子からなる。 −16kbit/sの速さの擬似ランダム2道データス
トリームの多項式発生器からなるフレーム発生器、1゜
各伝送フレームのフォー7ットは、レジスタ及びフリツ
プフロツプからなるシステムによりフレームの冒頭に置
かれるN=16又は32ビットの既知のプリアンプル列
を有する128ビットである。従って残りの128− 
Nビットが、伝送される情報にとり利用可能である。 一データストリームを含むようGMSK型の瀬進的変動
をなす位相インパルス応答を発生する変調器2.変調さ
れた進行は、2つの直交チャンネル1及びQのベースバ
ンド領域で得られる。 70 M 1(zの中間的周波数へ周波数転換するため
の素子。この転換は、送信端において■チャンネルとQ
チャンネルとから入来する信号を周波数Feの局部発振
器5からの信号とこの信号を移相器6で90°位相偏移
せしめる信号に混合するミクサ3及び4により行なわれ
る1、2つのチャンネルからの信号が加算器7で加鼻さ
れた後、加忰器7から得られる信号は、順次減衰器8と
、実際の動作状態をシミlレートするためのスペクトル
密度Noを有する白色ガウス雑音(加法的)発生器9と
、中心70MHzの広帯域フィルタ10とを通過する。 受信端においては、伝送された信号がミクサ3′及び4
′と、周波数F「を有する局部発振器5′と、90°移
相器6′とによりベースバンド信号に転換しなおされる
(実部と虚部がそれぞれi′チャンネルとQ′チャンネ
ルで得られる)。 処理される■′チャンネルとQ′チャンネルに対し、そ
れぞれシャノン条件を尊重するサンプリングを補償する
低域フィルタ12及び13と、アブ−0グデイジタル変
換器14及び15・と、アナログディジタル変換器14
及び15に先行して各変換中信号のレベルをホールドす
るサンプルアンドホールド回路とからなるディジタル変
換ユニット11゜ 1′チヤンネル及びQ′チャンネルは、ディジタルアブ
0グ変換器16及び17及びフィルタ18及び19によ
り行なわれる逆変換の後チIツク(特にP波後の1及び
Qチャンネルの視覚化)を行なうのに用いられる。デコ
ード後2進データストリームはフリップ70ツブ20を
介して出力される。 −GMSK信号の復調が本発明の方法に従って行なわれ
るディジタル信号プロセッサからなるプロセッサユニッ
ト21.このプロセッサは複素計算モードで動作し、マ
イクロプロセッサにより制御される。 伝送されるべきディジタル情報が位相によって送られる
場合、被変調信号は、 の形式を有するとみなせる。 ここで、 tは時間。 Bは伝送2進情報のストリーム(Bi)。 Eは信号エネルギー ■は1ビットの持続時間、foを搬送周波数(角周波数
ω。・・2πf0)。 θGは時間原点(初期位相)。 ψ(t、B)は、q(t)は有限持続時間のインパルス
応答として関係 による2進情報ストリームに応じて変化する位相である
。 位相の表式中の項%は、変調指数、つまりクロック周波
数に対する周波数偏移の比に対応する。 第2図はGMSK、MSK及び2SRC型の変調に対す
るこの関数a(t)の変化を示す。 位相変化は2SRC変溝では2ビット周期分にわたり延
在し、MSK変調では1ビット周期分にわたり延在する
のに対しGMSK変調では5ビット周期分にわたり延在
する。 G M S K変調ではこの変化はより遅いので、第3
図の曲線で示される如く占有スペクトルはより小さい。 ここで第3図は、周波数fと1ビット期間の持続時間T
の積(fT)に対してI単位のスペクトル出力密度(D
SP)の変化を、MSK変調(実線)、2SRC変調(
破線)及びGMSK変A(・−点111m)についてプ
ロットしたものである。 しかし、GMSK変漠においては5ビット周期分にわた
り情報が拡散するため、ビットクロック信号に回期した
オシロスコープによりGMSK信号を観察して得られる
第4図のフィバターンから明らかなシンボル間干渉が生
じる。 以上本発明方法による連続位相及び一定エンベ0−プを
有するディジタル的変調された信号のコヒーレント復温
の順次の段階を説明する。 シンボル間干渉の存在を利用する方法を用いるには、長
さNのプリアンブル列を各パケットの冒頭に挿入するこ
とが不可欠である。 この既知のプリアンプル列によって、相関によるフレー
ムの冒頭の検出及びその後の00及びΔf0の評価の開
始が可能となる。 手続ぎは、フレーム同期及びビット同期と、整合ii波
と、θ0及びΔfoの評価と、決定の4つの主要部に分
けられる。 フレーム    ピッ フレーム同期及びビット同期の検出は、差分位相での相
関により行なわれる。 受信−時ベースバンドに転換しなおされる正規化複素信
号は次の式で表わされる。 5(t)=exp(j[2πΔrot+θ。+ψ(1)
])ここで八へoは、送信周波数feと受信周波数r「
との差に、受信機が送ft機に対し移動している場合は
ドツプラー効果の周波数「dを加えたものを表わし、 Δf0=fe−fr÷fd である。 プリアンプル列により既知の基準信号が持続時間NTを
有する期間生得られるから R(t)=exp(jψ(
【))  ただし tE[0
,NTIである。したがって信号Sと2ビット周期分遅
延されたその共役値の積に等しい信号S′が定められる
。 S’ (t)= 5(t)、 S慨(t−27)=ex
p(j[4yrΔf、T+ψ(1)−ψ(t−2T)]
)Δψ(t)=ψ(1)−ψ(t−2T)とすると、2
ビット周期分間の差動位相が明示されて、次の通りにな
る。 S’ (t)=exp(j[4zrΔf0T+Δψ(1
)])このS’ (t)の表式においては初期位相の項
はなくなっておく、周波数オフセットΔf0が連続位相
偏移を与えている。 基準信号Rに基づいて他の信号R′が次のように定めれ
らる。 R’ (t)=R(t)、R”l (t−27)=eX
I)(jΔψ(t))2つの複素信号S′とR′との相
11g関数は次のように表わされる。 ■ =13XD(j[2πΔfot)x ■ C(τ)の絶対値を平方すると、項eXE1(j[4π
Δf0【)は消える。 Ic(τ)12= ■ IC(τ)12はτ−〇T″最大となるため関数C(τ
)(2の最大値を探せばパケットの冒頭が決定できる。 差動位相での相関を行なうことの利点は、相関ピークが
時間原点における位置θ0から独立し、八fo■(1で
ある限り、つまり送信器の出力に設けられるフィルタの
通過帯域内にある限り周波数オフセットΔf、に僅かに
しか依存しないということである。 しかし相関ピークの最大レベルは雑音に対しより敏感で
ある(信号雑音比が3cB劣化する)。 プリアンプル列には、長さ(N=ビット数)とビットの
配置との2通りの選択肢がある。 パケットが長いほど、擬似警報(PFA)及び比検出(
PND)の確率が改善される。 パケットのビットR4は、タイミングII整の精度に影
響を及ぼす。選択は非常に簡単というわけではないが、
次の条件を4Tmした選択が可能である。 一非周期的な列(そうでないと複数の相関ピークが発生
する。 一一定でない列(そうでないと時間的に大幅に拡散する
)。 一値の交番が多すぎない列(そうでないと位相変化が少
なくなりすぎる)。 前述の相関方法は、1ビット周期当り2サンプルの速さ
でこの相関をとることでフレームの31停にも適用しう
る。 t = iT/2及びi=整数に対するsHの値を5(
i)と記すならば、次の式が得られる。 ■ 5(i)=exp(j[2πΔf。1  +θ。 ■ 十ψ(i    )]) ■ R+  (i)=exp(j  ψ(i従って、 S’  (i)= 5(i)、  S”  (i−4)
R’  2  (t)=eXI)[j  △ψ (iT
/2+T/4月=eXI)(j[4πΔfQT+△ψ(
i −)]]R′ (i)= R+  (i)−R” +  (i−4)■ =exp(j Δψ(i となる。ここで とおいて、CI (j)の最大を探すならばパケットの
冒頭を検出することができる。最大が検出されたならフ
レーム同期が得られたのであり、パケットの送信時点が
士丁/4で判明する。 この粘度はビット同期には充分とはいえない。 評価を改善するためT/4偏移された基準信号で第2の
相関がとられる。第1の相関に関連して次の式が定めら
れる。 R2(i)=eXt)[jψ(iT/2+T/4月2つ
の相関C+ (j)及びC2(lがそれぞれの指数J1
及びJlに対してピークを示す。 CI (Jl )≧C2(Jl )の場合ビット同期=
J、 T/2であり、 C2(Jl ) > CI (Jl )の場合ビット同
期−J2丁/2+T/4である。 この二重相関によってビット同期が二!=T/8の精度
で得られる。 GMSK変調についての位相変動を遅さを考慮するとこ
の精度はサンプリング時点を知るのに充分高い。信号雑
音比が低い(Eb/No < 6cf3 )一定の場合
にはビット同期が誤まることがあることは既述の通りで
ある1、これは、相関ピークのレベル評価に問題がある
(例えばJ+丁/2の代わりにJ 2 T/2+T/4
を選択するなど)ためである。 最終的な決定を行なうため、SYNPをビット同期の[
1次J値として定め、NYNSをビット同期の[2次1
値として定める。 CI(Jl )≧C2(Jl )の場合SYNP : 
 Jl T/2゜ SYNS :  Jl T/2÷T/4C2(Jl )
 > CI (Jl )の場合SYNP:Jl  丁/
2+r/4 SYNS :  Jl T/2 整合P波は値SYNPについて行なわれる。 後記のエラー基準に基き周波数差及び初期位相の評価の
アルゴリズムを変形することができる。 ビット同期のエラーは整合P波にはほとんど影響を与え
ない一方、Δf0及びθ。の評価を大きく劣化せしめる
。 差動位相での二重相関方法は、フレームの冒頭を決定及
びビット同期の第1の評価を可能とするので有用である
。後の方のパラメータは、キャリア信号の位相の評価を
行なううちに確認又は調整される。 1念r遣 S (t、B)=exp[j、ψ(t、B)](7)形
式(7)全テ(7)ティシタル変lIハ、F p(t)
を主関数として次の式による振幅変温の形式で表わされ
ることが示される(例えばP、A、ローランによる[ア
ンテルプレタション デ モジュラジョン デインディ
ス デミ7ンチエ、エクスタンジョン ア デ アンプ
イス ボアザン エ アブリカジョン」第9回 コ0−
キ グレスチ、ニース、 1983年5月、503−5
09頁参照)。 ただし C1=TrBi i=−〇 GMSK変調を振幅変調に分解することは整合フィルタ
が簡単に決定できるようになるので特に興味深い。 後者のフィルタは、Fp (を−同期ビット)に等しい
インパルス応答を有する。 同期ビットの項は、受信信号のリンプルクロック信号に
対づ°る位置を考慮に入れである。 整合フィルタは11係数を有する有限インパルス応答フ
ィルタの形式で実現される。 プリアンプルを使用する方法が考慮された。 整合フィルタの出力には、第5a図中時間に対してプロ
ットされた変動を有する受信信号が現われる。正規化す
るとこの信号は次の式で表わされる。 Z(t)=OXl)(j[2πΔf。t÷θ0 ÷ψ(
1)])プリアンプル列は既知であるから、Nをプリア
ンプル列のビット数として期間[0,NT ]での信号
の進展は簡単に4算できる。 基準信号は既知であり、時間に対するその変動は第5b
図に示されてあり、正規化された式は次の通りである。 1o (t)=exp(jφ(t))  ただしtE[
()、 NTI受信信号Z(【)と基準信号Zoo)の
共役値との積を形成すると変調による項φ(1)ば消え
る(第5C図)。 Z(t)、 Zo ” (t)=exp(2πΔf、t
+θol)次の段階は、得られた複素信号を変換して位
相の進展を表わす線型変動とすることからなる。 φ(t)=A rcta[Z(t)、 Z o ’ (
t)]m=2π△f、t+θ、 ]+godulo 2
 yt従って位相は2πの位相ジャンプを消去して展開
されねばならない。 第5d図がこの変動を示し、その次は式の通りである。 y=Δωo、X十〇。 ただしΔω、 =2πΔf0線
型回帰法により評価パラメータΔω0及び△ θ0が計算される。この計算は体系的であって簡単に使
用できる。 これらの評価パラメータに基づいて信号の補償が複素桑
算により行なわれる。 受信信号 Z (t )=eXp(j [Δωo1+θ
0 ◆ψ(1)])へ   △ 補償信@  5(t)=Z(t)eXD(−j(Δωo
t+θ。)】従って △ 5(D=exp(j([Δ(t)6 −Δω。)t△ 十〇。  −θ。  亭φ(1)]) 評価が正しいならば、 Δω0=Δω0゜ θ0=θ0及びSm=exp(jψ(t))得られる信
号は、周波数オフセットにも時間原点での位相にも影響
されない。 Δω0及びθ。の評価は、雑音、タイミング調整及びプ
リアンプル列の長さの3つのパラメータに影響される。 雑音が増大すると(Eb/EO<6cB)、位相の急変
が生じ、その結果展開された位相に2πの位相ジャンプ
が起こる。この問題は、2πの位相ジャンプを検出補正
する技術を用いて解決される。 タイミング調整に影響されることは、ビット同期の評価
と111Nする。このパラメータの評価が不良であると
、変温は完全には消去されない。このため展開された位
相が、残留位相による影響を受ける。その結果Δω。及
びθ。の評価が劣化する。 決定のエラーを引き起こさないような充分良好な周波数
評価(エラーが10Hz禾tilt)を得るには64ピ
ツト以上の長さのプリアンプル列を用いる必要がある。 128ビットパケツトの場合これは最大伝送効率が50
%ということになる。 かかる効率はパケット伝送とは両立しえない。 初めからN=16又は32ビットのより短いプリアンプ
ルが選択されるなら前述の方法により補償されたサンプ
ルが得られる。 しかし雑音レベルが高い場合には評価の精度は位相を完
全に補正するには不充分である。 メツセージの冒頭と末尾との間に20Hzのエラーがあ
ると58゛の位相回転が生じるが、これはパケットの末
尾において決定のエラーを引き起こす。 従ってパケットの末尾に近い方のビットが最も影響を受
ける。 本発明の位相は、一定数のビット、例えばプリアンプル
列に後続する16ピツトについて決定を行ない再評価を
なす一方でNビットのプリアンプル列プラス決定がなさ
れた新たな16ビットに対応する新たな基準列を考慮す
るというものである。 4回実行することで、Eb/N0=6+Eに対し数ヘル
ツの精度が得られる。結果として、N+64ビットに対
し評価がなされる。 ビットブロックについての中間的決定を利用し、雑音に
対し非常に強くまた高速に収束する評価方法を様々に連
続して実行又は繰り返すことでプリアンプル列の長さを
大幅に短くすることができる。 しかし既述の如くΔω。及びθの評価はビット同期に影
響される。 ビット同期の評価が良くないと、展開された位相に対応
する点と回帰線との闇の差 が相当大きくなる。 この場合εはますます増大する。 εは非常に急速に(1回目か2回目の繰り返しで>II
値を越え、ピッ同期の変更を命令する。 その場合のビット同期の値として2数値SYNSがとら
れる。 整合濾波を実行し新たなビット同期値でΔω0及びθ0
の評価を行なうため全4算が改めて開始される。 扱亙 補償後、主閏数F p(t)が介在するようにする娠幅
変調の形式での信号の表現に基づいて決定がなされる。 伝送ビットの計算には、最終的に差動デコーディングが
なされれば充分である。 第6図は計算過程全体を示すフローチャートである。 10グラムの開始(ボックス22)からのパラメータΔ
ω0及びθ0の評価は実行が困難に見えるかもしれない
が、体系的であって比較的単純である。 まず相関によりフレーム同期の粗評価(ボックス23)
及びビット同期の粗評価(ボックス24)、ビット同期
に対する値SYNP及びSYNSの計算及びビット同期
のll5YNに対する初期選択5YS=SYNPがなさ
れ、次いで整合P波(ボックス25)がなされ、次いで
16又は32ビット同期での線型0帰によりキャリア信
号の位相の近似的決定、変温の抑圧(ボックス26)、
(D°相展171(ボックス27)、Δω0及びθ0の
評価及び差εの計算(ボックス28)がなされる。さら
に、語拝された差εが閾値Sと比較され(ボックス29
)、最後の実行又は繰り返しが関連性があるかが決定さ
れる(ボックス30)。 その結果復調過程は、次の2つのl1ln的なディジタ
ルループからなるシステムとして記述できる。 −リンク31を介して■じるΔω0及びθ0の評価のた
めの第1のループ。 一リンク32を介して関しるビット同期の評価のための
第2のループ。 第1のディジタルループを通る各周回ごとに、ボックス
31でΔωG及びθGの評価を改善するようプリアンプ
ル列に後続するNビットについて決定が繰り返される。 これらの決定は中間的決定と称される。 第2のディジタルループを通るごとに、ボックス29で
差が4算されて閾値と比較される。判定基準によりビッ
ト同期の確認又は再調整が行なわれる。再調整の場合に
は第2の値SYNSがビット同期の値SYNとして用い
られる(ボックス32)。 処理には次の2通りの場合がある。 −ビット同期によるリセットがない場合。Δω0及びθ
0は第1のループの高速収束により少数回の周回で決定
される。 一ビット同期によるリセットがある場合。この場合はP
波及び復調過程全体が改めて開始される。 第2のループの経路を通る処理時間は長くなる。 最後の実行又は周回(ボックス30)に基くフローチャ
ートの残りは、最終決定の実行(ボックス33)及びプ
ログラムの終了(ボックス34)である。 第7図及び第8図は、例示として文献に記載されたGM
SK及びMSK変調についての即論的ビットエラーレー
ト(BER)の曲線A及びBを示す。 GMSK変膚について曲線1及び2は、通過帯域BL 
= 460Hz及び920Hzを有するアナログフェー
ズロックドループによりヤヤリャ回復を行なうコヒーレ
ント復調器に対応する。 この種の復調は、FHモードにおいても°rDMAモー
ドにおいても機能しえない。またこれらの曲線は周波数
オフセットがない場合に得られるものである。 曲線3は、アナログ差動復調器について得られる結果で
ある。 エラーレートが10−2である場合には、論理的エラー
レートに対する劣化は相当大きい(約71)。 GMSK変謂について本発明の復調方法により得られる
エラーレート曲線が、32ビット及び16ピツトのそれ
ぞれに対して第8図及び第9図に、周波数オフセットΔ
f、) = 800Hz (曲IIT)及びΔr o 
= 1600)12 (曲線2)の場合につき示されて
いる。 Δf 0= 8008 zでの結果は比較的良好である
。 10−2のエラーレートでは、第8図及び第9図にも示
される(第7図に既出の)論理的エラーレートの曲11
A及びBに対する劣化は、N=32ビットの場合1.2
43であり、N−16ビットの場合1.4(13である
。 △f 、 < 100GHzである限り結果は周波数オ
フセットに僅かに影響される。この値を越えると結果は
僅かに劣化する。 本発明の方法により、ディジタルGMSK復調のコヒー
レント復調のアルゴリズムが使用できる。 シミlレーションの結果、本方法はigに対し強く、送
信機と受信機との間の相当大きい周波数オフセットに対
すても強いことがわかった。 本方法はTDMA又はFHモードでの動作と確実に両立
しえ、またシンボル間干渉を有する任意の変調に適用し
うる。
【図面の簡単な説明】
第1図は変復調器手段のブロック図、12図はGMSK
、MSK及び2SRC型の変調についての位、相インパ
ルス応答を示す図、第3図はGMSK、MSK及び2S
CR型の変調についてのスペクトル占有図、第4図はG
MSK変調につい・てのアイパターンを示す図、第5図
はθ0及びΔf0の評価系列中のP波後での受信信号の
時間変動を示す図、第6図は本発明による復調処理全体
、のフローチャート、第7図はGMSK変調について文
献に示されているエラーレート曲線を示す図、第8図及
び第9図はGMSKv1m信号に適用された本発明の復
調方法でのエラーレート曲線を示す図である。 1・・・フレーム発生器、2・・・変調器、3,314
.4′・・・ミクサ、5.5′・・・局部発振器、6゜
6′・・・移相器、7・・・加算器、8・・・減衰器、
9・・・雑音発生器、10,12.13.18.19・
・・フィルタ、11・・・ディジタル変換ユニット、1
4゜15・・・アナログディジタル変換器、16.17
・・・ディジタルアナログ変換器、20・・・フリツプ
フロツプ、21・・・プロセッサユニット。 特許出願人 エヌ・ベー・フィリップス・フルーイラン
ベン゛ノアブリケン −一◆」 一一一一會 一一伽t t Cコ F[[)、5 RG、7 RFI+

Claims (7)

    【特許請求の範囲】
  1. (1)連続位相及び一定エンベロープを有しディジタル
    的に変調された信号をディジタル的に処理し、該位相の
    被変調項目はパケットとして伝送された2進情報による
    複数のビット周期分にわたり延在する位相インパルス応
    答のたたみこみ積に等しく、受信信号は2つの直交チャ
    ンネル上ベースバンドへ転換され、ディジタル信号に変
    換され、復調方法を実行する信号処理器へ送られるコヒ
    ーレント復調方法であつて、該パケットの各々は、Nビ
    ットの既知の基準信号を与え、差動位相での相関により
    フレーム同期とビット同期とが近似的に検出されるよう
    にし、また初期位相θ_0及び残留周波数オフセットΔ
    f_0のパラメータの評価が開始されるようにするプリ
    アンプル列を含み、近似値の漸進的改善は、ビット同期
    検出用閾値が超過される場合に差動される低速ループと
    、θ_0及びΔf_0の評価のため付加的ブロックのビ
    ットについて中間的決定をなす高速ループとの2つの間
    挿されたループにより行なわれることを特徴とするコヒ
    ーレント復調方法。
  2. (2)フレーム同期及びビット同期についての前記の検
    出は、Tを1ビットの持続期間として該パケットの伝送
    時点を±T/4で得るようにする差動位相での第1の相
    関と、T/4偏移されて基準信号で行なわれる差動位相
    での第2の相関により得られ、対応する相関機能はそれ
    ぞれ初期位相からは独立し残留周波数オフセットに僅か
    に依存するピークを示し、最高ピーク及び最低ピークは
    それぞれ1次的ビット同期値SYNP及び2次的ビット
    同期値SYNSを定め、こうしてビット同期値について
    得られる±T/8の精度はサンプリング時点を知るのに
    充分なものであり、ビット同期の該検出後には、雑音帯
    域を制限するためガウス型の有限パルス応答を有するフ
    ィルタにより値SYNPについて整合濾波が行なわれる
    ことを特徴とする請求項1記載のコヒーレント復調方法
  3. (3)該整合濾波後の初期位相θ_0及び残留周波数オ
    フセットΔf_0の該評価は、 −受信信号と基準信号の共役値との積を形成して変調項
    を消去する段階と、 −Δω_0=2πΔf_0として式y=Δω_0x+θ
    _0の線型変動が得られるよう2π位相ジャンプを消去
    して位相を展開する段階と、 −線型回帰法と、該展開された位相と該回帰直線との間
    の差 ▲数式、化学式、表等があります▼ により評価パラメータΔω_0及びθ_0を計算する段
    階とにより行なわれることを特徴とする請求項1及び2
    記載のコヒーレント復調方法。
  4. (4)該差εが該閾値より小さい場合は、Δf_0及び
    θ_0の該評価は、高速ループを複数回周回し、各周回
    毎に特定数の被決定ビットが付加されるNビットのプリ
    アンプル列についての中間決定を利用することで改善さ
    れることを特徴とする請求項1乃至3のいずれか一項記
    載のコヒーレント復調方法。
  5. (5)該差εがビット同期の誤った評価の結果該閾値よ
    り大きい場合には、該2次的ビット同期の値SYNSに
    等しいビット同期の他の値に基いて整合濾波及びΔf_
    0及びθ_0の評価を再び行なうため低速ループによっ
    て該計算段階が再開されることを特徴する請求項1乃至
    3のいずれか一項記載のコヒーレント復調方法。
  6. (6)最後の周回終了時、残留周波数オフセットによつ
    ても初期位相によつても影響されない信号の位相成分し
    か残さない補償段階が行なわれ、次いで最終決定が行な
    われ、差動デコードにより、伝送2進情報のストリーム
    が最終的に得られることを特徴とする請求項1項記載の
    コヒーレント復調方法。
  7. (7)位相の進展規則が漸進的変動に従うGMSK、2
    SRC、TFM、GTFM型等の変調により変調された
    信号のコヒーレント復調に適用されることを特徴する請
    求項1乃至6のいずれか一項記載のコヒーレント復調方
    法。
JP1163609A 1988-06-28 1989-06-26 連続位相及び一定エンベロープを有しディジタル的に変調された信号のコヒーレント復調方法 Expired - Fee Related JP3031922B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8808651 1988-06-28
FR8808651A FR2633471B1 (fr) 1988-06-28 1988-06-28 Procede de demodulation coherente d'un signal module numeriquement en phase continue et a enveloppe constante

Publications (2)

Publication Number Publication Date
JPH0246044A true JPH0246044A (ja) 1990-02-15
JP3031922B2 JP3031922B2 (ja) 2000-04-10

Family

ID=9367793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163609A Expired - Fee Related JP3031922B2 (ja) 1988-06-28 1989-06-26 連続位相及び一定エンベロープを有しディジタル的に変調された信号のコヒーレント復調方法

Country Status (6)

Country Link
US (1) US5151925A (ja)
EP (1) EP0349064B1 (ja)
JP (1) JP3031922B2 (ja)
CA (1) CA1308450C (ja)
DE (1) DE68916115T2 (ja)
FR (1) FR2633471B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493710A (en) * 1991-08-02 1996-02-20 Hitachi, Ltd. Communication system having oscillation frequency calibrating function
JP2004502346A (ja) * 2000-06-27 2004-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 位相シーケンスにおける位相ジャンプの検出及び訂正
JP2008530951A (ja) * 2005-02-18 2008-08-07 ピーシー − テル,インコーポレイテッド 予め符号化された部分応答信号用の復調器および受信器

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341402A (en) * 1991-02-19 1994-08-23 Tokyo Electric Co., Ltd. Automatic frequency control method and device for use in receiver
US5425058A (en) * 1993-07-28 1995-06-13 Martin Marietta Corporation MSK phase acquisition and tracking method
FR2711028B1 (fr) * 1993-10-08 1995-11-17 Thomson Csf Procédé et dispositif de démodulation cohérente par blocs de signaux complexes modulés en phase.
US5511098A (en) * 1993-11-12 1996-04-23 Pacific Communication Sciences, Inc. Digital methods and apparatus reverse link signal detection and recovery in a mobile data base station
US5444743A (en) * 1993-11-18 1995-08-22 Hitachi America, Ltd. Synchronous pulse generator
US5459762A (en) * 1994-09-16 1995-10-17 Rockwell International Corporation Variable multi-threshold detection for 0.3-GMSK
US5684836A (en) * 1994-12-22 1997-11-04 Mitsubishi Denki Kabushiki Kaisha Receiver with automatic frequency control
US5625573A (en) * 1995-03-01 1997-04-29 Hughes Electronics Fast acquisition of GMSK-modulated signal for CDPD applications
WO1997003510A1 (en) * 1995-07-07 1997-01-30 Northern Telecom Limited Carrier recovery for digitally phase modulated signals, using a known sequence
US5796780A (en) * 1996-02-09 1998-08-18 Ericsson Inc. Coherent modulation of CPM signals
JP3086173B2 (ja) * 1996-06-18 2000-09-11 日本無線株式会社 同期確立方法及びこれを用いたデータ復調装置
EP0940958A1 (en) * 1998-03-03 1999-09-08 Sony International (Europe) GmbH Method and device for digitally demodulating a frequency modulated signal
US6449304B1 (en) * 1999-05-14 2002-09-10 The Aerospace Corporation Method of determining the carrier reference phase of coherent demodulation of frequency hopped continuous phase modulated signals with synch words arbitrarily located within the hop
EP1100224A1 (fr) * 1999-11-10 2001-05-16 Koninklijke Philips Electronics N.V. Estimation de phase en présence d'écart de fréquence résiduel
US6606363B1 (en) * 1999-12-28 2003-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for estimating a frequency offset by combining pilot symbols and data symbols
WO2001076097A1 (fr) * 2000-03-31 2001-10-11 Mitsubishi Denki Kabushiki Kaisha Procede et appareil de regulation automatique de frequences, et demodulateur
KR100525541B1 (ko) * 2000-12-04 2005-10-31 엘지전자 주식회사 통신시스템에서 위상 정보 추정 장치 및 방법
NZ509688A (en) 2001-02-01 2003-06-30 Ind Res Ltd Maximum likelihood sychronisation (estimating time delay) for wireless digital communications system using a pilot symbol
KR100441196B1 (ko) * 2002-01-14 2004-07-21 기가텔레콤 (주) 연속 위상 직교 진폭 변조 및 복조 장치
JP3860762B2 (ja) * 2002-02-14 2006-12-20 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、チャネル同期確立方法、及び移動局
US7277504B2 (en) * 2002-06-27 2007-10-02 Telefonktiebolaget Lm Ericsson (Publ) Method and system for concurrent estimation of frequency offset and modulation index
US7245672B2 (en) * 2002-06-27 2007-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for phase-domain semi-coherent demodulation
US8126089B2 (en) * 2004-09-30 2012-02-28 Alcatel Lucent Method and apparatus for providing frame synchronization in a digital communication system that supports multiple modulation formats
US7616724B2 (en) * 2004-09-30 2009-11-10 Alcatel-Lucent Usa Inc. Method and apparatus for multi-modulation frame synchronization in a digital communication system
FR2979507B1 (fr) * 2011-08-25 2014-03-28 Diwel Dispositif de reception d'un signal numerique
EP3267706B1 (en) * 2015-04-15 2020-08-05 Huawei Technologies Co., Ltd. Reference signal sending and receiving method and device
FR3085568B1 (fr) * 2018-08-31 2020-08-07 Zodiac Data Systems Procede de datation de signaux de telemesure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531399A (en) * 1978-08-25 1980-03-05 Western Electric Co Processor for interfacing burst modem with low speed terminal station processor
JPS5975743A (ja) * 1982-10-25 1984-04-28 Fujitsu Ltd クロツク再生回路
JPS62122345A (ja) * 1985-11-21 1987-06-03 Nippon Telegr & Teleph Corp <Ntt> 同期検波回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983501A (en) * 1975-09-29 1976-09-28 The United States Of America As Represented By The Secretary Of The Navy Hybrid tracking loop for detecting phase shift keyed signals
US4215239A (en) * 1977-12-05 1980-07-29 E-Systems, Inc. Apparatus for the acquisition of a carrier frequency and symbol timing lock
FR2525055A1 (fr) * 1982-04-09 1983-10-14 Trt Telecom Radio Electr Procede de correction de frequence de la porteuse locale dans le recepteur d'un systeme de transmission de donnees et recepteur utilisant ce procede
US4583048A (en) * 1985-02-26 1986-04-15 Rca Corporation MSK digital demodulator for burst communications
US4715047A (en) * 1986-04-04 1987-12-22 Harris Corporation Digital differential phase shift keyed demodulator
US4847869A (en) * 1987-12-04 1989-07-11 Motorla, Inc. Rapid reference acquisition and phase error compensation for radio transmission of data
US4888793A (en) * 1988-05-06 1989-12-19 Motorola, Inc. Phase correcting DPSK/PSK receiver with digitally stored phase correction derived from received data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531399A (en) * 1978-08-25 1980-03-05 Western Electric Co Processor for interfacing burst modem with low speed terminal station processor
JPS5975743A (ja) * 1982-10-25 1984-04-28 Fujitsu Ltd クロツク再生回路
JPS62122345A (ja) * 1985-11-21 1987-06-03 Nippon Telegr & Teleph Corp <Ntt> 同期検波回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493710A (en) * 1991-08-02 1996-02-20 Hitachi, Ltd. Communication system having oscillation frequency calibrating function
JP2004502346A (ja) * 2000-06-27 2004-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 位相シーケンスにおける位相ジャンプの検出及び訂正
JP4907036B2 (ja) * 2000-06-27 2012-03-28 アイピージー エレクトロニクス 503 リミテッド 位相シーケンスにおける位相ジャンプの検出及び訂正
JP2008530951A (ja) * 2005-02-18 2008-08-07 ピーシー − テル,インコーポレイテッド 予め符号化された部分応答信号用の復調器および受信器

Also Published As

Publication number Publication date
FR2633471A1 (fr) 1989-12-29
DE68916115T2 (de) 1995-02-02
JP3031922B2 (ja) 2000-04-10
US5151925A (en) 1992-09-29
FR2633471B1 (fr) 1990-10-05
EP0349064A1 (fr) 1990-01-03
EP0349064B1 (fr) 1994-06-15
CA1308450C (en) 1992-10-06
DE68916115D1 (de) 1994-07-21

Similar Documents

Publication Publication Date Title
JPH0246044A (ja) 連続位相及び一定エンベロープを有しディジタル的に変調された信号のコヒーレント復調方法
JP2712706B2 (ja) 適応位相検出同期方法
CN101605000B (zh) 具有强抗多途能力的移动水声通信信号处理方法
US7187736B2 (en) Reducing interference in a GSM communication system
JP2526931B2 (ja) Psk信号復調装置
US6768780B1 (en) Non-data aided maximum likelihood based feedforward timing synchronization method
JPH06508244A (ja) Tdma通信システムにおいて搬送周波数オフセット補償を行う方法および装置
JPH0746217A (ja) ディジタル復調装置
TWI523473B (zh) 用於使用軌跡中點轉動偵測高階調變之符號時序錯誤的位元同步器及相關方法
WO2001020863A9 (en) Method and apparatus for carrier phase tracking
US8958469B1 (en) Digital receiver equalization system
US9054838B1 (en) Synchronization recovery system
KR20170079127A (ko) 주파수 편이 변조 신호의 수신 방법 및 장치
US5448206A (en) Systems with increased information rates using embedded sample modulation and predistortion equalization
US6687292B1 (en) Timing phase acquisition method and device for telecommunications systems
US7233632B1 (en) Symbol timing correction for a phase modulated signal with mutually interfering symbols
US6101219A (en) Adaptive equaliser
JP3852574B2 (ja) 信号復調装置及び信号復調方法
US7263139B1 (en) Phase correction for a phase modulated signal with mutually interfering symbols
US7092467B2 (en) Method for estimating symbol timing in feed-forward manner
JP2869774B2 (ja) ダイバーシチ等化装置
Zieliński et al. Digital Single-Carrier Receiver
Tibenderana et al. A low-cost scalable matched filter bank receiver for GFSK signals with carrier frequency and modulation index offset compensation
Cilliers et al. Performance of an adaptive multi-dimensional lattice equaliser for Q/sup 2/PSK over multipath channels
JP2001211221A (ja) 遠隔通信システムのためのタイミング位相獲得方法及び装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees