JPS63165A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63165A
JPS63165A JP14325986A JP14325986A JPS63165A JP S63165 A JPS63165 A JP S63165A JP 14325986 A JP14325986 A JP 14325986A JP 14325986 A JP14325986 A JP 14325986A JP S63165 A JPS63165 A JP S63165A
Authority
JP
Japan
Prior art keywords
film
insulating film
temperature
containing hydrogen
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14325986A
Other languages
Japanese (ja)
Inventor
Michihiro Miyauchi
美智博 宮内
Kentaro Setsune
瀬恒 謙太郎
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14325986A priority Critical patent/JPS63165A/en
Publication of JPS63165A publication Critical patent/JPS63165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To reduce the generation of thermal strain, and to improve reliability and performance by executing heat treatment at a temperature higher than a temperature where an insulating film containing hydrogen is formed, diffusing hydrogen existing in the film into a semiconductor device and shaping the insulating film as a protective film. CONSTITUTION:An silicon thin-film 2, a gate oxide film 3 and a gate electrode 4 are formed onto an insulating substrate 1, and an impurity is implanted to the thin-film 2 through self-alignment, using the gate electrode 4 as a mask, thus shaping source-drain. Layer insulating films 5 and contact windows are formed, wirings 6 are shaped and an silicon nitride film 7 is formed as an insulating film containing hydrogen. When executing heat treatment at a temperature higher than a temperature where the silicon nitride film is shaped, hydrogen is diffused into the silicon film 2, a defect is buried, a potential barrier is reduced, mobility is increased and threshold voltage is lowered. Lastly, a final protective film 8 is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の保護膜の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing a protective film for a semiconductor device.

従来の技術 多結晶シリコンからなる薄膜トランジスタ(以下TPT
と略す)は、チャネル内にダングリングボンド等多くの
欠陥を含むため、移動度が小さく、しきい値電圧が高く
、電流の0N10FF比が小さい。このTPTの特性向
上に水素化がある。その−例としてアイイイイ(IEE
E)、EDL−s 。
Conventional technologyThin film transistor (hereinafter referred to as TPT) made of polycrystalline silicon
) contains many defects such as dangling bonds in the channel, so the mobility is low, the threshold voltage is high, and the 0N10FF ratio of current is small. Hydrogenation is used to improve the properties of TPT. For example, IEE
E), EDL-s.

468(1984)に記載されているように、保護膜と
してプラズマCVD法で窒化シリコン膜を形成した後、
450℃前後で10〜6o分間熱処理して、窒化シリコ
ン中に存在する水素をチャネルの多結晶シリコン中へ拡
散させて欠陥密度を減少させて、TPTの特性を向上さ
せている。
468 (1984), after forming a silicon nitride film as a protective film by plasma CVD method,
Heat treatment is performed at around 450° C. for 10 to 60 minutes to diffuse hydrogen present in silicon nitride into the polycrystalline silicon of the channel, reduce defect density, and improve the characteristics of TPT.

第2図は従来の方法で作成された多結晶シリコン薄膜ト
ランジスタを示すもので、1は絶縁基板、2はシリコン
薄膜、3はゲート酸化膜、4はゲート電極、5は眉間絶
縁膜、6は配線、27は絶縁保護膜である。
Figure 2 shows a polycrystalline silicon thin film transistor fabricated by a conventional method, where 1 is an insulating substrate, 2 is a silicon thin film, 3 is a gate oxide film, 4 is a gate electrode, 5 is an insulating film between the eyebrows, and 6 is a wiring. , 27 are insulating protective films.

発明が解決しようとする問題点 水素化によってTPTの電気特性は大幅に向上するが、
450℃前後で熱処理することによって、保護膜27が
劣下し、耐湿性、耐摩もう性、アルカリイオンのブロッ
キング効果等の半導体装置の最終保護膜としての性能が
低下してしまう0また、熱処理中に不純物が、半導体装
置内に拡散し、半導体装置の性能が劣下し信頼性に問題
が生じる。
Problems to be Solved by the Invention Hydrogenation significantly improves the electrical properties of TPT;
Heat treatment at around 450 degrees Celsius deteriorates the protective film 27, reducing its performance as a final protective film for semiconductor devices, such as moisture resistance, abrasion resistance, and alkali ion blocking effect. Impurities then diffuse into the semiconductor device, deteriorating the performance of the semiconductor device and causing reliability problems.

問題点を解決するための手段 本発明は、TPT等の半導体装置を水素化するために、
水素を含む絶縁膜を形成し、この絶縁膜を形成した温度
よりも高い温度で熱処理を行い、膜中に存在する水素を
半導体装置内に拡散させる。
Means for Solving the Problems The present invention provides a method for hydrogenating semiconductor devices such as TPT.
An insulating film containing hydrogen is formed, and heat treatment is performed at a temperature higher than the temperature at which the insulating film was formed, thereby diffusing hydrogen present in the film into the semiconductor device.

