JPH02188945A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02188945A
JPH02188945A JP811089A JP811089A JPH02188945A JP H02188945 A JPH02188945 A JP H02188945A JP 811089 A JP811089 A JP 811089A JP 811089 A JP811089 A JP 811089A JP H02188945 A JPH02188945 A JP H02188945A
Authority
JP
Japan
Prior art keywords
insulating film
liquid
phase insulating
viscosity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP811089A
Other languages
Japanese (ja)
Inventor
Junichi Ito
純一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP811089A priority Critical patent/JPH02188945A/en
Publication of JPH02188945A publication Critical patent/JPH02188945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form an interlayer insulating film whose surface is flat without a steep recessed part or the like on a wiring-part formation face including wiring parts ar ranged at very small intervals and which has no cavity part built-in by a method wherein a plurality of kinds of liquid-phase insulating films with different viscosities are coated one after another in the order of a lowest-viscosity film onward and are solidified. CONSTITUTION:When the surface of a substrate having a plurality of groove parts 4A, 4B whose opening width (w) is different is coated with a liquid-phase insulating film, a plurality of kinds of liquid-phase insulating films 105, 106 with different viscosities are coated one after another in the order of a lowest-viscosity film onward and are solidified. For example, a first vapor-growth insulating film 3 of SiO2, PSG or the like is formed on a substrate on which lower-layer Al wiring parts 2A to 2C have been formed on a lower-layer insulating film 1 at a narrow interval d1 and at a wide interval d2. Then, said substrate is coated with a first low-viscosity liquid- phase insulating film 105 by a spin coating method; and this assembly is cured in N2 at a temperature of about 250 to 300 deg.C for about 30 minutes to form a first silicon oxide film 5. Then, a second high-viscosity liquid-phase insulating film 106 is coated by the spin coating method; and a second silicon oxide film 6 is formed in the same manner as the above-mentioned film.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、特に多層配線構造の半導体装置
における上層配線の形成面を平坦化する方法に関し、 微小間隔で配設される配線を含む配線形成面上に、急峻
な凹部等のない平坦な表面を有し且つ空洞部を内蔵しな
い層間絶縁膜を形成することを目的とし、 粘度の異なる複数種類の液相絶縁膜を、粘度の低い物か
ら順次塗布し且つ固化する工程を含み、または、下層の
絶縁膜上に複数の配線パターンが異なる幅の間隙部を介
して配設された基体面上に、該配線パターンの間隙部を
その内面に沿って被覆する厚さに第1の気相成長絶縁膜
を被着する工程と、該基体上に、開口幅の狭い間隙部内
に流れ込みそれを満たす程度の低い粘度を有する第10
液相絶縁膜を塗布し且つキュアー固化する工程と、該基
体上に、広い開口幅有する間隙部のみに流れ込みそれを
満たす程度の該第1の液相絶縁膜より高粘度の第2の液
相絶縁膜を塗布し且つキュアー固化する工程と、固化さ
れた第2の液相絶縁膜と第1の液相絶縁膜を該下層配線
パターン上の第1の気相成長絶縁膜の上面が表出するま
でエッチバックする工程と、該エツチングパック終了面
上に第2の気相成長絶縁膜を被着する工程とを含んで構
成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a semiconductor device, particularly a method for flattening a surface on which upper layer wiring is formed in a semiconductor device with a multilayer wiring structure, the present invention relates to a method for manufacturing a semiconductor device, in particular a method for flattening a surface on which upper layer wiring is formed in a semiconductor device having a multilayer wiring structure. With the aim of forming an interlayer insulating film with a flat surface without steep recesses and no built-in cavities, multiple types of liquid phase insulating films with different viscosities are sequentially applied, starting with the one with the lowest viscosity. The method includes a step of coating and solidifying, or on a base surface on which a plurality of wiring patterns are disposed on an underlying insulating film through gaps of different widths, the gaps between the wiring patterns are formed along the inner surface of the substrate surface. depositing a first vapor-grown insulating film on the substrate to a thickness that covers the substrate;
a step of applying and curing a liquid phase insulating film, and a second liquid phase having a higher viscosity than the first liquid phase insulating film flowing only into the gap having a wide opening width and filling the gap on the substrate; A step of applying and curing the insulating film, and exposing the solidified second liquid phase insulating film and first liquid phase insulating film to the upper surface of the first vapor grown insulating film on the lower wiring pattern. and a step of depositing a second vapor-phase insulating film on the finished surface of the etching pack.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特に多層配線構造の半
導体装置における上層配線の形成面を平坦化する方法に
関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for flattening a surface on which upper layer wiring is formed in a semiconductor device having a multilayer wiring structure.

LSI等、大規模・高集積化される半導体装置において
は、多層配線構造を有する内部配線によって回路構成が
なされることが多い。
2. Description of the Related Art In large-scale, highly integrated semiconductor devices such as LSIs, circuit configurations are often made of internal wiring having a multilayer wiring structure.

