JPH03165066A - Polycrystalline silicon thin film transistor and manufacture thereof - Google Patents

Polycrystalline silicon thin film transistor and manufacture thereof

Info

Publication number
JPH03165066A
JPH03165066A JP30434489A JP30434489A JPH03165066A JP H03165066 A JPH03165066 A JP H03165066A JP 30434489 A JP30434489 A JP 30434489A JP 30434489 A JP30434489 A JP 30434489A JP H03165066 A JPH03165066 A JP H03165066A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon nitride
nitride film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30434489A
Other languages
Japanese (ja)
Other versions
JP2806999B2 (en
Inventor
Michio Arai
三千男 荒井
Kazuji Sugiura
杉浦 和司
Kounosuke Hashio
箸尾 幸之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP30434489A priority Critical patent/JP2806999B2/en
Publication of JPH03165066A publication Critical patent/JPH03165066A/en
Application granted granted Critical
Publication of JP2806999B2 publication Critical patent/JP2806999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve characteristics by preparing a polycrystalline silicon TFT for deposition of a silicon nitride film and by forming a dense silicon oxide film with a smaller number of pin holes than that of the silicon nitride film for hydrogenation. CONSTITUTION:A polycrystalline silicon film 2 is deposited on a quartz substrate 1 by pressure-reduced CVD and etched in an island form. The next step is heat treatment in a nitride atmosphere after formation of a gate oxide film 3 by thermal oxidation. After polycrystalline silicon is deposited, a gate electrode 4 is formed by etching. A further step is to form source-drain regions 2-1, 2-2 with a mask of the gate electrode 4 and to form the interlayer insulating film 5 consisting of SiO2 film by thermal oxidation upon activation of impurity ions. This interlayer insulating film 5 is opened for contact windows, and Al wiring layers 6 are formed and sintered. The final step is deposition of a silicon nitride film 7 by plasma CVD and to hydrogenation after deposition of an SiO2 film 8 with a smaller number of pin holes by ozone CVD. This process can improve characteristics without escapes of hydrogen atoms during hydrogenation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多結晶シリコンの薄膜トランジスタ(以下TP
Tという)の特性の向上に係り、特に水素化処理した多
結晶シリコンTPTの特性の改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polycrystalline silicon thin film transistor (hereinafter referred to as TP).
The present invention relates to improving the properties of polycrystalline silicon TPT, particularly hydrogenated polycrystalline silicon TPT.

〔従来の技術〕[Conventional technology]

近年、液晶表示装置の駆動スイッチ素子や密着型イメー
ジセンサ−の駆動回路用素子として有用である多結晶シ
リコンを用いたTPTの研究が進んでいる。
In recent years, research has been progressing on TPT using polycrystalline silicon, which is useful as a drive switch element for liquid crystal display devices and a drive circuit element for contact type image sensors.

TPTの性能、例えば電界移動度、しきい値電圧、リー
グ電流、動作速度等はチャネル部の短縮化など素子構造
の改良や製造プロセスの最適化等によりある程度改善す
ることが出来る。しかし、根本的には素子の活性領域で
ある多結晶シリコンの膜質に大きく依存する。
The performance of TPT, such as electric field mobility, threshold voltage, league current, and operating speed, can be improved to some extent by improving the device structure, such as shortening the channel portion, and optimizing the manufacturing process. However, fundamentally, it greatly depends on the film quality of polycrystalline silicon, which is the active region of the device.

即ち、多結晶シリコンには結晶粒界があり、結晶粒界に
多い結晶欠陥のため、多数のトラップ準位が形成され易
いことや、多結晶シリコンとゲト絶縁膜との界面におけ
る、結晶欠陥の存在によリ、固定電荷や界面準位が形成
され易いことのため、TPTの特性が著しく悪化する。
In other words, polycrystalline silicon has crystal grain boundaries, and because of the many crystal defects at the crystal grain boundaries, many trap levels are likely to be formed. Due to its presence, fixed charges and interface states are likely to be formed, which significantly deteriorates the characteristics of TPT.

