JPH02189934A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPH02189934A
JPH02189934A JP944589A JP944589A JPH02189934A JP H02189934 A JPH02189934 A JP H02189934A JP 944589 A JP944589 A JP 944589A JP 944589 A JP944589 A JP 944589A JP H02189934 A JPH02189934 A JP H02189934A
Authority
JP
Japan
Prior art keywords
poly
layer
impurity
doped
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP944589A
Other languages
Japanese (ja)
Inventor
Shuya Abe
修也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP944589A priority Critical patent/JPH02189934A/en
Publication of JPH02189934A publication Critical patent/JPH02189934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To form a gate electrode and source-drain regions in a self-alignment manner by shaping a poly-Si layer, to which an impurity is doped previously in high concentration, forming a poly-Si film, an inter-layer insulating film and a poly-Si layer for the gate electrode onto the poly-Si layer layer and implanting the ions of the impurity. CONSTITUTION:A poly-Si layer 2 is doped with an impurity in high concentration through a thermal diffusion method. A poly-Si film 3 is formed onto the layer 2 through a vacuum CVD method, and a gate insulating film 4 is shaped through thermal oxidation. Since the impurity is diffused into the undoped poly-Si film 3 as an upper layer from the high-concentration impurity doped poly-Si layer 2 at the same time, poly-Si layers 3' which is doped with the impurity in high concentration are also formed as a whole in source-drain region corresponding sections. A poly-Si layer 6 for a gate electrode is shaped onto the gate insulating film 4, and impurity ions are implanted 5 from the upper section of the layer 6. Accordingly, source-drain regions 7 which is doped with the impurity in high concentration are formed together with the gate electrode 6 which is doped with the impurity in low concentration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイメージセンサ−、デイスプレー等の駆動回路
として有用なMO8型薄膜トランジスターの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an MO8 thin film transistor useful as a drive circuit for image sensors, displays, etc.

〔従来技術〕[Prior art]

poly−Siのような非単結晶Siを活性層に用いた
MO8型薄膜トランジスター(以下TPTという)にお
いてはチャンネル領域のオン/オフ電流比を大きくする
ためにチャンネル領域を薄くし、一方、金属配線とのコ
ンタクト抵抗及びソース・ドレイン抵抗を低くするため
に、ソース・ドレイン領域を厚くしたり、或いは不純物
ドープすることが行なわれている。実際に例えば特開昭
61−48975及び同61−48976では選択的エ
ツチングによりチャンネル領域をソース・ドレイン領域
よりも薄くし、特開昭59−205761では選択的熱
酸化により同様にチャンネル領域をソース・ドレイン領
域よりも薄くし、また特開昭59−132168では熱
拡散法によりコンタクトホールからソース・ドレイン領
域内に不純物ドープを行なっている。
In MO8 type thin film transistors (hereinafter referred to as TPT) that use non-single crystal Si such as poly-Si for the active layer, the channel region is thinned to increase the on/off current ratio in the channel region, and on the other hand, the metal wiring In order to lower the contact resistance and the source/drain resistance, the source/drain regions are made thicker or doped with impurities. In fact, for example, in JP-A-61-48975 and JP-A-61-48976, the channel region is made thinner than the source/drain region by selective etching, and in JP-A-59-205761, the channel region is similarly made thinner than the source/drain region by selective thermal oxidation. It is made thinner than the drain region, and impurities are doped into the source/drain region from the contact hole by a thermal diffusion method in Japanese Patent Laid-Open No. 59-132168.

以上の従来法ではゲート電極の形成工程まではソース・
ドレイン領域相当部分に不純物をドープしていない。こ
のため、その後の工程で前記部分に高濃度の不純物ドー
プを行なう必要がある。この場合の不純物ドープ法とし
ては従来、次の3つの方法があった。
In the conventional method described above, the source and
The portion corresponding to the drain region is not doped with impurities. Therefore, it is necessary to dope the portion with impurities at a high concentration in a subsequent step. Conventionally, the following three methods have been used as impurity doping methods in this case.

1) 不純物を全てイオン注入でドープする。1) All impurities are doped by ion implantation.