配線層が層間絶縁膜を介し複数層積層される多層配線構
造においては、配線の形成面上に被着される層間絶縁膜
上に生ずる凹凸段差が、下層から順次加算されて上層に
行くに従って高い凹凸段差を生ずるようになり、この高
い段差のために層間絶縁膜上に形成される配線に段切れ
若しくはそれに準する配線品質の低下を招いて半導体装
置の製造歩留りや信頬性が低下するという問題がある。
In a multilayer wiring structure in which a plurality of wiring layers are laminated with interlayer insulation films interposed therebetween, the irregularities that occur on the interlayer insulation film that is deposited on the wiring formation surface are added up sequentially from the lower layer and increase as the layer increases toward the upper layer. It is said that uneven steps are formed, and this high step difference causes step breakage in the wiring formed on the interlayer insulating film or a similar deterioration in the quality of the wiring, which reduces the manufacturing yield and reliability of semiconductor devices. There's a problem.

そのために、多層配線構造の半導体装置においては、層
間絶縁膜表面即ち配線形成面の平坦化を図ることが重要
な課題になってくる。
Therefore, in a semiconductor device having a multilayer wiring structure, it is an important issue to planarize the surface of the interlayer insulating film, that is, the surface on which the wiring is formed.

〔従来の技術〕[Conventional technology]

近時、多層配線構造の半導体装置を製造するに際して多
(用いられるようになった配線形成面の平坦化技術に、
シリコンの有機化合物よりなるスピンオングラス(S、
0.G)や、ポリイミド等の有機樹脂等よりなる液相絶
縁膜をスピンコードした層と、二酸化シリコン(SiO
□)や燐珪酸ガラス(PSG)等の気相成長(CVD)
絶縁膜との組合せによる平坦化技術がある。
Recently, when manufacturing semiconductor devices with multilayer wiring structure, many technologies have been used to planarize the wiring formation surface.
Spin-on glass (S,
0. G), a spin-coded layer of a liquid phase insulating film made of organic resin such as polyimide, and silicon dioxide (SiO
Vapor phase growth (CVD) such as □) and phosphosilicate glass (PSG)
There is a planarization technology that uses a combination with an insulating film.

この平坦化技術における従来の技術を用いた多層配線の
形成方法は次の通りである。
A method for forming multilayer wiring using the conventional planarization technique is as follows.

即ち、第4図(a)に示すように、下層絶縁膜51上に
異なる配線間隔即ち異なる配線間隙部のアスペクト比で
複数の下層配線パターン52A 、52B、52C等が
形成された基体上に、先ず配線の高さの1〜172倍程
度の厚さの第1のCVD絶縁膜53を被着する。ここで
、気相成長による絶縁膜のステップカバレージ性の悪さ
によって第1の07口絶縁膜53の表面には、下層配線
パターン52A 、52B、52C等の間隙部上に、こ
れら配線の段差に対応する深さ及び急峻な段差を有し且
つ幅及び形状の異なる溝部54A 、54B等が形成さ
れる。
That is, as shown in FIG. 4(a), a plurality of lower layer wiring patterns 52A, 52B, 52C, etc. are formed on a lower layer insulating film 51 with different wiring spacings, that is, different wiring gap aspect ratios, on a base body. First, a first CVD insulating film 53 having a thickness of about 1 to 172 times the height of the wiring is deposited. Here, due to the poor step coverage of the insulating film formed by vapor phase growth, the surface of the first 07-hole insulating film 53 has gaps on the lower wiring patterns 52A, 52B, 52C, etc. that correspond to the steps of these wirings. Groove portions 54A, 54B, etc., having a depth and a steep step difference and having different widths and shapes are formed.

次いで第4図(5)に示すように、上記第1のCVD絶
縁If!53の被着面上に、広い幅を有する溝部52B
をほぼ平坦に埋め得る程度の比較的高粘度を有する1種
類の液相絶縁膜例えばS、0.G層55をスピンコード
法により塗布形成し、所定の熱処理によりS、0.G層
55をキュアー固化せしめる。この際、S、0.0が粘
度が高いために極度に狭い開口幅を有する溝部54A内
にはS、O,Cが流れ込まず、その溝部54A内には空
洞部56が残留形成される。
Next, as shown in FIG. 4(5), the first CVD insulation If! A groove 52B having a wide width is formed on the attachment surface of 53.
One type of liquid phase insulating film, for example, S, 0. A G layer 55 is formed by coating by a spin code method, and is coated with S, 0. The G layer 55 is cured and solidified. At this time, since S, 0.0 has a high viscosity, S, O, and C do not flow into the groove 54A having an extremely narrow opening width, and a cavity 56 remains in the groove 54A.

次いで、第4図(C)に示すように、基板面に垂直方向
に優勢な異方性を有するエツチング手段であるリアクテ
ィブイオンエツチング(RIB)処理によりS、O,C
層55及びその下部のCVD絶縁膜53を、下層配線パ
ターン52A 、52B 、 52C等の上部にioo
Next, as shown in FIG. 4(C), S, O, and C are removed by reactive ion etching (RIB), which is an etching method that has anisotropy predominant in the direction perpendicular to the substrate surface.
The layer 55 and the CVD insulating film 53 below it are deposited on top of the lower wiring patterns 52A, 52B, 52C, etc.
.