これらの特性の悪化を改善するため、従来、TPTを構
成する多結晶シリコン中に水素原子を拡散し、結晶粒界
や薄膜界面に存在するシリコンの未結合ハンドとこの水
素原子を結合することにより、欠陥を減らし、結晶粒界
のトラップ準位によって生じているポテンシャル障壁を
下げて多結晶シリコンTPTの電気特性の向上を図るこ
とが提案されている。
In order to improve the deterioration of these properties, conventional techniques have been used to diffuse hydrogen atoms into the polycrystalline silicon that constitutes TPT, and to bond these hydrogen atoms with unbonded hands of silicon that exist at crystal grain boundaries and thin film interfaces. It has been proposed to improve the electrical characteristics of polycrystalline silicon TPT by reducing defects and lowering the potential barrier caused by trap levels at grain boundaries.

これは具体的には、例えば通常の方法で、多結晶シリコ
ンTPTを形成した後、水素化のためにこのTFT上に
窒化シリコン膜をプラズマCVD法で作製し、熱処理す
るものである。この窒化シリコン膜はSiH++とNH
aに基づいて形成されるので、得られた窒化シリコン膜
内には水素が多量に含まれており、この窒化シリコン膜
を熱処理することによって、該膜中の水素は多結晶シリ
コン中に拡散される(例えば応用物理第56巻第1O号
(1987)pp1371 (123)〜pp1378
 (130)参照)。
Specifically, for example, after forming a polycrystalline silicon TPT using a conventional method, a silicon nitride film is formed on the TFT using a plasma CVD method for hydrogenation, and then heat-treated. This silicon nitride film is composed of SiH++ and NH
Since the silicon nitride film obtained contains a large amount of hydrogen, by heat-treating the silicon nitride film, the hydrogen in the film is diffused into the polycrystalline silicon. (For example, Applied Physics Vol. 56 No. 1O (1987) pp1371 (123) to pp1378
(130)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、多結晶シリコンTFT上に窒化シリコン膜に
よる水素化処理を行うと、多結晶シリコン膜の損傷も少
なく装置が簡略で大型化が容易で特性の改善が図れるが
、改善した特性が素子によってかなりのバラツキがある
など特性の安定化に問題点がある。
However, when hydrogenation treatment is performed using a silicon nitride film on a polycrystalline silicon TFT, there is less damage to the polycrystalline silicon film, the device is simple and can be easily enlarged, and the characteristics can be improved, but the improved characteristics vary considerably depending on the device. There are problems in stabilizing the characteristics, such as variations in the characteristics.

本発明の目的は、多結晶シリコンTPTの窒化シリコン
膜の水素化によって改善された緒特性をさらに改善する
とともに、素子による特性のバラツキを減少させ安定化
を図ったTPTとその製造方法を提供するものである。
An object of the present invention is to provide a polycrystalline silicon TPT that further improves the characteristics improved by hydrogenating the silicon nitride film, and also reduces and stabilizes variations in characteristics depending on the element, and a method for manufacturing the same. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明者は鋭意研究の結果、
窒化シリコン膜がピンホール密度の多い薄膜であるため
、TPTを作製後室化シリコン膜の堆積後熱処理する段
階で窒化シリコン膜にボイドが出来、そこから水素原子
が抜けてしまうことを見出した。
In order to achieve the above object, the present inventor has conducted extensive research, and as a result,
It was discovered that since the silicon nitride film is a thin film with a high pinhole density, voids are formed in the silicon nitride film during the heat treatment after the deposition of the chambered silicon film after TPT fabrication, and hydrogen atoms escape from the voids.

従って本発明は多結晶シリコンTPTを作製して、窒化
シリコン膜を堆積後、その上にこの窒化シリコン膜より
ピンホールの少ない緻密な酸化シリコン膜をオゾンCV
D法によって形成してから水素化処理のための熱処理す
ることにより、特性を更に改善するとともに素子による
特性のバラツキを少なく安定したTPTを得るものであ
る。
Therefore, in the present invention, a polycrystalline silicon TPT is fabricated, a silicon nitride film is deposited, and then a dense silicon oxide film with fewer pinholes than the silicon nitride film is formed using ozone CV.
By performing heat treatment for hydrogenation treatment after forming by the D method, it is possible to further improve the characteristics and obtain a stable TPT with less variation in characteristics depending on the element.