2)不純物を全て熱拡散でドープする。2) All impurities are doped by thermal diffusion.

3) イオン注入で少な目に不純物ドープした後、コン
タクト部分に不純物を熱拡散する。
3) After doping a small amount of impurity by ion implantation, the impurity is thermally diffused into the contact portion.

しかし1)の方法は全てイオン注入によるのでニスl−
高となる。2)の方法はグー1〜電極からソース・ドレ
イン領域へのリーク電流の問題等、信頼性を確保するの
が困難である。また選択エツチングや選択熱酸化により
膜厚制御を行なう場合、ソース・ドレイン領域及びチャ
ンネル領域の厚さの自由度や制御性に問題がある。
However, since method 1) all uses ion implantation, the varnish l-
Becomes high. In method 2), it is difficult to ensure reliability due to problems such as leakage current from the electrode to the source/drain region. Furthermore, when controlling the film thickness by selective etching or selective thermal oxidation, there is a problem in the flexibility and controllability of the thickness of the source/drain region and the channel region.

(この方法ではチャンネル領域の厚さは熱酸化膜の厚さ
によって決まる。例えば熱酸化膜厚を1000人とする
と、チャンネル領域はソース・ドレイン領域に比べ約5
00人だけ薄くなる。)また3)の方法はイオン注入し
た不純物がその後の熱拡散時に再拡散するためチャンネ
ル長の短かいものには不向きである」−、コンタクトホ
ール部分にだけ高濃度に不純物がドープされるので、ソ
ース・ドレイン領域の抵抗が問題になることもある。
(In this method, the thickness of the channel region is determined by the thickness of the thermal oxide film. For example, if the thickness of the thermal oxide film is 1000, the channel region will be approximately 5 mm thick compared to the source/drain region.
Only 00 people become thinner. ) Also, method 3) is not suitable for devices with short channel lengths because the implanted impurities re-diffuse during subsequent thermal diffusion. The resistance of the source/drain regions may also be a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は低コストで、且つ高い信頼性を有し、短
かいチャンネル長のものにも適用でき、ソース・ドレイ
ン領域及びチャンネル領域の厚さ制御に対する自由度を
拡大し、しかもソース・ドレイン領域を安定して低抵抗
化できるMO8型薄膜1−ランシスターの製造方法を提
供することである。
The object of the present invention is to have low cost and high reliability, be applicable to short channel lengths, expand the degree of freedom in controlling the thickness of the source/drain region and the channel region, and It is an object of the present invention to provide a method for manufacturing an MO8 type thin film 1-run sister which can stably reduce the resistance of the region.

〔発明の構成・動作〕[Structure and operation of the invention]

本発明の薄膜1ヘランジスターの製造方法は絶縁基板」
二のソース・1くレイン領域相当部分に予め高濃度に不
純物をドープしたpoly−Si層を形成した後、その
上にpoQ、y−Si膜を形成し、その上に熱酸化によ
り層間絶縁膜を形成し、更にその上にゲート電極用po
ly−5j層を形成し、ついでその」二から不純物イオ
ン注入により自己整合的にゲート電極と共に、ソース・
ドレイン領域を形成する工程を含むことを特徴とするも
のである。
The manufacturing method of the thin film 1 helangister of the present invention is based on ``insulating substrate''.
After forming a poly-Si layer doped with impurities at a high concentration in advance in the parts corresponding to the second source and first rain regions, a poQ and y-Si film is formed on it, and an interlayer insulating film is formed on it by thermal oxidation. , and then a gate electrode po
ly-5j layer is formed, and then the gate electrode and the source electrode are formed in a self-aligned manner by impurity ion implantation.
The method is characterized in that it includes a step of forming a drain region.