〜2000人程度の厚さの第1のCVD絶縁膜53を残
す程度までエッチバックする。
Etch back to the extent that the first CVD insulating film 53 having a thickness of approximately 2,000 mm is left.

なお、ここで、極度に狭い開口幅を有しS、 O,C層
を内蔵しない前記溝部54Aは再び開口して表出する。
Here, the groove portion 54A, which has an extremely narrow opening width and does not contain the S, O, and C layers, is opened again and exposed.

次いで、第4図(d)に示すように、上記エッチバック
の終わった基体上に層間絶縁膜の残部である所要の厚さ
の第2のCVD絶縁M51を形成する。
Next, as shown in FIG. 4(d), a second CVD insulator M51 of a required thickness, which is the remaining part of the interlayer insulating film, is formed on the etched back substrate.

この際、前記狭い開口幅を有する溝部54^は再び空洞
部58となって残留し、この空洞部58上の第2のCV
D絶縁膜57の表面には前記溝部54Bの開口部に対応
する第1の楔状凹部59が形成される。
At this time, the groove portion 54^ having the narrow opening width remains as a cavity portion 58 again, and the second CV on this cavity portion 58
A first wedge-shaped recess 59 corresponding to the opening of the groove 54B is formed on the surface of the D insulating film 57.

次いで、第4図(e)に示すように、上記第2のCVD
絶縁膜57ヨに、スパッタリング法により配線金属層を
形成し、通常のフォトリソグラフィ手段によりバターニ
ングを行って上層配線パターン60を形成する。
Next, as shown in FIG. 4(e), the second CVD
A wiring metal layer is formed on the insulating film 57 by sputtering, and patterning is performed by ordinary photolithography to form an upper wiring pattern 60.

[発明が解決しようとする課題〕 しかし上記従来の方法によると、第2図(d)に示すよ
うに、層間絶縁膜を構成する第1のCVD絶縁膜53と
第2のCVD絶縁膜57が、例えば下層配線パターン5
2Aと52B間等の狭い間隙部に空洞部58を内蔵する
ことにより層間絶縁膜の絶縁性が低下する。
[Problem to be Solved by the Invention] However, according to the above conventional method, as shown in FIG. 2(d), the first CVD insulating film 53 and the second CVD insulating film 57 forming the interlayer insulating film are , for example, lower layer wiring pattern 5
By incorporating the cavity 58 in a narrow gap such as between 2A and 52B, the insulation properties of the interlayer insulating film are reduced.

また上層配線パターン60の形成面になる第2のCVD
絶縁膜57の表面の、前記空洞部58が形成される場所
の上部位置に第1の楔状凹部59が形成されるために、
その上部にスパッタリング等のステップカバレージ性の
悪い方法で形成される上層配線パターン60に、第1の
楔状凹部59に対応して深い第2の楔状凹部61が形成
されてその部分の配線の断面積が減少し、エレクトマイ
グレーションやストレスマイグレーションによる断線を
生じ易くなるという問題があった。
In addition, a second CVD film is formed on the surface where the upper layer wiring pattern 60 is formed.
Since the first wedge-shaped recess 59 is formed on the surface of the insulating film 57 at a position above the location where the cavity 58 is formed,
A deep second wedge-shaped recess 61 corresponding to the first wedge-shaped recess 59 is formed on the upper layer wiring pattern 60 formed by a method with poor step coverage such as sputtering, and the cross-sectional area of the wiring at that portion is formed. There is a problem in that wire breakage due to electromigration or stress migration is more likely to occur.