その後、耐湿性・耐摩もう性・アルカリイオンに対する
ブロッキング効果等の優れた絶縁膜を保護膜として形成
する。これらの工程を望ましくは減圧下でしかも真空を
破ることなく行う。
Thereafter, an insulating film having excellent moisture resistance, wear resistance, blocking effect against alkali ions, etc. is formed as a protective film. These steps are preferably carried out under reduced pressure and without breaking the vacuum.

作   用 水素を含む第1の絶縁膜を熱処理することによってTP
T等の半導体装置の電気特性を大幅に向上させることが
でき、しかも、第2の絶縁膜が優れた保護膜として作用
するだめ、TPT等の半導体装置の劣下が起らず信頼性
の高い半導体装置の作製が可能である◇また、減圧下で
真空を破ることなく連続で水素を含む絶縁膜の形成、熱
処理。
By heat-treating the first insulating film containing functional hydrogen, the TP
The electrical characteristics of semiconductor devices such as TPTs can be greatly improved, and since the second insulating film acts as an excellent protective film, the semiconductor devices such as TPTs do not deteriorate and are highly reliable. It is possible to fabricate semiconductor devices. ◇ Also, it is possible to continuously form and heat-treat an insulating film containing hydrogen without breaking the vacuum under reduced pressure.

最終保護膜の形成を行うため、処理中に不純物等が半導
体層内に拡散せず、しかも、熱処理の前に温度を下げず
に熱処理工程に移るため、熱サイクルが少なく、熱歪の
発生が少なく高信頼性高性能なTPTが作製できる。
Since a final protective film is formed, impurities etc. do not diffuse into the semiconductor layer during processing, and since the heat treatment process is started without lowering the temperature before heat treatment, there are fewer thermal cycles and less thermal distortion occurs. A highly reliable and high-performance TPT can be manufactured with a small amount.

実施例 第1図は本発明の一実施例の方法にて形成されり多結晶
シリコノ薄膜トランジスタの断面図を示す。1は絶縁基
板であシ例えばシリコン基板上にシリコン酸化膜あるい
はシリコン窒化膜あるいはこれらの多層膜を形成したも
のや、石英あるいはアルミナセラミックあるいは無アル
カリガラス基板や、その上にシリコン酸化膜あぬいはシ
リコン窒化膜等の薄膜絶縁膜を形成したものである。絶
縁基板1上に減圧CVD法あるいはMBE等で多結晶等
のシリコン薄膜2を形成する。その上にゲート酸化膜3
を形成し、その上にゲート電極4を形成する。ゲート電
極4をマスクとして薄膜2にセルフ7ライメントで不純
物を注入してソース・ドレインを形成する。その後層間
絶縁膜6を形成シタ後、コンタクトウィンドウを形成し
、配線6の形成を行う。その後、水素を含む絶縁膜とし
て例えば、プラズマCVD法で基板温度が200〜36
0℃でシリコン窒化膜7を形成する。このシリコン窒化
膜7中には数チから数十チの水素が含まれている。その
後、シリコン窒化膜を形成した温度よりも高い温度(4
oO〜650℃)で、10分から2時間熱処理を行う。
Embodiment FIG. 1 shows a cross-sectional view of a polycrystalline silicon thin film transistor formed by a method according to an embodiment of the present invention. 1 is an insulating substrate, for example, a silicon oxide film, a silicon nitride film, or a multilayer film of these formed on a silicon substrate, a quartz, alumina ceramic, or alkali-free glass substrate, or a silicon oxide film formed on it. A thin insulating film such as a silicon nitride film is formed. A polycrystalline silicon thin film 2 is formed on an insulating substrate 1 by low pressure CVD, MBE, or the like. On top of that is a gate oxide film 3.
is formed, and a gate electrode 4 is formed thereon. Using the gate electrode 4 as a mask, impurities are implanted into the thin film 2 by self-alignment to form sources and drains. After that, an interlayer insulating film 6 is formed, a contact window is formed, and a wiring 6 is formed. After that, an insulating film containing hydrogen is formed by, for example, plasma CVD at a substrate temperature of 200 to 36°C.
A silicon nitride film 7 is formed at 0°C. This silicon nitride film 7 contains several to several tens of atoms of hydrogen. Thereafter, the temperature is higher than the temperature at which the silicon nitride film was formed (4
Heat treatment is performed at 0°C to 650°C for 10 minutes to 2 hours.

この熱処理中にシリコン窒化膜中に存在する水素が、シ
リコン膜2中に拡散し欠陥をうめポテンシャルバリアが
小さくなシ移動度が大きくなシ、しきい値電圧が小さく
なる。最後に最終保護膜8を形成する。
During this heat treatment, hydrogen present in the silicon nitride film diffuses into the silicon film 2 and fills up defects, resulting in a smaller potential barrier, higher mobility, and lower threshold voltage. Finally, a final protective film 8 is formed.