本発明方法の一例を第1図に従って説明すると、まずガ
ラス板のような絶縁基板1上に減圧CVD法により活性
層の一部となるpoly−5j膜を形成した後、ソース
・ドレイン領域となる部分を残してエツチング除去する
。次にこのpoly−8i層中に熱拡散法により高濃度
に不純物(NチャンネルTPT作製の場合はP又はAs
、PチャンネルTPT作製の場合はB)をトープする(
第1図(a))。なお2は高濃度(10”個/cm3程
度)に不純物をドープしたpoly−5j層である。次
にその上に減圧CVD法によりpoly−5j膜3を形
成する(第1図(b))。次に熱酸化を行なってゲート
絶縁膜4を形成する(第]−図(C))。
An example of the method of the present invention will be explained with reference to FIG. 1. First, a poly-5J film that will become part of the active layer is formed on an insulating substrate 1 such as a glass plate by low pressure CVD, and then a poly-5J film that will become a part of the active layer is formed. Remove by etching leaving only a portion. Next, a high concentration of impurities (P or As in the case of N-channel TPT fabrication) is added into this poly-8i layer by thermal diffusion.
, B) for P-channel TPT fabrication (
Figure 1(a)). Note that 2 is a poly-5J layer doped with impurities at a high concentration (approximately 10"/cm3). Next, a poly-5J film 3 is formed on it by low pressure CVD (Fig. 1(b)). .Next, thermal oxidation is performed to form a gate insulating film 4 (Fig. 1C).

この時、同時に高濃度不純物ドープpoly−SiJ?
iJ2から上層のノンドープpoly−Si膜3内に不
純物が拡散するので、ソース・ドレイン領域相当部分は
全体として高濃度(濃度はpo12y−3j層2の場合
と同程度のオーダー又は例えばその1/2程度)に不純
物ドープしたpony−Si層3′も形成される。次に
ゲート絶縁膜4上に減圧CVD法によりpoly−Si
膜を形成し、これを所望の大きさにエツチングしてグー
1〜電極用poly−Si層を形成後、その上から不純
物イオン注入5により自己整合的にグー1〜電極用po
ly−si層中及びゲート絶縁膜4を介して高濃度不純
物ドープpoQ、y−81層3′中に不純物をトープす
る。これにより低濃度に不純物ドープしたゲート電極6
と共に高濃度に不純物ドープしたソース・ドレイン領域
7(但しチャンネル領域9と接する部分8は低濃度不純
物ドープ部分)が形成される(第1図(d))。この場
合、不純物のドーズ量は通常の1/10〜1/100で
よい。以下、従来と同様に減圧CVD法により、SiO
□、 PSG (燐ガラス) 、BSG(硼酸ガラス)
等の層間絶縁膜10を形成し、コンタクトホールを開け
た後、このコンタクト部分に金属(通常i)配線11を
行ない(第1図(e))、最後に水素処理(poly−
Si粒界の欠陥を除去するための操作)を行なえば、本
発明のTPTが得られ′る。
At this time, high concentration impurity doped poly-SiJ?
Since the impurity diffuses from iJ2 into the upper non-doped poly-Si film 3, the portion corresponding to the source/drain region has a high concentration as a whole (the concentration is on the same order as that of the po12y-3j layer 2, or for example, 1/2 of that). A pony-Si layer 3' doped with impurities to a certain degree is also formed. Next, poly-Si was deposited on the gate insulating film 4 by low pressure CVD method.
After forming a film and etching it to a desired size to form Goo 1 to poly-Si layer for electrodes, impurity ion implantation 5 is performed from above to form Goo 1 to poly-Si for electrodes in a self-aligned manner.
Impurities are doped in the ly-si layer and in the highly impurity-doped poQ and y-81 layers 3' via the gate insulating film 4. As a result, the gate electrode 6 doped with impurities at a low concentration
At the same time, source/drain regions 7 doped with impurities at a high concentration (however, a portion 8 in contact with the channel region 9 is doped with a low concentration of impurities) are formed (FIG. 1(d)). In this case, the dose of impurities may be 1/10 to 1/100 of the usual dose. Hereafter, SiO
□, PSG (phosphorus glass), BSG (borate glass)
After forming an interlayer insulating film 10 and opening a contact hole, a metal (usually i) wiring 11 is formed in this contact area (FIG. 1(e)), and finally hydrogen treatment (poly-
The TPT of the present invention can be obtained by performing an operation for removing defects at Si grain boundaries.