そこで本発明は、微小な配線間隔で配設される配線を含
む配線形成面上に、急峻な凹部等のない平坦な表面を有
し、且つ空洞部の内蔵されない層間絶縁膜を形成するこ
とを目的とする。
Therefore, the present invention aims to form an interlayer insulating film having a flat surface without steep recesses, etc., and having no built-in cavities on a wiring formation surface including wiring arranged at minute wiring intervals. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、開口幅の異なる複数の溝部を有する基板の
上面を液相絶縁膜の塗布により平坦化するに際して、粘
度の異なる複数種類の液相絶縁膜を、粘度の低い物から
順次塗布し且つ固化する工程を含む本発明による半導体
装置の製造方法、若しくは、 下層の絶縁膜上に複数の下N&!線パターンが幅の異な
る間隙部を介して配設された基体面上に表面が平坦化さ
れた層間絶縁膜を形成するに際して、該基体面上に、該
下層配線パターンの間隙部をその内面に沿って被覆する
厚さに第1の気相成長絶縁膜を被着する工程と、該第1
の気相成長絶縁膜が被着された基体上に、狭い幅の間隙
部内に流れ込みそれを満たす程度の低い粘度を有する第
1の液相絶縁膜を塗布し且つキュアー固化する工程と、
該第1の液相絶縁膜の固化層が被着された基体上に、広
い幅の間隙部のみに流れ込みそれを満たす程度の該第1
の液相絶縁膜より高粘度の第2の液相絶縁膜を塗布し且
つキュアー固化する工程と、該固化された第2の液相絶
縁膜と第1の液相絶縁膜を異方性ドライエツチング手段
により該下層配線パターン上の第1の気相成長絶縁膜の
上面が表出するまでエッチバックする工程と、該エツチ
ングバックの終わった面上に第2の気相成長絶縁膜を被
着する工程とを含む本発明による半導体装置の製造方法
によって解決される。
The above problem is that when flattening the upper surface of a substrate having multiple grooves with different opening widths by applying a liquid-phase insulating film, it is necessary to apply multiple types of liquid-phase insulating films with different viscosities in order from the lowest to the lowest. A method for manufacturing a semiconductor device according to the present invention including a step of solidifying a plurality of lower N&! When forming an interlayer insulating film with a flat surface on a substrate surface in which line patterns are disposed through gaps of different widths, on the substrate surface, the gaps of the lower wiring pattern are formed on the inner surface of the substrate surface. depositing a first vapor-deposited insulating film to a thickness that covers the first
A step of applying a first liquid phase insulating film having a viscosity low enough to flow into and fill the narrow gap on the substrate on which the vapor grown insulating film is deposited, and curing and solidifying the first liquid phase insulating film.
On the substrate on which the solidified layer of the first liquid phase insulating film is deposited, the first liquid insulating film flows into only the wide gap and fills the wide gap.
A process of applying and curing a second liquid phase insulating film having a higher viscosity than that of the liquid phase insulating film, and anisotropic drying of the solidified second liquid phase insulating film and the first liquid phase insulating film. a step of etching back until the upper surface of the first vapor-grown insulating film on the lower wiring pattern is exposed by an etching means; and depositing a second vapor-growing insulating film on the etched-back surface. The problem is solved by a method for manufacturing a semiconductor device according to the present invention, which includes a step of:

〔作 用〕[For production]

液相絶縁膜を通常のスピンコード法等により基体上に塗
布した場合、低い粘度の液相絶縁膜は、狭い幅の溝部内
に容易に流入しそれを満たして残留するが、広い幅の溝
の場合はその内面に沿い且つ鋭利な角部を埋めて被着す
るのみで、広い幅の溝部的全体を満たすためには多数回
の塗布が必要になる。また高い粘度の液相絶縁膜は、狭
い幅の溝部内には流れ込まずにその上を覆って被着し溝
内に空洞を残留させるが、広い幅の溝内には容易に流れ
こみ、且つ一回の塗布で溝内をほぼ完全に満たすという
性質がある。
When a liquid-phase insulating film is applied onto a substrate by a normal spin-coating method, the low-viscosity liquid-phase insulating film easily flows into narrow grooves, fills them, and remains; In this case, the coating is applied only along the inner surface and filling in the sharp corners, and multiple coatings are required to fill the entire wide groove. In addition, a high-viscosity liquid-phase insulating film does not flow into a narrow groove, but instead covers it and leaves a cavity in the groove, but it easily flows into a wide groove. It has the property of filling the groove almost completely with one application.

そこで本発明は、異なる間隔で配線が形成された下層配
線形成面上に被着された層間絶縁膜の−部である第1の
気相成長絶縁膜の表面に下層配線の間隙部の幅に対応し
て形成される狭い幅でアスペクト比の大きい第1の溝部
内及び広い幅でアスペクト比の小さい溝の尖鋭な角部を
、低粘度の液相絶縁膜をスピンコード等により塗布しキ
ュアーすることによって空洞部を残さないように埋めた
後、上記低粘度の液相絶縁膜で埋めきれない広い幅の溝
内を高粘度の液相絶縁膜の望ましくは1回のスピンコー
ド等の塗布・キュアーによって完全に埋める。
Therefore, the present invention has been developed to provide a surface of a first vapor phase grown insulating film which is a negative part of an interlayer insulating film deposited on a lower layer wiring forming surface on which wirings are formed at different intervals. A low-viscosity liquid-phase insulating film is coated with a spin cord or the like on the correspondingly formed first groove with a narrow width and a large aspect ratio, and on the sharp corners of the wide groove with a small aspect ratio and cured. After filling the wide grooves that cannot be filled with the low-viscosity liquid-phase insulating film, a high-viscosity liquid-phase insulating film is preferably applied once using a spin cord or the like. Fill completely with cure.

これにより、溝部内のみに固化した液相絶縁膜を残すよ
うにエッチバックした面は、下層配線間の空洞部に起因
する楔状凹部は存在しない優れた平坦面となる。そこで
この面上に層間絶縁膜の残部として被着される第2の気
相成長絶縁膜の表面も楔状凹部の存在しない優れた平坦
面になるので、その上に形成される上層配線に欠陥を生
ずることがなくその信願性が保証される。
As a result, the surface etched back so as to leave the solidified liquid-phase insulating film only in the groove becomes an excellent flat surface free of wedge-shaped recesses caused by the cavities between the lower wirings. Therefore, the surface of the second vapor-phase insulating film deposited as the remainder of the interlayer insulating film on this surface also becomes an excellent flat surface with no wedge-shaped recesses, thereby preventing defects in the upper layer wiring formed thereon. This guarantees its authenticity.

また前記のように層間絶縁膜内に空洞部が存在しないの
で、配線間の高絶縁性が確保される。
Further, as described above, since there is no cavity in the interlayer insulating film, high insulation between wirings is ensured.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図は本発明の方法の一実施例の工程断面図、第2図
は低粘度のスピンオングラス(S、O,G )の−例で
ある0CDtype2の分子構造図、第3図は高粘度の
S、0.Gの一例である0CDt、、1の分子構造図で
ある。
Figure 1 is a process cross-sectional view of an embodiment of the method of the present invention, Figure 2 is a molecular structure diagram of 0CD type 2, which is an example of low-viscosity spin-on glass (S, O, G), and Figure 3 is a high-viscosity spin-on glass (S, O, G). S, 0. FIG. 1 is a molecular structure diagram of 0CDt, 1, which is an example of G.

第1図(a)参照 本発明の方法により半導体装置の多層配線構造を形成す
るに際しては、例えば、下層絶縁膜1上に0.5〜0.
6μm程度の狭い間隔d、と1〜2am程度の広い間隔
d2で幅1μm、高さ1μm程度の下層アルミニウム(
AI)配線2A、2B、2Cが形成された基体上に、先
ず熱処理に際しての旧の突起を抑え且つ下層絶縁膜1表
面を介しての配線間リークを防止する機能を有し、層間
絶縁膜の一部になる厚さ0.1〜0.2 pm程度5i
Oz、PSG等の第1の気相成長絶縁膜3を形成する。
Refer to FIG. 1(a) When forming a multilayer wiring structure of a semiconductor device by the method of the present invention, for example, 0.5 to 0.0.
The lower layer aluminum (with a width of 1 μm and a height of about 1 μm) is formed with a narrow interval d of approximately 6 μm and a wide interval d2 of approximately 1 to 2 am.
AI) First, on the substrate on which the wirings 2A, 2B, and 2C are formed, it has the function of suppressing old protrusions during heat treatment and preventing leakage between wirings via the surface of the lower layer insulation film 1, and Thickness of part is about 0.1~0.2 pm 5i
A first vapor phase growth insulating film 3 of Oz, PSG, etc. is formed.

なおここで、狭い配線間隔部には0.1〜0.2μm程
度の狭い開口幅Wを有するアスペクト比の大きい第1の
溝4Aが形成され、広い配線間隔部には0.8〜1.8
μm程度の広い開口幅り2を有するアスペクト比の小さ
い第2の溝4Bが形成される。
Here, the first groove 4A having a narrow opening width W of about 0.1 to 0.2 μm and a large aspect ratio is formed in the narrow wiring spacing portion, and the first groove 4A having a large aspect ratio is formed in the wide wiring spacing portion. 8
A second groove 4B having a wide opening width 2 on the order of μm and a small aspect ratio is formed.

第1図(b)参照 次いで、上記基体上に通常のスピンコード法により低粘
度の第1の液相絶縁膜105を塗布する。
Refer to FIG. 1(b) Next, a low-viscosity first liquid-phase insulating film 105 is coated on the substrate by a conventional spin coating method.

この低粘度を有する第1の液相絶縁膜105には、例え
ば第2図に示すような分子構造を有し粘度が0.5〜2
.Oc、p程度のS、0.Gである0CDtyp−z(
東京応化製)を用いる。なお、粘度調整用にはアルコー
ル系溶剤を用いる。
The first liquid phase insulating film 105 having a low viscosity has a molecular structure as shown in FIG. 2, for example, and a viscosity of 0.5 to 2.
.. Oc, S of about p, 0. 0CD type-z (
(manufactured by Tokyo Ohka). Note that an alcohol solvent is used to adjust the viscosity.

このスピンコードにより前記狭い開口幅1を有するアス
ペクト比の大な第1の溝4八は0CDiyp、□によっ
て隙間なく満たされ、第1の気相成長絶縁膜3の上面及
法い開口幅−2を有するアスペクト比の小さい第2の溝
4Bの内面には0.1μm以下程度に薄く第1の液相絶
縁膜105が被着され、且つ第2の溝4Bの底部の尖鋭
な角部4BBには0.2〜0.3μm程度にめに第1の
気相成長絶縁膜3溜まって被着される。
Due to this spin code, the first groove 48 with a large aspect ratio and narrow opening width 1 is filled with 0CDiyp, □ without any gaps, and the upper surface of the first vapor grown insulating film 3 and the opening width -2 A first liquid-phase insulating film 105 is deposited on the inner surface of the second groove 4B having a small aspect ratio of 0.1 μm or less, and on the sharp corner 4BB at the bottom of the second groove 4B. The first vapor phase growth insulating film 3 is deposited to a thickness of about 0.2 to 0.3 μm.

第1図(C)参照 次いで上記基体を窒素(N2)中において、250〜3
00°C程度の温度で30分程度加熱し、上記第1の液
相絶縁膜105をキュアーする。このキュアーにより前
記0CDcyp=zは脱水縮合して第1の酸化シリコン
(SiO+5iOz)膜5となる。
Referring to FIG. 1(C), the above substrate was then placed in nitrogen (N2) at 250 to 3
The first liquid phase insulating film 105 is cured by heating at a temperature of about 00° C. for about 30 minutes. Due to this curing, the 0CDcyp=z is dehydrated and condensed to form the first silicon oxide (SiO+5iOz) film 5.

第1図(d)参照 次いで、上記基体上通常のスピンコード法により高粘度
9第20液相絶縁膜106を塗布する。この高粘度を有
する第2の液相絶縁膜106には、例えば第3図に示す
ような分子構造を有し、粘度が2.0〜5.0 、c、
p程度のS、0.Gである0CDtyp、t(東京応化
製)を用いる。なお、粘度調整用にはアルコール系溶剤
を用いる。
Referring to FIG. 1(d), a high viscosity liquid phase insulating film 106 is then coated on the substrate by a conventional spin coating method. The second liquid phase insulating film 106 having a high viscosity has a molecular structure as shown in FIG. 3, and has a viscosity of 2.0 to 5.0, c,
S of about p, 0. G, 0CD type, t (manufactured by Tokyo Ohka) is used. Note that an alcohol solvent is used to adjust the viscosity.

このスピンコードにより前記広い開口幅−2を有するア
スペクト比の小さな第2の溝4Aは、第2の液相絶縁膜
106であるOCDty−wによって隙間なく満たされ
、且つ基体上部に厚さ0.5〜1μm程度の第2の液相
絶縁膜106が形成される。
Due to this spin code, the second groove 4A having the wide opening width -2 and having a small aspect ratio is filled with the OCDty-w, which is the second liquid phase insulating film 106, without any gaps, and the upper part of the base body has a thickness of 0. A second liquid phase insulating film 106 having a thickness of about 5 to 1 μm is formed.

第1図(e)参照 次いで上記基板をN2中で250〜300 ”C程度の
温度で30分程度加熱し、第2の液相絶縁膜106をキ
ュアーしてこれを脱水縮合により第2の酸化シリコン(
SiO+SiO□)膜6に変化せしめる。
Refer to FIG. 1(e). Next, the above substrate is heated in N2 at a temperature of about 250 to 300"C for about 30 minutes to cure the second liquid phase insulating film 106, which is then subjected to a second oxidation process by dehydration condensation. silicon(
The film is changed into a SiO+SiO□) film 6.

第1図(f)参照 次いで、例えば3弗化メタンを用いるリアクティブイオ
ンエツチング(RIE)処理により上記第2の酸化シリ
コン膜6及び第1の酸化シリコン膜5を下層配線パター
ン上の第1の気相成長絶縁膜3の上面が表出するまでエ
ッチバックする。このエッチバック面は、狭い配線間隔
部に形成された前記狭い幅の第1の溝4^内が第1の酸
化シリコン膜5で完全に埋められているので、この部分
の上部表面にも楔状の凹部は形成されず、凹凸のない優
れた平坦面になる。
Refer to FIG. 1(f). Next, the second silicon oxide film 6 and the first silicon oxide film 5 are etched into the first silicon oxide film on the lower wiring pattern by a reactive ion etching (RIE) process using, for example, methane trifluoride. Etch back is performed until the upper surface of the vapor grown insulating film 3 is exposed. On this etchback surface, since the inside of the narrow first groove 4^ formed in the narrow interconnect interval is completely filled with the first silicon oxide film 5, a wedge-shaped portion is also formed on the upper surface of this portion. No recesses are formed, resulting in an excellent flat surface with no irregularities.

第1図(匂参照 次いで、上記エッチバック面上に層間絶縁膜の残部であ
る厚さ0.6μm程度のSiO□或いはPSGよりなる
第2の気相成長絶縁膜7を形成する。なお第2の気相成
長絶縁膜7もエッチバック面にならって凹凸のない優れ
た平坦面になる。
Next, on the etched back surface, a second vapor phase growth insulating film 7 made of SiO□ or PSG with a thickness of about 0.6 μm, which is the remaining part of the interlayer insulating film, is formed. The vapor-phase grown insulating film 7 also becomes an excellent flat surface with no unevenness, following the etched back surface.

第1図(ハ)参照 次いで、前記第1の気相成長絶縁膜3、第1の酸化シリ
コン膜5、第2の酸化シリコン膜6及び表層の第2の気
相成長絶縁膜7で構成されている層間絶縁膜上に配線材
料層として、例えば厚さ1μm程度のA1層をスパッタ
リングにより形成し、通常のフォトリソグラフィ手段に
よりパターニングを行って、例えば幅2μm、厚さ1μ
m程度の上層AI配線8を形成し、本発明による多層配
線構造は完成する。なお前述のように、配線形成面であ
る第2の気相成長絶縁膜7の表面は凹凸のない優れた平
坦面に形成されているので、上記上層A1配線8に断面
積を減少せしめるような変形を生ずることはなく、配線
の高信頼性が確保される。
Refer to FIG. 1(c) Next, the film is composed of the first vapor grown insulating film 3, the first silicon oxide film 5, the second silicon oxide film 6, and the second vapor grown insulating film 7 on the surface layer. An A1 layer with a thickness of about 1 μm, for example, is formed by sputtering as a wiring material layer on the interlayer insulating film, and patterned by ordinary photolithography to form a wiring material layer of, for example, 2 μm in width and 1 μm in thickness.
After forming the upper layer AI wiring 8 of about m, the multilayer wiring structure according to the present invention is completed. As mentioned above, since the surface of the second vapor-phase grown insulating film 7, which is the wiring formation surface, is formed as an excellent flat surface with no unevenness, it is possible to No deformation occurs and high reliability of the wiring is ensured.

上記実施例においては、第1の液相絶縁膜のスピンコー
ド・キュアーの工程、及び第2の液相絶縁膜のスピンコ
ード・キュアーの工程を各1回しか行っていないが、充
填が不充分の場合は上記工程を複数回繰り返すことが望
ましい。
In the above example, the spin code curing process of the first liquid phase insulating film and the spin code curing process of the second liquid phase insulating film were performed only once, but the filling was insufficient. In this case, it is desirable to repeat the above steps multiple times.

また、液相絶縁膜にばS、O,C1を用いたが、これは
S、O,Gに限られるものではなく、ポリイミド等の耐
熱性を有する有機系絶縁膜も用いられる。
Furthermore, although S, O, and C1 are used as the liquid phase insulating film, they are not limited to S, O, and G, and heat-resistant organic insulating films such as polyimide may also be used.

更にまた、液相絶縁膜に3種類以上の粘度の異なるもの
を用い、スピンコード・キュアーの工程をそれに伴って
3回以上行ってもよい。
Furthermore, three or more types of liquid phase insulating films having different viscosities may be used, and the spin code curing process may be performed three or more times.

なお塗布方法はスピンコード法に限られない。Note that the coating method is not limited to the spin code method.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明によれば多層配線構造におけ
る上層配線の断面積を減少せしめるような変形は防止さ
れるので、配線の信鯨性は向上する。
As described above, according to the present invention, deformation that would reduce the cross-sectional area of the upper layer wiring in a multilayer wiring structure is prevented, so that reliability of the wiring is improved.

従って本発明は、多層配線化されるLSI等の大規模・
高集積度半導体装置の信顧性向上に有効である。
Therefore, the present invention can be applied to large-scale devices such as LSIs with multilayer wiring.
This is effective in improving the reliability of highly integrated semiconductor devices.

断面図、 第2図は低粘度を有するS、0.Gの一例である0CD
typ*tの分子構造図、 第3図は高粘度を有するS、O,Gの一例である0CD
type?の分子構造図、 第4図(a)〜(e)は従来方法の工程断面図である。
Cross-sectional view, FIG. 2 shows S,0. 0CD, which is an example of G
Molecular structure diagram of type*t. Figure 3 is 0CD, which is an example of S, O, and G with high viscosity.
Type? Figures 4(a) to 4(e) are cross-sectional views of the conventional method.

図において、 lは下層絶縁膜、 2^、2B、 2Cは下層AI配線、 3は第1の気相成長絶縁膜、 4Aは開口幅の狭い第1の溝、 4Bは開口幅の広い第2の溝、 48Bは尖鋭な角部、 5は第1の酸化シリコン膜、In the figure, l is the lower insulating film, 2^, 2B, 2C are lower layer AI wiring, 3 is a first vapor phase growth insulating film; 4A is a first groove with a narrow opening width; 4B is a second groove with a wide opening width; 48B is a sharp corner, 5 is a first silicon oxide film;

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(ハ)は本発明の方法の一実施例の工程
8は上層AI配線、 105は第1の液相絶縁膜、 は第2の液相絶縁膜 を示す。 木全明り方5太n−実絶合1n工tI町面図第 I  
I!](¥92) ゝパ−■− 74憂憤艷ロ月n方矢ξθ−実太巳◇りのニー木tぼa
面図第 1 図(ぞの1) 1?= CN3 CzHデ QC,Dr戸2の分蛋#道図 第 2 図 K1CH3,C2H5 0CDt1ye7’分チ構造図 第 ラ 図
In FIGS. 1A to 1C, Step 8 of an embodiment of the method of the present invention shows an upper layer AI wiring, 105 shows a first liquid phase insulating film, and 105 shows a second liquid phase insulating film. Kimata illumination 5th n-jitsugoi 1n construction tI town map No. I
I! ] (¥92) ゝpar■- 74 sorrow and anger 艷 ro moon n way ξ θ - real fat ◇ Rino knee tree tboa
Floor plan Figure 1 (Zono 1) 1? = CN3 CzH de QC, Dr door 2 branch # road diagram Figure 2 K1CH3,C2H5 0CDt1ye7' branch structure diagram Figure L

Claims (2)

【特許請求の範囲】[Claims] (1)開口幅の異なる複数の溝部を有する基板の上面を
液相絶縁膜の塗布により平坦化するに際して、 粘度の異なる複数種類の液相絶縁膜を、粘度の低い物か
ら順次塗布し且つ固化する工程を含むことを特徴とする
半導体装置の製造方法。
(1) When flattening the upper surface of a substrate that has multiple grooves with different opening widths by applying a liquid-phase insulating film, multiple types of liquid-phase insulating films with different viscosities are sequentially applied and solidified, starting from the lowest viscosity. 1. A method of manufacturing a semiconductor device, the method comprising the step of:
(2)下層の絶縁膜上に複数の下層配線パターンが、異
なる幅の間隙部を介して配設された基体面上に、表面が
平坦化された層間絶縁膜を形成するに際して、 該基体面上に、該下層配線パターンの間隙部をその内面
に沿って被覆する厚さに第1の気相成長絶縁膜を被着す
る工程と、 該第1の気相成長絶縁膜が被着された基体上に、開口幅
の狭い間隙部内に流れ込みそれを満たす程度の低い粘度
を有する第1の液相絶縁膜を塗布し且つキュアー固化す
る工程と、 該第1の液相絶縁膜の固化層が被着された基体上に、開
口幅の広い間隙部のみに流れ込みそれを満たす程度の該
第1の液相絶縁膜より高粘度の第2の液相絶縁膜を塗布
し且つキュアー固化する工程と、 該固化された第2の液相絶縁膜と第1の液相絶縁膜を異
方性ドライエッチング手段により該下層配線パターン上
の第1の気相成長絶縁膜の上面が表出するまでエッチバ
ックする工程と、 該エッチングバックの終わった面上に第2の気相成長絶
縁膜を被着する工程とを含むことを特徴とする半導体装
置の製造方法。
(2) When forming an interlayer insulating film with a flattened surface on a base surface in which a plurality of lower layer wiring patterns are disposed on the lower layer insulating film through gaps of different widths, the base surface depositing a first vapor grown insulating film on top of the lower wiring pattern to a thickness that covers the gap portion of the lower wiring pattern along the inner surface thereof; a step of applying a first liquid insulating film having a viscosity low enough to flow into and fill the narrow gap on the substrate and curing and solidifying the solidified layer of the first liquid insulating film; A step of applying a second liquid phase insulating film having a higher viscosity than the first liquid phase insulating film to the extent that it flows only into the gap having a wide opening width and filling it on the adhered substrate, and curing and solidifying the second liquid phase insulating film. , Etching the solidified second liquid phase insulating film and first liquid phase insulating film by anisotropic dry etching until the upper surface of the first vapor grown insulating film on the lower wiring pattern is exposed. 1. A method of manufacturing a semiconductor device, comprising the steps of etching back, and depositing a second vapor-phase insulating film on the etched back surface.
JP811089A 1989-01-17 1989-01-17 Manufacture of semiconductor device Pending JPH02188945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP811089A JPH02188945A (en) 1989-01-17 1989-01-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP811089A JPH02188945A (en) 1989-01-17 1989-01-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02188945A true JPH02188945A (en) 1990-07-25

Family

ID=11684156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP811089A Pending JPH02188945A (en) 1989-01-17 1989-01-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02188945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317373A (en) * 1991-04-16 1992-11-09 Semiconductor Energy Lab Co Ltd Close adhesion type image sensor
WO2003066238A1 (en) * 2002-02-07 2003-08-14 Tokyo Electron Limited Coating device and coating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317373A (en) * 1991-04-16 1992-11-09 Semiconductor Energy Lab Co Ltd Close adhesion type image sensor
WO2003066238A1 (en) * 2002-02-07 2003-08-14 Tokyo Electron Limited Coating device and coating method

Similar Documents

Publication Publication Date Title
US4894351A (en) Method for making a silicon IC with planar double layer metal conductors system
JPH07201997A (en) Integrated circuit and its manufacture
JPH01225326A (en) Method of passivation of integrated circuit
JPH02188945A (en) Manufacture of semiconductor device
JPH0410222B2 (en)
JPH09199587A (en) Semiconductor device
KR100451506B1 (en) Structure and forming method of overlay mark
JP2001097787A (en) Method for forming flattened film, ceramic substrate, and electronic component
KR100230386B1 (en) Formation method of inter-metal dielectric layer
JPH0786284A (en) Semiconductor device and its manufacture
JPH02284447A (en) Manufacture of semiconductor device
KR100246780B1 (en) Method of forming spin on glass layer
JPS61154148A (en) Manufacture of semiconductor device
JPH07161720A (en) Semiconductor device and its manufacture
JPH05308073A (en) Manufacture of semiconductor device
JPH0387048A (en) Formation of interlayer film
JPH03293728A (en) Semiconductor device
JPH03237721A (en) Method of flattening multilayer wiring
JPH04287327A (en) Semiconductor device and its manufacture
JPS5831558A (en) Manufacture of semiconductor device
JPH079939B2 (en) Multilayer wiring formation method
JPS61148837A (en) Formation of wiring
JPS62291947A (en) Manufacture of semiconductor device
JPH0193147A (en) Manufacture of semiconductor device
JPH0794509A (en) Semiconductor element and its manufacture