〔実施例〕〔Example〕

本発明の一実施例を第1図〜第3図を参照して説明する
。第1図は本発明のTPTの断面構造図、第2図は該T
PTの製造工程説明図、第3図はTPTの特性比較図で
ある。
An embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional structural diagram of the TPT of the present invention, and FIG.
A diagram explaining the manufacturing process of PT, and FIG. 3 is a comparison diagram of characteristics of TPT.

図中、1は石英基板、2は多結晶シリコン膜、2−1.
2−2はn゛型領領域あって、各々ソース領域、ドレイ
ン領域として作用する。3はゲート酸化膜、4はゲート
電極、5はSi0g膜から成る層間絶縁膜、6はアルミ
ニウム(An)配線層、7は窒化シリコン膜、8は酸化
シリコン(Si0z)膜を示す。
In the figure, 1 is a quartz substrate, 2 is a polycrystalline silicon film, 2-1.
Reference numeral 2-2 denotes an n-type region, which functions as a source region and a drain region, respectively. 3 is a gate oxide film, 4 is a gate electrode, 5 is an interlayer insulating film made of a Si0g film, 6 is an aluminum (An) wiring layer, 7 is a silicon nitride film, and 8 is a silicon oxide (Si0z) film.

第1図から明らかな如く、本発明の多結晶シリコンTP
Tは水素化処理のための窒化シリコン膜7上に、該窒化
シリコン膜7よりもピンホールの少ない5i02膜8が
被覆されている。
As is clear from FIG. 1, the polycrystalline silicon TP of the present invention
In T, a 5i02 film 8 having fewer pinholes than the silicon nitride film 7 is coated on a silicon nitride film 7 for hydrogenation treatment.

第2図を参照しつつ、本発明の多結晶シリコンTPTの
製造方法を説明する。
The method for manufacturing polycrystalline silicon TPT of the present invention will be explained with reference to FIG.

(1)石英基板l上に減圧CVD法で、基板温度590
°Cで多結晶シリコン膜2を例えば約1000人堆積す
る6次にこの多結晶シリコン膜2を島状にエツチングす
る(第2図(a)参照)。
(1) Using low pressure CVD method on a quartz substrate l, the substrate temperature was 590℃.
A polycrystalline silicon film 2 is deposited at, for example, about 1000° C. Next, the polycrystalline silicon film 2 is etched into an island shape (see FIG. 2(a)).

(II)熱酸化法により950℃でゲート酸化膜3を約
500人形成後、窒素雰囲気中で約1000℃で20分
間熱処理する。
(II) After approximately 500 gate oxide films 3 are formed at 950° C. by thermal oxidation, heat treatment is performed at approximately 1000° C. for 20 minutes in a nitrogen atmosphere.

(III)次に減圧CVD法で多結晶シリコンを約10
00〜3000人堆積した後、エツチングしてゲート電
極4を形成する(第2図(b)参照)。
(III) Next, polycrystalline silicon is deposited using a low pressure CVD method to
After 00 to 3000 layers are deposited, etching is performed to form the gate electrode 4 (see FIG. 2(b)).

(IV)形成したゲート電極4をマスクとして、自己整
合法でソース、ドレイン領域2−1.2−2を形成する
。即ち、通常のイオン注入法により、例えばリン(P)
イオンを100KeVで1×101 & / c s 
2注入する。
(IV) Using the formed gate electrode 4 as a mask, source and drain regions 2-1 and 2-2 are formed by a self-alignment method. That is, for example, phosphorus (P) is
ion at 100KeV at 1×101 &/c s
Inject 2.

(V)さらに注入した不純物イオンの活性化を約900
℃の窒素雰囲気中で行い、次に同じ約900℃の酸化雰
囲気中で熱酸化して5i02膜から成る層間絶縁膜5を
約1000人の厚さに形成する(第2図(C)参照)。
(V) Activation of further implanted impurity ions by approximately 900
℃ in a nitrogen atmosphere, and then thermally oxidized in the same oxidizing atmosphere at about 900℃ to form an interlayer insulating film 5 made of a 5i02 film to a thickness of about 1000 mm (see Fig. 2 (C)). .

(Vl)この層間絶縁膜5にコンタクト窓を開口後、A
J配線層6を形成し、約450℃で30分間シンターす
る(第2図(d)参照)。
(Vl) After opening a contact window in this interlayer insulating film 5,
A J wiring layer 6 is formed and sintered at about 450° C. for 30 minutes (see FIG. 2(d)).

(■)水素化のための窒化シリコン膜7をプラズマCV
D法で約500〜3000人、最適の厚さ2000人に
堆積する。この窒化シリコン膜7の堆積条件は次の通り
である(第2図(e)参照)。
(■) Plasma CV of silicon nitride film 7 for hydrogenation
D method is used to deposit approximately 500 to 3,000 layers, with an optimal thickness of 2,000 layers. The deposition conditions for this silicon nitride film 7 are as follows (see FIG. 2(e)).

5iHa流量  50SCCM NH3流量 150SCCM 圧力      0.4Torr RFパワー  400W 基板温度   300°C (■)次にテトラエトキシシラン(TE01)を用いる
オゾンCVD法でピンホールの少ない緻密なSi0g膜
8を約1000人〜lamの厚みで堆積する。
5iHa flow rate 50SCCM NH3 flow rate 150SCCM Pressure 0.4Torr RF power 400W Substrate temperature 300°C (■) Next, a dense Si0g film 8 with few pinholes was formed using an ozone CVD method using tetraethoxysilane (TE01) at approximately 1,000 ~ lam It is deposited to a thickness of .

この時の5in2膜8の堆積条件は次の通りである。The conditions for depositing the 5in2 film 8 at this time are as follows.

TEO3流量 80〜160secM 02流量     7.5SLM 03濃度 0.3〜4.8Voffi0%02N2流量
     35SLM 基板温度    350℃ (IX)窒化シリコン膜7とS iog膜8でパッシベ
ーションされたTPTに熱処理を施して水素化処理し、
第1図の如き構造のTPTとする。この熱処理温度を種
々変化させてアニールしたTFTの特性を従来のTPT
の特性とともに第3図に示す。
TEO3 flow rate 80~160secM 02 flow rate 7.5SLM 03 concentration 0.3~4.8Voffi0%02N2 flow rate 35SLM Substrate temperature 350℃ (IX) Heat treatment is performed on TPT passivated with silicon nitride film 7 and Siog film 8 to generate hydrogen. processed,
The TPT has a structure as shown in FIG. The characteristics of TFTs annealed by varying the heat treatment temperature are compared to those of conventional TPTs.
It is shown in Figure 3 along with its characteristics.

第3図はゲート幅(W):100μm、ゲート長(L)
:10μmのn−MOS  TFTの特性図である。第
3図において、Aはドレイン電圧5■、ゲート電圧10
Vの時のドレイン電流(オン電流)の熱処理温度依存性
を示し、Bはしきい値電圧の熱処理温度依存性を示す。
Figure 3 shows gate width (W): 100μm, gate length (L)
: A characteristic diagram of a 10 μm n-MOS TFT. In Figure 3, A is a drain voltage of 5cm and a gate voltage of 10cm.
B shows the dependence of the drain current (on current) on the heat treatment temperature when V is applied, and B shows the dependence of the threshold voltage on the heat treatment temperature.

また、O印は従来例の窒化シリコン膜による水素化のみ
を行ったTPTの特性測定値であり、Δ印は本発明の窒
化シリコン膜を堆積後Si0g膜を被覆してから熱処理
を行ったTPTの特性の測定値である。さらに測定値の
上下の実線は同じ条件で測定した10個(n=lo)の
資料の測定値のバラツキを示す。
In addition, the O mark is the characteristic measurement value of the TPT which was only hydrogenated with the silicon nitride film of the conventional example, and the Δ mark is the characteristic value of the TPT which was heat-treated after depositing the silicon nitride film of the present invention and then covering the Si0g film. is a measurement of the property of Further, solid lines above and below the measured values indicate variations in the measured values of 10 samples (n=lo) measured under the same conditions.

第3図から明らかな如く、本発明のTPTはドレイン電
流がより多(なり、しきい値電圧はより低くなり特性が
改善された上、各々の測定値の素子によるバラツキも少
なくなり、特にドレイン電流の素子によるバラツキは従
来のものより3倍以上の安定度を示している。
As is clear from FIG. 3, the TPT of the present invention has a higher drain current, a lower threshold voltage, and improved characteristics. The current variation due to elements is more than three times more stable than the conventional one.

なお、第2図の条件におけるゲートのリーク電流は0.
5pA以下と非常に低かった。
Note that the leakage current of the gate under the conditions shown in FIG. 2 is 0.
It was very low, less than 5 pA.

これは窒化シリコン膜8はその膜の性質上ピンホール密
度が多く、熱処理した場合ボイドが出来、そこから水素
原子が抜けてしまい水素化の効果が損なわれ、素子によ
る特性のバラツキを大きくしているものと考えられる。
This is because the silicon nitride film 8 has a high pinhole density due to the nature of the film, and when it is heat treated, voids are created and hydrogen atoms escape from these voids, impairing the hydrogenation effect and increasing the variation in characteristics depending on the device. It is thought that there are.

従って、本発明では、窒化シリコン膜7上にピンホール
のないSi0g膜8をパッシベーションすることにより
、水素原子を窒化シリコン膜8内に閉じこめて多結晶シ
リコン膜2中に拡散させ、水素化の効果を確実にすると
ともに、素子による特性のバラツキを少なくしてTPT
の特性の安定を実現するものである。
Therefore, in the present invention, by passivating the pinhole-free Si0g film 8 on the silicon nitride film 7, hydrogen atoms are confined in the silicon nitride film 8 and diffused into the polycrystalline silicon film 2, thereby improving the hydrogenation effect. In addition to ensuring that TPT
This is to achieve stability in the characteristics of .

〔発明の効果〕〔Effect of the invention〕

本発明の如く、多結晶シリコンTPTを製造する際に、
ピンホールが多く水素化の際の熱処理時に水素原子が逃
げてしまう窒化シリコン膜を、ピンホールのない緻密な
Si0g膜により覆うことによって、水素化の際に水素
原子が逃げず特性の改善を十分図ることが出来る。さら
に特性の安定化も実現出来、体幹性の高い多結晶シリコ
ンTPTを比較的低温で作製することが出来る。
When manufacturing polycrystalline silicon TPT as in the present invention,
By covering the silicon nitride film, which has many pinholes and causes hydrogen atoms to escape during heat treatment during hydrogenation, with a dense Si0g film without pinholes, hydrogen atoms do not escape during hydrogenation and the characteristics are sufficiently improved. It is possible to plan. Furthermore, properties can be stabilized, and polycrystalline silicon TPT with high core properties can be produced at a relatively low temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多結晶シリコンTPTの断面構造図、 第2図は本発明のTPTの製造工程説明図、第3図はT
PTの特性比較図である。 ■−石英基板、  2−多結晶シリコン膜、2−1.2
−2− ソース、ドレイン領域、3−ゲート酸化膜、 4−ゲート電極、 5−層間絶縁膜、 6−A f配線層、 7−窒化シリコン膜、 8・−3i O2膜。
Figure 1 is a cross-sectional structural diagram of the polycrystalline silicon TPT of the present invention, Figure 2 is an explanatory diagram of the manufacturing process of the TPT of the present invention, and Figure 3 is the TPT.
It is a characteristic comparison diagram of PT. ■-Quartz substrate, 2-polycrystalline silicon film, 2-1.2
-2- Source, drain region, 3- Gate oxide film, 4- Gate electrode, 5- Interlayer insulating film, 6- Af wiring layer, 7- Silicon nitride film, 8.-3i O2 film.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化シリコン膜で被覆された多結晶シリコン薄膜
トランジスタにおいて、窒化シリコン膜と、該窒化シリ
コン膜上にこれよりもピンホールの少ない緻密な酸化シ
リコン膜を被覆したことを特徴とする多結晶シリコン薄
膜トランジスタ。
(1) A polycrystalline silicon thin film transistor covered with a silicon nitride film, characterized in that the silicon nitride film and the silicon nitride film are covered with a dense silicon oxide film with fewer pinholes than the silicon nitride film. Thin film transistor.
(2)窒化シリコン膜で被覆された多結晶シリコン薄膜
トランジスタの窒化シリコン膜上に、オゾンCVD法を
用いて該窒化シリコン膜よりピンホールの少ない酸化シ
リコン膜を形成した後、熱処理を行って水素化処理を行
うことを特徴とする多結晶シリコン薄膜トランジスタの
製造方法。
(2) After forming a silicon oxide film with fewer pinholes than the silicon nitride film using the ozone CVD method on the silicon nitride film of a polycrystalline silicon thin film transistor covered with a silicon nitride film, heat treatment is performed to hydrogenate the silicon nitride film. 1. A method for manufacturing a polycrystalline silicon thin film transistor, which comprises performing a process.
JP30434489A 1989-11-22 1989-11-22 Polycrystalline silicon thin film transistor and method of manufacturing the same Expired - Fee Related JP2806999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30434489A JP2806999B2 (en) 1989-11-22 1989-11-22 Polycrystalline silicon thin film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30434489A JP2806999B2 (en) 1989-11-22 1989-11-22 Polycrystalline silicon thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03165066A true JPH03165066A (en) 1991-07-17
JP2806999B2 JP2806999B2 (en) 1998-09-30

Family

ID=17931884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30434489A Expired - Fee Related JP2806999B2 (en) 1989-11-22 1989-11-22 Polycrystalline silicon thin film transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2806999B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129333A (en) * 1991-09-13 1993-05-25 Mitsubishi Electric Corp Semiconductor device and its manufacture
EP0634797A2 (en) * 1993-07-13 1995-01-18 Sony Corporation Thin film semiconductor device for active matrix panel and method of manufacturing the same
US6118151A (en) * 1994-05-24 2000-09-12 Matsushita Electric Industrial Co., Ltd. Thin film semiconductor device, method for fabricating the same and semiconductor device
US6150692A (en) * 1993-07-13 2000-11-21 Sony Corporation Thin film semiconductor device for active matrix panel
US7541646B2 (en) 2006-03-08 2009-06-02 Mitsubishi Electric Corporation Thin film transistor device and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129333A (en) * 1991-09-13 1993-05-25 Mitsubishi Electric Corp Semiconductor device and its manufacture
EP0634797A2 (en) * 1993-07-13 1995-01-18 Sony Corporation Thin film semiconductor device for active matrix panel and method of manufacturing the same
EP0634797A3 (en) * 1993-07-13 1997-02-26 Sony Corp Thin film semiconductor device for active matrix panel and method of manufacturing the same.
US6150692A (en) * 1993-07-13 2000-11-21 Sony Corporation Thin film semiconductor device for active matrix panel
US6118151A (en) * 1994-05-24 2000-09-12 Matsushita Electric Industrial Co., Ltd. Thin film semiconductor device, method for fabricating the same and semiconductor device
US6228692B1 (en) 1994-05-24 2001-05-08 Matsushita Electric Industrial Co., Ltd. Thin film semiconductor device, method for fabricating the same and semiconductor device
US7541646B2 (en) 2006-03-08 2009-06-02 Mitsubishi Electric Corporation Thin film transistor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2806999B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
JPS6312168A (en) Ldd mis type field effect transistor
JP2003179049A (en) Insulating film-forming method, and semiconductor device and manufacturing method thereof
JPH05102483A (en) Film transistor and its manufacturing method
JP2009088440A (en) Semiconductor device and its manufacturing method
JP2000216373A (en) Fabrication of semiconductor device
KR100788361B1 (en) Method of forming mosfet device
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JPH09129889A (en) Manufacture of semiconductor device
KR20030074108A (en) Semiconductor device and method of manufactuing the same
JPS63165A (en) Manufacture of semiconductor device
JP3167797B2 (en) Method for manufacturing semiconductor device
JPH0656856B2 (en) Method for manufacturing semiconductor device
KR970054500A (en) Method of manufacturing polycrystalline silicon thin film transistor
JPH0196960A (en) Semiconductor device
JP3444815B2 (en) High breakdown voltage semiconductor device and method of manufacturing the same
JPS59169179A (en) Semiconductor integrated circuit device
KR20040059931A (en) Method for fabricating dual gate oxide of semiconductor device
JPH0682668B2 (en) Method for manufacturing semiconductor device
KR100323736B1 (en) Thin film transistor and fabricating method thereof
KR100307540B1 (en) Fabricating method of semiconductor device
JP3123182B2 (en) Semiconductor device and manufacturing method thereof
JPH04100238A (en) Manufacture of semiconductor device
JPH022633A (en) Manufacture of mis field effect semiconductor device
KR0140959B1 (en) Manufacturing method of mosfet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees