JPH02233592A - ダイヤモンド被覆部材およびその製造方法 - Google Patents

ダイヤモンド被覆部材およびその製造方法

Info

Publication number
JPH02233592A
JPH02233592A JP1055544A JP5554489A JPH02233592A JP H02233592 A JPH02233592 A JP H02233592A JP 1055544 A JP1055544 A JP 1055544A JP 5554489 A JP5554489 A JP 5554489A JP H02233592 A JPH02233592 A JP H02233592A
Authority
JP
Japan
Prior art keywords
diamond
intermediate layer
layer
gas
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1055544A
Other languages
English (en)
Other versions
JP2760837B2 (ja
Inventor
Masaya Tsubokawa
坪川 雅也
Toshimichi Ito
伊藤 利通
Nariyuki Hayashi
林 成幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1055544A priority Critical patent/JP2760837B2/ja
Publication of JPH02233592A publication Critical patent/JPH02233592A/ja
Application granted granted Critical
Publication of JP2760837B2 publication Critical patent/JP2760837B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はダイヤモンド被覆部材およびその製造方法に関
し,さらに詳しく言うと、充分な結晶性を有していて薄
膜被形成部材との密着性に優れたダイヤモンドからなる
被覆膜を備えるダイヤモンド被覆部材と、このダイヤモ
ンド被覆部材を被覆膜の成膜速度の向上を図りつつ良好
な再現性の下に効率良く得ることのできるダイヤモンド
被覆部材の製造方法とに関する. [従来技術および発明が解決しようとする課B]ダイヤ
モンドの薄膜は、硬度、耐摩耗性、電気絶縁性、熱伝導
性、赤外線透過性および固体潤滑性などに優れているこ
とから、たとえば切削工具類、研磨材、耐摩耗性機械部
品、光学部品等の各種部材のハートコート材や電気・電
子材料などに利用されつつある, ところで、このダイヤモンドの薄膜で被覆してなるダイ
ヤモンド被覆部材が所期の性能を発揮するためには、薄
膜被形成部材と薄膜との密着性が優れていなければなら
ない. そこで、ダイヤモンドの薄膜と薄膜被形成部材との密着
性を向上させることを目的として従来より種々の提案が
なされている. 具体的には、基体とダイヤモンド層との間に、金属炭化
物、金属窒化物等の中間層を介在させてなる被覆部材が
種々提案されているが、いずれも中間層とダイヤモンド
層との密着性に未だ改善の余地がある. また、特開昭62− 196371号公報においては、
基体上に非品質カーボン状構造の層を介して結品質ダイ
ヤモンド状構造の外層を形成してなる被覆部材が提案さ
れている, しかしながら、この被覆部材における結晶買ダイヤモン
ド状構造の外層は結晶性が充分ではないことがあり、所
望の硬度,耐摩耗性等が得られないことがある. 一方,基体上にアモルファスカーボン膜を形成した後、
このアモルファスカーボン膜上にダイヤモンド薄膜を成
長させるダイヤモンド薄膜の形成方法(特開昭62−2
41898号公報参照)や擦傷処理した基板上にアモル
ファスのダイヤ膜を形成し,さらにこのアモルファスの
ダイヤ膜上にダイヤ膜を形成するダイヤモンド被覆素子
の製造方法(特開昭53− 277593号公報参照)
なども提案されている. しかしながら、これらの方法においては,ダイヤモンド
膜の結晶性の程度の定量化がなされていないので,必ず
しも所望の硬度,耐摩耗性等の性質を有するダイヤモン
ド薄膜を備えた被覆部材が得られるとは限らないという
問題がある.また、中間層の形成における炭素源ガスの
濃度と外層の形成における炭素源ガスの濃度とを変化さ
せることにより、ダイヤモンド膜の密着性の向上を図る
方法も提案されている(特開昭63−288994号公
報、同63− 307196号公報等参照).しかしな
がら、これらの方法も、ダイヤモンド膜の結晶性の程度
を定量化するものではないので、成膜速度の向上を図る