第1図において、熱処理は、水素の拡散が起こり始める
400℃よりも高く、アルミニウム等の全幅配線等素子
に影響を与えず、多結晶シリコンに拡散した水素が再び
、外へ拡散しない550℃よりも低い温度で行う。
In Figure 1, the heat treatment is performed at a temperature higher than 400°C, at which hydrogen diffusion begins, without affecting devices such as full-width wiring made of aluminum, and at a temperature higher than 550°C, at which hydrogen diffused into polycrystalline silicon does not diffuse outward again. It is also done at a low temperature.

水素を含む第1の絶縁膜プラズマCVD法等の減圧下で
作製し、減圧下で真空を破ることなくしかも温度を下げ
ることなく、N2中あるいはAr中あるいはN2中ある
いはこれらの混合ガス中で熱処理を行う。そして最後に
、第2の絶縁膜8を真空を破ることなく減圧下で例えば
プラズマCVD法で作製する。この第2の絶縁膜8は半
導体装置の保護膜として優れた性能をもつものである。
The first insulating film containing hydrogen is produced under reduced pressure using plasma CVD method, etc., and heat treated in N2, Ar, N2, or a mixed gas thereof under reduced pressure without breaking the vacuum or lowering the temperature. I do. Finally, the second insulating film 8 is formed by, for example, plasma CVD under reduced pressure without breaking the vacuum. This second insulating film 8 has excellent performance as a protective film for semiconductor devices.

発明の効果 水素を含む第1の絶縁膜を熱処理することによって多結
晶シリコン薄膜トランジスタの特性は大幅に向上する。
Effects of the Invention By heat-treating the first insulating film containing hydrogen, the characteristics of the polycrystalline silicon thin film transistor are significantly improved.

そのあとで、パッシベーションにすぐれた絶縁膜を形成
するため、非常に信頼性の高い良質のTPTが作製でき
る。しかも第1の絶縁膜、熱処理、第2の絶縁膜を真空
を破らずに減圧下で行うと、膜中および界面に不純物の
混入が著しく小さくなり、素子の劣下を著しくおさえる
ことができる。また、これら3つの工程は、基板温度を
室温近くまで下げずに行うことができるため、熱サイク
ルが少ないので熱歪の発生が少なく、高信頼性高品質の
TPTを作製することができる。
After that, an insulating film with excellent passivation is formed, so a highly reliable and high quality TPT can be manufactured. Moreover, if the first insulating film, the heat treatment, and the second insulating film are performed under reduced pressure without breaking the vacuum, the amount of impurities mixed into the film and at the interface is significantly reduced, and deterioration of the device can be significantly suppressed. In addition, these three steps can be performed without lowering the substrate temperature to near room temperature, so there are fewer thermal cycles, so thermal strain is less likely to occur, and a highly reliable and high quality TPT can be manufactured.

このTPTを用いて一次元イメージセンサや液晶デイス
プレーのスイッチング素子、駆動回路を作製することが
できる。
This TPT can be used to fabricate one-dimensional image sensors, switching elements for liquid crystal displays, and drive circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を用いて作製した多結晶シリコン薄膜ト
ランジスタの一実施例の断面図、第2図は従来の薄膜ト
ランジスタの断面図である。 1・・・・・・絶縁基板、2・・・・・・シリコン薄膜
、3,4・・・・・・ゲート酸化膜、5・・・・・・層
間絶縁膜、6・・・・・・金属配線、7・・・・・・水
素を含む第1の絶縁膜、8・・・・・・保護膜。
FIG. 1 is a sectional view of an embodiment of a polycrystalline silicon thin film transistor manufactured using the present invention, and FIG. 2 is a sectional view of a conventional thin film transistor. 1... Insulating substrate, 2... Silicon thin film, 3, 4... Gate oxide film, 5... Interlayer insulating film, 6... -Metal wiring, 7...first insulating film containing hydrogen, 8...protective film.

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁基板上にシリコン薄膜トランジスタを形成後
、水素を含む第1の絶縁膜を形成し、前記水素を含む第
1の絶縁膜を形成した温度よりも高い温度で熱処理を行
い、前記第1の絶縁膜中に存在する水素をシリコン薄膜
中に拡散させて前記薄膜トランジスタを水素化した後、
前記第1の絶縁膜上に半導体装置の保護膜としての第2
の絶縁膜を形成することを特徴とする半導体装置の製造
方法。
(1) After forming a silicon thin film transistor on an insulating substrate, a first insulating film containing hydrogen is formed, heat treatment is performed at a temperature higher than the temperature at which the first insulating film containing hydrogen is formed, and the first insulating film is After hydrogenating the thin film transistor by diffusing hydrogen present in the insulating film into the silicon thin film,
A second insulating film as a protective film for a semiconductor device is formed on the first insulating film.
1. A method for manufacturing a semiconductor device, the method comprising: forming an insulating film.
(2)水素を含む第1の絶縁膜として、プラズマCVD
法で、基板温度が200〜350℃で形成した窒化シリ
コン膜を用いることを特徴とする特許請求の範囲第1項
記載の半導体装置の製造方法。
(2) Plasma CVD as the first insulating film containing hydrogen
2. The method of manufacturing a semiconductor device according to claim 1, wherein a silicon nitride film formed at a substrate temperature of 200 to 350[deg.] C. is used.
(3)水素を含む第1の絶縁膜を熱処理するときの温度
が400〜550℃であることを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the first insulating film containing hydrogen is heat-treated at a temperature of 400 to 550°C.
(4)減圧下で水素を含む第1の絶縁膜を形成した後、
真空を破ることなく減圧下で、N_2中あるいはAr中
あるいはH_2中あるいはこれらの混合ガス中で、水素
を含む第1の絶縁膜を形成した時の温度より高い温度で
熱処理する事を特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。
(4) After forming the first insulating film containing hydrogen under reduced pressure,
It is characterized by heat treatment under reduced pressure without breaking the vacuum in N_2, Ar, H_2, or a mixed gas thereof at a temperature higher than the temperature at which the first insulating film containing hydrogen was formed. A method for manufacturing a semiconductor device according to claim 1.
(5)水素を含む第1の絶縁膜の形成、熱処理、第2の
絶縁膜形成を、連続でしかも、真空を破ることなく減圧
下で行うことを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。
(5) The formation of the first insulating film containing hydrogen, the heat treatment, and the formation of the second insulating film are performed continuously and under reduced pressure without breaking the vacuum. A method for manufacturing a semiconductor device.
JP14325986A 1986-06-19 1986-06-19 Manufacture of semiconductor device Pending JPS63165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14325986A JPS63165A (en) 1986-06-19 1986-06-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14325986A JPS63165A (en) 1986-06-19 1986-06-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63165A true JPS63165A (en) 1988-01-05

Family

ID=15334587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14325986A Pending JPS63165A (en) 1986-06-19 1986-06-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63165A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883766A (en) * 1987-11-14 1989-11-28 Ricoh Company, Ltd. Method of producing thin film transistor
US4886764A (en) * 1988-02-11 1989-12-12 Sgs-Thomson Microelectronics, Inc. Process for making refractory metal silicide cap for protecting multi-layer polycide structure
JPH0395939A (en) * 1989-09-07 1991-04-22 Canon Inc Manufacture of semiconductor device
JPH05136167A (en) * 1991-09-20 1993-06-01 Mitsubishi Electric Corp Thin film transistor and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883766A (en) * 1987-11-14 1989-11-28 Ricoh Company, Ltd. Method of producing thin film transistor
US4886764A (en) * 1988-02-11 1989-12-12 Sgs-Thomson Microelectronics, Inc. Process for making refractory metal silicide cap for protecting multi-layer polycide structure
JPH0395939A (en) * 1989-09-07 1991-04-22 Canon Inc Manufacture of semiconductor device
JPH05136167A (en) * 1991-09-20 1993-06-01 Mitsubishi Electric Corp Thin film transistor and its manufacture

Similar Documents

Publication Publication Date Title
JPH02210871A (en) Semiconductor device
JPS63165A (en) Manufacture of semiconductor device
JPH09129889A (en) Manufacture of semiconductor device
KR0161735B1 (en) Method for fabricating semiconductor device
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JP3051807B2 (en) Insulated gate field effect semiconductor device and method of manufacturing the same
JPH06275650A (en) Manufacture of field effect transistor
JPS63119268A (en) Manufacture of semiconductor device
JPS5931226B2 (en) semiconductor equipment
JP2718757B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH05235353A (en) Active matrix substrate and manufacture thereof
JP3167797B2 (en) Method for manufacturing semiconductor device
JPS5826669B2 (en) Zetsuengategata FET
JP2647611B2 (en) Semiconductor device
JPS5892268A (en) Manufacture of semiconductor device
JPH07142707A (en) Manufacture of mos transistor
JPH0746698B2 (en) Method for manufacturing semiconductor device
JP2837473B2 (en) Silicon thin film transistor
JP2573137B2 (en) Method for manufacturing insulated gate field effect transistor
JPS62279644A (en) Manufacture of semiconductor device
JPS631071A (en) Thin-film semiconductor device
JP2960742B2 (en) Thin film transistor element
JPH077156A (en) Thin film field effect transistor
KR0140959B1 (en) Manufacturing method of mosfet
JPH04336466A (en) Fabrication of semiconductor device