前述のようにTPTにおいてはチャンネル領域の厚さは
トランジスター特性向上のため、できるだけ薄くシ(約
500Å以下)、またソース・ドレイン領域の厚さは逆
に厚くする必要がある。
As mentioned above, in a TPT, the thickness of the channel region must be as thin as possible (approximately 500 Å or less) in order to improve transistor characteristics, and the thickness of the source/drain regions must be increased.

本例の場合、チャンネル領域の厚さは500人、ソース
・ドレイン領域の厚さは1000人とした。
In this example, the thickness of the channel region was 500 mm, and the thickness of the source/drain regions was 1000 mm.

なお熱酸化膜(ゲート絶縁膜)の厚さは800人である
。チャンネル長は5μm(チャンネル巾は40μm)と
短くした。またイオン注入法による不純物ドーズ量はL
O14/d (通常の1/10〜1/100)としたが
、前述のように予め高濃度にドープしたpony−Si
層を形成しておいたため、ソース・ドレイン領域の厚膜
化とも相まってコンタクト付近のソース・ドレイン領域
抵抗は比抵抗で約10−3Ω■と低くすることができた
。この時、トランジスター特性は第2図のようになり、
不純物ドープを全てイオン注入によりドーズ量101G
/dで行なった比較量(第3図)に比べ何ら遜色なかっ
た。なお両者ともN−MO8型TPTの場合である。
Note that the thickness of the thermal oxide film (gate insulating film) is 800 mm. The channel length was shortened to 5 μm (channel width was 40 μm). Also, the impurity dose by ion implantation method is L
O14/d (1/10 to 1/100 of normal), but as mentioned above, pony-Si doped in advance at a high concentration was used.
Since the layer was formed in advance, the resistance of the source/drain region near the contact could be made as low as about 10<-3 >[Omega]. At this time, the transistor characteristics will be as shown in Figure 2,
All impurity doping is done by ion implantation at a dose of 101G.
There was no inferiority compared to the comparative amount (Fig. 3) conducted with /d. Note that both cases are for N-MO8 type TPT.

〔発明の作用効果〕[Function and effect of the invention]

本発明方法は不純物ドープの全てをイオン注入又は熱拡
散で行なう必要がないので、不純物を全てイオン注入で
ドープする方法に比べ低コストであり、不純物を全て熱
拡散でドープする方法に比べ信頼性が向上し、またイオ
ン注入で不純物をドープした後、更にコンタクト部分に
不純物を熱拡散させる方法に比べ、短いチャンネル長の
ものにも適用でき、且つソース・ドレイン領域を安定し
て低抵抗化できる。またソース・ドレイン領域及びチャ
ンネル領域の厚さの制御については選択的エツチングに
よる方法に比べ、信頼性が高く、また選択的酸化による
方法に比べ自由度が拡大する等の利点を有している。
Since the method of the present invention does not require all impurity doping by ion implantation or thermal diffusion, it is lower in cost than a method in which all impurities are doped by ion implantation, and is more reliable than a method in which all impurities are doped by thermal diffusion. In addition, compared to the method of doping impurities by ion implantation and then thermally diffusing the impurities into the contact area, it can be applied to devices with short channel lengths and can stably lower the resistance of the source/drain regions. . Furthermore, regarding the control of the thickness of the source/drain region and the channel region, it has advantages such as higher reliability than the method using selective etching, and a greater degree of freedom than the method using selective oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明方法によるTPTの製造
工程図、第2図及び第3図は夫々本発明方法及び従来法
で製造した一例のTPTのトランシスター特性を示す。 1・・・絶縁基板 2・・・高濃度に不純物ドープしたpoly−Si層3
・・・poly−Si膜 3′・・・高濃度に不純物ドープしたpoly−Si層
4・・・ゲート絶縁膜  5・・・不純物イオン注入6
・・・ゲート電極用po12y−Si層7・・・ソース
・ドレイン領域 8・・・低濃度不純物ドープ部分 9・・・チャンネル領域 10・・・層間絶縁膜11・
・・金属配線 特許出願人株式会社リコー外1名 代理人 弁理士 佐 1) 守 雄外1名−〇 ゲ ト電圧Vg (V) 第3図 =8 ゲート電圧VCI(V”)
FIGS. 1(a) to 1(e) are process diagrams for manufacturing a TPT according to the method of the present invention, and FIGS. 2 and 3 show transistor characteristics of an example of TPT manufactured using the method of the present invention and the conventional method, respectively. 1... Insulating substrate 2... Highly doped poly-Si layer 3
...Poly-Si film 3'...Poly-Si layer doped with impurities at high concentration 4...Gate insulating film 5...Impurity ion implantation 6
...po12y-Si layer 7 for gate electrode...source/drain region 8...low concentration impurity doped portion 9...channel region 10...interlayer insulating film 11...
...Metal wiring patent applicant Ricoh Co., Ltd. and one other representative Patent attorney Sa 1) Moriyu and one other person - Gate voltage Vg (V) Figure 3 = 8 Gate voltage VCI (V”)

Claims (1)

【特許請求の範囲】 1、絶縁基板上のソース・ドレイン領域相当部分に予め
高濃度に不純物をドープしたpoly−Si層を形成し
た後、その上にpoly−Si膜を形成し、その上に熱
酸化により層間絶縁膜を形成し、更にその上にゲート電
極用poly−Si層を形成し、ついでその上から不純
物イオン注入により自己整合的にゲート電極と共に、 ソース・ドレイン領域を形成する工程を含むことを特徴
とする薄膜トランジスターの製造方法。
[Claims] 1. After forming a poly-Si layer doped with impurities at a high concentration in advance in a portion corresponding to the source/drain region on an insulating substrate, a poly-Si film is formed on the poly-Si layer, and then a poly-Si film is formed on the poly-Si layer. A process of forming an interlayer insulating film by thermal oxidation, forming a poly-Si layer for a gate electrode on top of it, and then forming a source/drain region along with the gate electrode in a self-aligned manner by implanting impurity ions from above. A method for manufacturing a thin film transistor, comprising:
JP944589A 1989-01-18 1989-01-18 Manufacture of thin-film transistor Pending JPH02189934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP944589A JPH02189934A (en) 1989-01-18 1989-01-18 Manufacture of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP944589A JPH02189934A (en) 1989-01-18 1989-01-18 Manufacture of thin-film transistor

Publications (1)

Publication Number Publication Date
JPH02189934A true JPH02189934A (en) 1990-07-25

Family

ID=11720493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP944589A Pending JPH02189934A (en) 1989-01-18 1989-01-18 Manufacture of thin-film transistor

Country Status (1)

Country Link
JP (1) JPH02189934A (en)

Similar Documents

Publication Publication Date Title
JPH0297027A (en) Semiconductor device and manufacture thereof
JPH02159730A (en) Formation of thin film transistor
JPS61256769A (en) Semiconductor device
JPH0228939A (en) Mos type transistor
JPH05275701A (en) Thin-film transistor
JPH098135A (en) Manufacture of semiconductor device
JPS61182267A (en) Manufacture of semiconductor device
JPH02189934A (en) Manufacture of thin-film transistor
JPS61154172A (en) Manufacture of semiconductor device
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JP3038857B2 (en) Method for manufacturing semiconductor device
US5789282A (en) Method for fabricating thin film transistor
KR100190380B1 (en) Method of enlarging cell ratio of access transistor vs. driver transistor
JPH0878685A (en) Soi-mosfet and its manufacture
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPH02266533A (en) Manufacture of semiconductor device
JPH04137735A (en) Semiconductor device and manufacture thereof
JPH06260498A (en) Thin-film transistor and manufacture thereof
JPS6248069A (en) Semiconductor device
JPH042168A (en) Mos type field effect transistor and manufacture thereof
JPH05259457A (en) Thin film transistor
JPH0621094A (en) Manufacture of semiconductor device
JP2002203958A (en) Semiconductor device and its manufacturing method
KR100243021B1 (en) Method for manufacturing semiconductor device