ことは、ある程度可能であるものの、所望の性質を有す
るダイヤモンド膜を備えたダイヤモンド被覆部材を良好
な再現性の下に効率良く製造することを可能にするまで
には至っていない. 本発明は前記の事情に基いてなされたものである. 本発明の目的は、充分な結晶性を有していて薄膜被形成
部材との密着性に優れたダイヤモンドからなる被覆膜を
備えるダイヤモンド被覆部材と、このダイヤモンド被覆
部材を成膜速度の向上を図りつつ良好な再現性の下に効
率良く得ることのできる製造方法とを提供することにあ
る。
[課題を解決するための手段] 前記課題を解決するために本発明者らが鋭意検討を重ね
た結果、それぞれか特定の結晶状態であるとともに、そ
れデれの厚みが特定の関係にあるダイヤモンド中間層と
ダイヤモンド層とを備えるダイヤモンド被覆部材は、被
覆膜の密着性に優れること、およびこのダイヤモンド被
覆部材は、特定の方法により、虞膜速度の向上を図りつ
つ良好な再現性の下に効率良く得られること、を見い出
して本発明に到達した. 請求項1の発明の構成は、薄膜被形成部材上にダイヤモ
ンド中間層を介してダイヤモンド層な備えるとともに、
前記ダイヤモンド中間層と前記ダイヤモンド層とからな
る被覆膜の厚みが107zm以下であり、前記ダイヤモ
ンド中間層と前記ダイヤモンド層とがそれぞれ以下の条
件、 ■前記ダイヤモンド中間層は、厚みd1がθ。1〜3B
mであり、結晶性R<1.0である.{ただし,前記結
晶性Rはラマンスペクトル強度の強度比h v / h
 *であり、h,はダイヤモンド状炭素(DLC)のピ
ーク強度とlo00ci″lの強度との差( ( 15
50c會−1の強度) − ( loo[lcm−”の
強度)]であり.htはダイヤモンドのピーク強度( 
1332cm−’の強度)であル.}■荊記ダイヤモン
ド層は、厚みd2が0.5〜9棒mであり、結晶性R 
> 1.2である.(ただし,結晶性Rは前記と同じ意
味である.)[3]前記ダイヤモンド中間層の厚みdi
<前記ダイヤモンド層の厚みd, を満足することを特徴とするダイヤモンド被覆部材であ
り、 請求項2の発明の構成は、前記ダイヤモンド中間層を、
一酸化炭素ガスと水素ガスとからなり一酸化炭素ガスの
濃度が15%以上である中間層用原料ガスを用いた気相
法により形成した後、前記ダイヤモンド層を、一酸化炭
素ガスと水素ガスとからなり一酸化炭素ガスの濃度が1
2%以下であるダイヤモンド層用原料ガスを用いた気相
法により形成することを特徴とする請求項l記載のダイ
ヤモンド被覆部材の製造方法である. 請求項lに記載のダイヤモンド被覆部材は、たとえば第
1図に示すように、薄膜被形成部材l上にダイヤモンド
中間層2とダイヤモンド層3とからなる被覆膜4を備え
るものである. 前記薄膜被形成部材の材質としては,特に制限はなく,
たとえばシリコン、アルミニウム、チタン、タングステ
ン、モリブデン,コバルト、バナジウム、クロム、二オ
ブ等の金属;siot、Ait o3,wo等の金属酸
化物;SiC、WC.TiC等の金属炭化物;Si.N
.t、TiN,AIlN等の金属窒化物;およびこれら
の合金、セラミックスなどが挙げられる.藺記薄膜被形
成部材の形状についても,特に制限はなく、たとえば板
状、棒状、錐状、チップ状(三角,四角等》、トリル等
の特殊形状などの任意の形状のものを用いることが可能
である.前記薄膜被形成部材上に形成する前記ダイヤモ
ンド中間層は、たとえば第2図に示したようなラマンス
ペクトルにおけるダイヤモンド状炭素(DLC)のピー
ク強度と1000cm−’の強度との差[ ( 155
0cm−”の強度) 一(1000cm−’の強度)]
hlとダイヤモンドのピーク強度( 1332cm−”
の強度)hmとの比h l/ h 2により規定される
結晶性Rが、1未満であり、好ましくは0.9以下であ
る.この結晶性Rが1以上であると、前記薄嘆被形成部
材との密着性が充分ではなくなることがある. 前記ダイヤモンド中間層の厚みは、0.1〜34mであ
り、好ましくは0.2〜2uLmである.前記ダイヤモ
ンド中間層は、たとえば気相法を採用して形成すること
ができる。
具体的には,炭素源ガスを含有する原料ガスを励起して
得られるガスを、反応室内に設置した前記薄膜被形成部
材に接触させることにより、前記薄膜被形成部材上に前
記ダイヤモンド中間層を得ることができる. 前記原料ガスは、少なくとも炭素源ガスを含有するもの
であればよいが、少なくとも炭素原子と水素原子とを含
むガスが好ましく、炭素原子と水素原子と酸素原子とを
含むガスは特に好ましい.具体的には、前記原料ガスと
して、たとえば炭素源ガスと水素ガスとの混合ガスを挙
げることができる. また,所望により,前記原料ガスとともに、不活性ガス
等のキャリャーガスを用いることもできる. 前記炭素源ガスとしては,各種炭化水素、含醸素化合物
,含ハロゲン化合物、含窒素化合物等のガスを使用する
ことができる. 炭化水素化合物としては、例えばメタン、エタン、ブロ
バン、ブタン等のバラフィン系炭化水素;エチレン、プ
ロピレン、ブチレン等のオレフィン系炭化水素;アセチ
レン、アリレン等のアセチレン系炭化水素:ブタジエン
等のジオレフイン系炭化水素;シクロブロバン、シクロ
ブタン、シクロベンタン、シクロヘキサン等の脂環式炭
化水素;シクロブタジエン、ベンゼン、トルエン、キシ
レン、ナフタレン等の芳香族炭化水素:塩化メチル、臭
化メチル、塩化メチレン,四塩化炭素等のハロゲン化炭
化水素などを挙げることができる. 含酸素化合物としては、例えばアセトン、ジエチルケ1
−ン、ペンゾフエノン等のケトン類;メタノール、エタ
ノール、プロバノール、ブタノール等のアルコール類;
メチルエーテル、エチルエーテル,エチルメチルエーテ
ル、メチルプロとルエーテル,エチルプロとルエーテル
,フェノールエーテル、アセタール、環式エーテル(ジ
オキサン、エチレンオキシト等)のエーテル類:アセト
ン、ピナコリン,メチルオキシト、芳香族ケトン(アセ
トフェノン、ペンゾフェノン等)、ジケトン、環式ケト
ン等のケトン類;ホルムアルデヒド、アセトアルデヒド
、プチルアルデヒト、ペンズアルデヒト等のアルデヒド
類;ギ酸、酢酸,ブロビオン酸,コハク酸、.醋酸5シ
ュウ酸、酒石酸、ステアリン酸等の有機酸類;酢酸メチ
ル、酢酸エチル等の酸エステル類:エチ1/ングリコー
ル、ジエチレングリコール等の二価アルコール類;一酸
化炭素、二酸化炭素等を挙げることかできる. 含窒素化合物としては、例えばトリメチルアミン、トリ
エチルアミンなどのアミン類等を挙げることができる. また、前記炭素源ガスとして、単体ではないか、消防法
に規定される第4類危険物;ガソリンなどの第1石油類
、ケロシン、テレビン油、しょう脳油、松根油などの第
2石油類、重油などの第3石油類、ギャー油,シリンダ
ー油などの第4石油類などのガスをも使用することがで
きる。また前記各種の炭素化合物を混合して使用するこ
ともできる. これらの炭素源ガスの中でも、常温で気体または蒸気圧
の高いメタン、エタン、ブロバン等のバラフィン系炭化
水素;あるいはアセトン、ペンゾフェノン等のケトン類
、メタノール、エタノール等のアルコール類、一酸化炭
素、二酸化炭素ガス等の含酸素化合物が好ましく、一酸
化炭素は特に好ましい. 前記水素ガスには、特に制限がなく、たとえば石油類の
ガス化、天然ガス、水性ガスなどの変成、水の電解、鉄
と水蒸気との反応、石炭の完全ガス化などにより得られ
るものを充分に精製したものを用いることができる. 前記水素ガスを構成する水素は励起されることにより原
子状水素を形成する. この原子状水素は,硬質炭素の析出と同時に析出する黒
鉛構造の炭素等の非硬質炭素を除去する作用を有する. 前記原料ガスを励起する手段としては、たとえばマイク
ロ波プラズマCVD法、RFプラズマCVD法、DCプ
ラズマCVD法、熱フィラメント法、熱CVD法、光C
VD法、燃焼炎法、スパッタリング法などを挙げること
ができる。
これらの中でも、好ましいのは各種プラズマCVD法(
有磁場CVD法を含む。)である.前記ダイヤモンド中
間層上に形成する前記ダイヤモンド層は、前記結晶性R
>1.2,好ましくはR>1.3 ,さらに好ましくは
R > 1.5である。この結品性が1.2以下である
と、硬.度、耐摩耗性等の性質か低下することがある。
前記ダイヤモンド層の厚みは、0.5〜9grnであり
、好ましくは1〜9pmである. 藺記ダイヤモンド層は、前記ダイヤモンド中間層と同様
に、たとえば気相法を好適に採用して形成することがで
きる. 請求項1に記載のダイヤモンド被覆部材においては、前
記ダイヤモンド中間層の厚みd,と前記ダイヤモンド層
の厚みd2との和(dt +d2)か10gm以下、好
ましくは8pm以下である。この和が10pmを超える
と、膜剥離か生じ易くなる. また、前記ダイヤモンド中間層の厚みd,と前記ダイヤ
モンド層の厚みd2とは、d r < d *の関係を
満たすことが必饗である,dl≧d2であると,前記ダ
イヤモンド中間層および前記ダイヤモンド層からなる被
覆膜において、前記ダイヤモンド暦の性質よりも前記ダ
イヤモンド中間層の性質が支配的になるので、前記被覆
膜の硬度,耐摩耗性等の性質が低下することがある. 請求項lに記載のダイヤモンド被覆部材においては、前
記ダイヤモンド中間層および前記ダイヤモンド層それぞ
れの結晶性を定量化しているとともに、前記ダイヤモン
ド中間層および前記ダイヤモンド層それぞれの膜厚を規
定しているので、荊記ダイヤモンド中間層は前記薄膜被
形成部材との所期の密着性を確実に達成するとともに、
前記ダイヤモンド層は硬度、耐摩耗性等のダイヤモンド
層に要求される性質を常に具備する. したがって、請求項lに記載のダイヤモンド被覆部材は
、たとえば切削工具類、研磨材、耐摩耗性機械部品,光
学部品等の各種部材のハートコート材や電気・電子材料
などに好適に利用することができる. そして,このような特長を宥する請求項1に記載のダイ
ヤモンド被覆部材は、次に詳述する請求項2に記載の製
造方法により、成膜速度の向上を図りつつ良好な再現性
の下に効率良く得ることができる. 請求項2に記載の製造方法においては、一酸化炭素ガス
と水素ガスとからなり一酸化炭素ガスの濃度が15%以
上である中間層用原料ガスを用いた気相法により,前記
薄膜被形成部材上に、前記ダイヤモンド中間層を形成す
る. 具体的には、前記薄膜被形成部材を設置した反応室内に
、前記中間層用原料ガスを導入し、前記中間層用原料ガ
スを励起して得られるガスを、前記薄膜被形成部材に接
触させることにより、前記薄膜被形成部材上に前記ダイ
ヤモンド中間層を得ることができる。
使用に供される前記薄膜被形成部材の材質および形状に
ついては,請求項lに記載の前記薄膜被形成部材の材質
および形状と同様である.前記中間層用原料ガスは,一
酸化炭素ガスと水素ガスとの混合ガスであワて、一酸化
炭素ガスの濃度は15%以上、好ましくは20%以上で
ある.一酸化炭素ガスの濃度が15%よりも低いと、前
記中間層用原料ガスを用いて得られるダイヤモンド中間
層におけるダイヤモンド状炭素の含有率が低下するので
、前記薄膜被形成部材とダイヤモンド中間層との密着性
が充分ではなくなることがある.前記中間層用原料ガス
を励起する手段としては、気相法によりダイヤモンド状
炭素を含むダイヤモンド中間層を形成することのできる
方法であれば,特に制限はなく、たとえば直流または交
流アーク放電によりプラズマ分解する方法、高周波誘導
放電によりプラズマ分解する方法、マイクロ波放電によ
りプラズマ分解する方法(有磁場CvD法を含む.)あ
るいはプラズマ分解をイオン室またはイオン銃で行なわ
せ、電界によりイオンを引き出すイオンビーム法、熱フ
ィラメントによる加熱により熱分解する熱分解法CEA
CVD法を含む.)、さらに燃焼炎法、スパッタリング
法などのいずれをも採用することかできる。
これらの方法においては、通常、以下の条件下に反応が
進行して、前記薄膜被形成部材上に中間層ダイヤモンド
薄膜か形成される. すなわち、前記am被形成部材の表面の温度は、前記中
間層用原料ガスの励起手段によって異なるので、一概に
決定することはできないか、通常、350〜1,200
℃、好ましくは500〜1,100℃である.たとえば
プラズマCVD法を用いる場合には700〜1,000
℃が好ましい。
前記の温度が、350℃より低いと、前記薄膜被形成部
材上に析出する中間層ダイヤモンド薄膜の析出速度が遅
くなったり、非ダイヤモンド成分を多量に含む膜が析出
したりすることがある.方、1,200℃より高くして
も、それに見合った効果は奏されず、エネルギー効率の
点で不利になるとともに、形成されたダイヤモンド中間
層がエッチングされてしまうことがある. 反応圧力は、通常、10−’ 〜103torr、好ま
しくは1G”’torr〜760 torrである,ま
た、必要により、反応室内に磁場を加えた状態で、前記
中間層用原料ガスを励起することもできる.したがって
、この場合には、前記中間層用原料ガスの励起手段に有
磁場−CVD法を好適に採用することができ、たとえば
中間層ダイヤモンド薄膜形成面積の拡大を図ることがで
きる.反応圧力が10’−’torrよりも低いと,前
記ダイヤモンド中間層を形成するダイヤモンド薄膜の析
出速度が遅くなりたり、ダイヤモンド薄膜が析出しなく
なったりすることがある. 一方、103torrより高くしてもそれに見合った効
果は奏されないことがある. 反応時間は、前記薄膜被形成部材の表面の温度、反応圧
力、必要とする膜厚などにより相違するので一概に決定
することはできないが、通常は、5時間以内とすること
ができる. このようにして形成されるダイヤモンド薄膜中間層は、
厚みd1が0.1〜3μm、好ましくは0.2〜2μm
であり、前記結晶性RがR<1.[l、好ましくはR 
< 0.9である. 請求項2に記載の方法においては、次いで、一酸化炭素
ガスと水素ガスとからなり一酸化炭素ガスの濃度が12
%以下であるダイヤモンド層用原料ガスを用いた気相法
により、前記ダイヤモンド中間層上に前記ダイヤモンド
層を形成する.具体的には、前記ダイヤモンド中間層を
形成してなる前記薄膜被形成部材を設置した反応室内に
、前記ダイヤモンド層用原料ガスを導入し,前記ダイヤ
モンド暦用原料ガスを励起して得られるガスを、前記ダ
イヤモンド中間層に接触させることにより、前記ダイヤ
モンド中間層上に前記ダイヤモンド層を得ることができ
る. 前記ダイヤモンド層用原料ガスは、一酸化炭素ガスと水
素ガスとの混合ガスであって、一酸化炭素ガスの濃度は
12%以下、好ましくはlo%以下である。一酸化炭素
ガスの濃度が12%を超えると、得られるダイヤモンド
層の結晶性が低下して、所期の硬度や耐摩耗性が得られ
ないことがある.前記ダイヤモンド層用原料ガスを励起
する手段としては、気相法によりダイヤモンド層を形成
することのできる方法であれば、特に制限はなく、前記
ダイヤモンド中間層の形成において前記中間層用原料ガ
スの励起に採用することのできる方法をいずれも好適に
採用することができる.ダイヤモンド層の形成において
は、通常、以下の条件下に反応が進行する. すなわち、前記ダイヤモンド中間層の表面の温度は。前
記ダイヤモンド層用原料ガスの励起手段によって異なる
ので、一概に決定することはできないが,通常. 35
0 S1,200℃、好ましくは500〜1,1ロO℃
である.たとえばプラズマCVD法を用ル)る場合には
700〜1,000℃が好ましい.前記の温度が、35
0℃より低いと、前記ダイヤモンド中間層上に析出する
ダイヤモンド膜の析出速度が遅くなったり、非晶性ダイ
ヤモンドを多量に含む膜が析出したりず・ることがある
.一方、1,Zf)(1℃より高くしても、それに見合
った効果は奏されず、エネルギー効率の点で不利になる
とともに、形成されたダイヤモンド層がエッチングされ
てしまうことがある. 反応圧力は、通常、1.0−”− 10” torr、
好ましくは10−%torr〜フ60torrである.
また、必要により、反応室内に磁場を加えた状懲で、前
記ダイヤモンド層用原料ガスを励起することもできる.
この場合には、前記ダイヤモン1《層′用原料ガスの励
起手段に有磁場CVD法を好適に採用することができる
. 反応圧力が10−’torrよりも低いと、ダイヤモン
ド薄膜の成膜速度が遅くなったり、ダイヤモンド薄膜が
析出しなくなったりすることがある.一方、10’ t
orrより高くしてもそれに見合った効果は奏されない
ことがある. 反応時間は,前記ダイヤモン1く中間層の表面の温度,
反応圧力,必要とする膜厚などにより相違するので一概
に決定することはできないが、通常は、5時間以内とす
ることができる. このようにして形成されるダイヤモンド層は、厚みd2
が0.5〜9路m,好ましくは1〜8ルmであり、前記
結晶性RがR>1.2.好ましくはR>1.3,さらに
好ましくはR > 1.5である.また5以上のように
して形成される前記ダイヤモンド中間層の厚みdiと前
記ダイヤモンド層の厚みdaとの和(d+ +d* )
はIQ4m以下、好ましくは84m以下であるとともに
、d.<ci*である. 請求項2に記載の方法によると、充分な結晶性を有して
いて薄膜被形成部材との密着性に優れたダイヤモンドか
らなる被覆展を備える請求項1に記載のダイヤモンド被
覆部材を,被覆膜の成膜速度の向上を図りつつ良好な再
現性の下に効率良く袈造することができる. なお、本発明において、前記ダイヤモンド中間層は必ず
しも一層である必要はなく、たとえば結晶性の異なる中
間層を多層に用いてもよいし、また表面暦が結晶性ダイ
ヤモンドであれば、前記ダイヤモンド中間層を2たとえ
ば3暦や4層にしてもよい. 〔実施例〕 次いで、本発明の実施例および比較例を示し、本発明に
ついてさらに具体的に説明する.(実施例1) ■ン ダイヤモンド砥粒により予め表面に傷を付けたWC−a
%Co超硬合金からなる板材を薄膜被形成部財としてマ
イクロ波プラズマCVD装置の反応室内に設置した. 次いで、この反応室内に、一酸化炭素ガスを2SSCC
klで、水素ガスを75SCC臘で,それぞれ導入し、
反応室内の圧力40torr、薄膜被形成部材温度90
0℃の条件下に、周波数2.45GHzのマイクロ波電
源の出力を300Wに設定した. この条件でマイクロ波放電方式によるプラズマ処理を3
0分間行なった. 反応終了後,薄膜付き板材を反応室から取り出し,薄膜
についてラマン分光分析を行なって、結晶性R, xo
.asであることを確認した。
また、この薄膜の膜厚は、約1.5pmであった. ■ イ ン′ の/ 次いで,この薄膜付き板材を反応室内に設置して、一酸
化炭素ガスを5 3CCMで、水素ガスを9SSCci
で、それぞれ導入したほかは、前記と同様の条件のマイ
クロ波放電方式によるプラズマ処理を60分間行なワた
. 反応終了後、ダイ゜ヤモンド被覆部材を反応室から取り
出し、薄膜についてラマン分光分析を行なって、結晶性
R,=1.74であることを確認した。また、薄膜被形
成部材上の薄膜の全校厚は、約4.2ルmであった. このようにして得られたダイヤモンド被覆部材において
、膜剥離は全く見られなかった.また、このダイヤモン
ド被覆部材につき、微小硬度計(明石製作所製. MV
K−1(1)を用いて表面硬度を測定したところ、ビッ
カース圧子による圧痕は見られず. 10’kg/ms
”程度の硬度であることが推測された. 反応条件および結果を第1表に示す. (実施例2) 前記実施例1の■において、一酸化炭素ガスを2SSC
CMで、水素ガスを753CG−で、それぞれ反応室内
に導入するのに代えて、一酸化炭素ガスを30secm
で,水素ガスを703CCMで、それぞれ反応室内に導
入したほかは,前記英施例lと同様にして実施した. 反応条件および結果を第1表に示す。
(実施例3) ■       ン       の 前記実施例lの■において、一酸化炭素ガスを2SSC
CMで、水素ガスを75Sfl:Cliで、それぞれ反
応室内に導入するのに代えて、一酸化炭素ガスを4OS
CCMで、水素ガスを[i0SC(Jで、それぞれ反応
室内に導入するとともに、反応時間を30分間から20
分間に変えたほかは、前記実施例1の■と同様にしてダ
イヤモンド中間層を形成した. ■ン 次いで、前記実施例1の■において、一酸化炭素ガスを
s scc誠で,水素ガスを9ESCCMで、それぞれ
反応室内に導入するのに代えて1一酸化炭素ガスを7 
8CCMで、水素ガスを933CCMで、それぞれ反応
室内に導入するとともに、反応時間を60分間から70
分間に変えたほかは、前記実施例1の■と同様にしてダ
イヤモンド層を形成し、ダイヤモンド被覆部材を得た. 反応条件および結果を第1表に示す. (比較例1) ダイヤモンド砥粒により予め表面に傷を付けたWC−6
%Co超硬合金からなる板材を薄膜被形成部材としてマ
イクロ波プラズマCVD装置の反応室内に設置した。
次いで、この反応室内に、一酸化炭素ガスを5 3CC
Mで、水素ガスを953CCMで、それぞれ導入し、反
応室内の圧力40torr、薄膜被形成部材温度900
℃の条件下に、周波数2.45G}lzのマイクロ波電
源の出力を280Wに設定した. この条件でマイクロ波放電方式によるプラズマ処理を1
20分間行なってダイヤモン1《被覆部材を作成した. 反応条件および結果を第1表に示す. (比較例2) 前記比較例lにおいて、一酸化炭素ガスを53CCMで
、水素ガスを953CCMで,それぞれ反応室内に導入
するのに代えて、一酸化炭素ガスを303CCMで、水
素ガスを703CCMで、それぞれ反応室内に導入した
ほかは、前記比較例1と同様にしてダイヤモンド被覆部
材を作成した. 反応条件および結果を第1表に示す。
(比較例3) ■   モンド   の 前記実施例lの■において、反応時間を30分間から6
0分間に変えたほかは、前記実施例1の■と同様にして
ダイヤモンド中間層を形成した。
■   ン′ の 次いで、藺記実施例lの■において、反応時間を60分
間から20分間に変えたほかは、前記実施例1の■と同
様にしてダイヤモンド層を形成し、ダイヤモンド被覆部
材を得た. 反応条件および結果を第1表に示す。
(比較例4) 前記比較例3の■と同様にしてダイヤモンド中間層を形
成した後、藺記実施例1の■において、反応時間を60
分間から180分間に変えたほかは,前記実施例lの■
と同様にしてダイヤモンド層を形成し,ダイヤモンド被
覆部材を得た.反応条件および結果を第1表に示す. (本頁、以下余白) (評価) 第1表から明らかなように2請求項2に記載の方法を採
用して製造される請求項1に記載のダイヤモンド被覆部
材は、被覆膜と薄膜被形成部材との密着性に優れて、膜
剥離がなく、しかも、被覆膜の硬度が高いことを確認し
た. [発明の効果] (1)  請求項lの発明によると、ダイヤモンド中間
層およびダイヤモンド層それぞれの結晶性を定量化して
いるとともに、ダイヤモンド中間層およびダイヤモンド
層それぞれの膜厚を規定しているので、ダイヤモンド中
間層は前記薄膜被形成部材との所期の密着性を確実に達
成するとともに,前記ダイヤモンド層は硬度、耐摩耗性
等のダイヤモンド層に嬰求される性質を常に具備すると
いう利点を有するダイヤモンド被覆部材を提供すること
ができる. (2)  請求項2の発明によると,一酸化炭素ガスと
水素ガスとからなり一酸化炭素ガスの濃度が15%以上
である中間層用原料ガスを用いた気相法によりダイヤモ
ンド中間層を形成した後、一酸化炭素ガスと水素ガスと
からなり一酸化炭素ガスの濃度が12%以下であるダイ
ヤモンド層用原料ガスを用いた気相法によりダイヤモン
ド層を形成するので、前記の利点を有する請求項1に記
載のダイヤモンド被覆部材を,成膜速度の向上を図りつ
つ良好な再現性の下に効率良く得ることのできる工業的
に有用なダイヤモンド被覆部材の製造方法を提供するこ
とができる.
【図面の簡単な説明】
第1図は請求項lの発明のダイヤモンド被覆部材の一例
を示す断面図、第2図はラマンスペクトル測定の一例を
示す説明図である. !・・・薄膜被形成部材、2・・・ダイヤモンド中間層
、3・・・ダイヤモンド層、4・・・被覆膜

Claims (2)

    【特許請求の範囲】
  1. (1)薄膜被形成部材上にダイヤモンド中間層を介して
    ダイヤモンド層を備えるとともに、前記ダイヤモンド中
    間層と前記ダイヤモンド層とからなる被覆膜の厚みが1
    0μm以下であり、前記ダイヤモンド中間層と前記ダイ
    ヤモンド層とがそれぞれ以下の条件、 [1]前記ダイヤモンド中間層は、厚みd_1が0.1
    〜3μmであり、結晶性R<1.0である。 {ただし、前記結晶性Rはラマンスペクトル強度の強度
    比h_1/h_2であり、h_1はダイヤモンド状炭素
    (DLC)のピーク強度と1000cm^−^1の強度
    との差[(1550cm^−^1の強度)−(1000
    cm^−^1の強度)]であり、h_2はダイヤモンド
    のピーク強度(1332cm^−^1の強度)である。 }[2]前記ダイヤモンド層は、厚みd_2が0.5〜
    9μmであり、結晶性R>1.2である。 (ただし、結晶性Rは前記と同じ意味である。)[3]
    前記ダイヤモンド中間層の厚みd_1<前記ダイヤモン
    ド層の厚みd_2 を満足することを特徴とするダイヤモンド被覆部材。
  2. (2)前記ダイヤモンド中間層を、一酸化炭素ガスと水
    素ガスとからなり一酸化炭素ガスの濃度が15%以上で
    ある中間層用原料ガスを用いた気相法により形成した後
    、前記ダイヤモンド層を、一酸化炭素ガスと水素ガスと
    からなり一酸化炭素ガスの濃度が12%以下であるダイ
    ヤモンド層用原料ガスを用いた気相法により形成するこ
    とを特徴とする請求項1記載のダイヤモンド被覆部材の
    製造方法。
JP1055544A 1989-03-08 1989-03-08 ダイヤモンド被覆部材およびその製造方法 Expired - Fee Related JP2760837B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055544A JP2760837B2 (ja) 1989-03-08 1989-03-08 ダイヤモンド被覆部材およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055544A JP2760837B2 (ja) 1989-03-08 1989-03-08 ダイヤモンド被覆部材およびその製造方法

Publications (2)

Publication Number Publication Date
JPH02233592A true JPH02233592A (ja) 1990-09-17
JP2760837B2 JP2760837B2 (ja) 1998-06-04

Family

ID=13001655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055544A Expired - Fee Related JP2760837B2 (ja) 1989-03-08 1989-03-08 ダイヤモンド被覆部材およびその製造方法

Country Status (1)

Country Link
JP (1) JP2760837B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147527A (ja) * 2001-11-08 2003-05-21 Kobe Steel Ltd ダイヤモンド被覆非ダイヤモンド炭素部材及びその製造方法
JP2013249212A (ja) * 2012-05-30 2013-12-12 Sumitomo Electric Ind Ltd ダイヤモンド系膜の製造方法およびそれに用いられる複合基板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277593A (ja) * 1987-05-08 1988-11-15 Res Dev Corp Of Japan ダイヤモンド被覆素子およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277593A (ja) * 1987-05-08 1988-11-15 Res Dev Corp Of Japan ダイヤモンド被覆素子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147527A (ja) * 2001-11-08 2003-05-21 Kobe Steel Ltd ダイヤモンド被覆非ダイヤモンド炭素部材及びその製造方法
JP2013249212A (ja) * 2012-05-30 2013-12-12 Sumitomo Electric Ind Ltd ダイヤモンド系膜の製造方法およびそれに用いられる複合基板

Also Published As

Publication number Publication date
JP2760837B2 (ja) 1998-06-04

Similar Documents

Publication Publication Date Title
EP0413834B1 (en) Diamond-covered member and process for producing the same
JPH04226826A (ja) Cvdダイヤモンドで被覆されたドリル
US5616372A (en) Method of applying a wear-resistant diamond coating to a substrate
WO2009080610A1 (en) A substrate coated with amorphous hydrogenated carbon
JPH02233592A (ja) ダイヤモンド被覆部材およびその製造方法
JPH02250967A (ja) ダイヤモンド類被覆部材およびその製造方法
JPH02217398A (ja) ダイヤモンド類薄膜による被覆方法
JPH02188494A (ja) ダイヤモンド類薄膜の製造方法および製造装置
JP2000177046A (ja) ダイヤモンド状炭素膜を被覆した部材
JPH0615715B2 (ja) ダイヤモンド類薄膜の製造方法
JP3260156B2 (ja) ダイヤモンド類被覆部材の製造方法
JPH0361369A (ja) ダイヤモンド状炭素膜の製造方法
IE901649L (en) Diamond coating by chemical vapour deposition
JPH02239191A (ja) ダイヤモンド多層膜およびその製造方法
JP2543132B2 (ja) ダイヤモンド薄膜付き超硬合金およびその製造方法
JPH0254768A (ja) ダイヤモンド膜付部材とその製造方法
JPH0794081B2 (ja) 硬質炭素被覆部品
JPH02267268A (ja) ダイヤモンド被覆部材の製造方法
JPH02101167A (ja) ダイヤモンド類被覆部材の製造方法
JPH0328373A (ja) ダイヤモンド被覆部材およびその製造方法
JPH02239190A (ja) ダイヤモンド被覆部材およびその製造法
JPH03158455A (ja) 非晶質炭素、その製造方法、および非晶質炭素被覆部材
JPH03252396A (ja) ダイヤモンドの製造方法
JP2980925B2 (ja) ダイヤモンド被覆部材およびその製造方法
JP2781041B2 (ja) ダイヤモンド類被覆部材

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees