JPH0786284A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0786284A
JPH0786284A JP25232793A JP25232793A JPH0786284A JP H0786284 A JPH0786284 A JP H0786284A JP 25232793 A JP25232793 A JP 25232793A JP 25232793 A JP25232793 A JP 25232793A JP H0786284 A JPH0786284 A JP H0786284A
Authority
JP
Japan
Prior art keywords
insulating film
layer
interlayer insulating
wiring
sog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25232793A
Other languages
Japanese (ja)
Other versions
JP2643793B2 (en
Inventor
Masahide Shinohara
正英 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5252327A priority Critical patent/JP2643793B2/en
Publication of JPH0786284A publication Critical patent/JPH0786284A/en
Application granted granted Critical
Publication of JP2643793B2 publication Critical patent/JP2643793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To flatten a layer insulating film in a semiconductor device of a multilayer interconnection structure, and to prevent the generation of surface grooves and cracks in the layer insulating film. CONSTITUTION:A first wiring layer 13 is formed on the insulating film 12 a semiconductor substrate 11, and on this a first layer insulating film 14 is formed. On it an SOG layer 15 is applied to a film thickness equal to 1/5-1/3 of that of the first wiring layer 13, and the level difference among the first wiring layer 13 is lessened. And on it a second layer insulating film 16 is formed so as to be thicker than the first wiring layer 13. Then the surface of the second layer insulating film 16 is flattened by chemical mechanical grinding, and on it a second wiring layer 18 is formed. It becomes possible to prevent the generation of of 'blowholes' and to make flatness and reliability higher, by providing the SOG layer 15 as a lower layer to the second layer insulating film 16. Besides, it becomes possible to prevent the generation of cracks and to raise the reliability of the layer insulating film by forming the SOG layer 15 thinly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多層配線構造の半導体装
置に関し、特に配線構造の平坦化を図った層間絶縁膜を
有する半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a multilayer wiring structure, and more particularly to a semiconductor device having an interlayer insulating film whose wiring structure is flattened and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、半導体装置の高集積化に伴って配
線層の多層化が進み、半導体装置内部で配線が存在する
領域とそれ以外の領域との高さの差が生じ、特に配線層
が重なった領域とそれ以外の領域の高さの差による段差
が極めて顕著なものになっている。この段差により、層
間絶縁膜の上側に形成する配線層において段切れによる
断線が生じ易くなるという問題がある。そこで、従来か
ら層間絶縁膜の平坦化を図る試みがなされている。その
一つとして、下層の配線層の凹凸を絶縁材等で埋設し、
その部分の段差を緩和する技術がある。特開平2−12
2654号公報に示されたものはその一例である。即
ち、図5(a)に示すように、半導体基板31上に絶縁
膜32を介して第1の金属配線33を形成した後、この
第1の金属配線33上に、CVD法(化学的気相成長
法)を用いて第1の層間絶縁膜34を形成し、更にこの
上にSOG(スピンオングラス)層35を塗布し、第1
の金属配線33の間の凹部を殆ど埋め込んだ状態とす
る。
2. Description of the Related Art In recent years, as semiconductor devices have been highly integrated, wiring layers have become multi-layered, and a difference in height between a region where wiring exists and other regions inside the semiconductor device has occurred. The step difference due to the difference in height between the overlapping area and the other area is extremely remarkable. Due to this step, there is a problem that disconnection due to step breakage easily occurs in the wiring layer formed on the upper side of the interlayer insulating film. Therefore, attempts have been made to flatten the interlayer insulating film. As one of them, embedding the unevenness of the lower wiring layer with an insulating material,
There is a technique to mitigate the step at that portion. Japanese Patent Laid-Open No. 2-12
The one disclosed in Japanese Patent No. 2654 is an example thereof. That is, as shown in FIG. 5A, after the first metal wiring 33 is formed on the semiconductor substrate 31 through the insulating film 32, the CVD method (chemical vapor deposition) is performed on the first metal wiring 33. The first interlayer insulating film 34 is formed by using the phase growth method), and the SOG (spin on glass) layer 35 is further applied thereon to form the first interlayer insulating film 34.
The recesses between the metal wirings 33 are almost filled.

【0003】次いで、図5(b)のように、SOG層3
5上に、CVD法を用いて第2の層間絶縁膜36層を所
定の膜厚に形成する。しかる上で、図5(c)のよう
に、第1及び第2の層間絶縁膜34,36の所要箇所に
スルーホール37を開設し、かつ第2の層間絶縁膜上に
第2の金属配線38を形成する。このように、SOG層
35を用いて第1の金属配線33の間の狭い部分を埋め
込むことでその表面の段差を緩和し、第2の層間絶縁膜
33の表面を平坦化し、第2の金属配線38における断
線を防止することが可能となる。
Next, as shown in FIG. 5B, the SOG layer 3
A second interlayer insulating film 36 is formed on the film 5 by a CVD method so as to have a predetermined film thickness. Then, as shown in FIG. 5C, a through hole 37 is formed at a required position of the first and second interlayer insulating films 34 and 36, and a second metal wiring is formed on the second interlayer insulating film. 38 is formed. As described above, the narrow portion between the first metal wirings 33 is embedded by using the SOG layer 35 to mitigate the step difference on the surface, flatten the surface of the second interlayer insulating film 33, and It is possible to prevent disconnection in the wiring 38.

【0004】しかしながら、この技術はSOG層35を
塗布した際に、SOG層35が第1の金属配線33の間
の狭い部分では厚く、第1の金属配線33の間が広い部
分では薄く塗布され易いため、その上に形成する第2の
層間絶縁膜36の表面にはこれに倣って緩やかな凹凸が
生じ易い。このため、第1及び第2の金属配線33,3
8が重ねられた領域と、金属配線が全く存在しない領域
との間の表面高さに大きな差が生じるようになり、この
結果後工程でのフォトリソグラフィ工程におけるフォー
カスマージン(許容される焦点深度)が小さくなるとい
う問題点があった。この問題を解決するためには、SO
G層35を十分に厚く塗布すればよいが、SOG層は機
械的に弱くてクラックが発生され易いため、自身の信頼
性が低下されるとともに、その上に形成する配線等の信
頼性も低下され、結果として完成される半導体装置の信
頼性を低下させる原因になる。
However, according to this technique, when the SOG layer 35 is applied, the SOG layer 35 is applied thickly in a narrow portion between the first metal wirings 33 and thinly applied in a wide portion between the first metal wirings 33. Since it is easy, the surface of the second interlayer insulating film 36 formed thereon is likely to have gradual unevenness along with it. Therefore, the first and second metal wirings 33, 3
A large difference occurs in the surface height between the region where 8 is overlapped and the region where no metal wiring is present, and as a result, the focus margin (allowable depth of focus) in the photolithography process in the subsequent process. There was a problem that was smaller. In order to solve this problem, SO
Although it is sufficient to apply the G layer 35 sufficiently thickly, the SOG layer is mechanically weak and easily cracked, so that the reliability of the SOG layer is deteriorated and the reliability of the wiring formed thereon is also deteriorated. As a result, the reliability of the completed semiconductor device is reduced.

【0005】そこで、従来の他の平坦化技術として、S
OG層を用いることなく層間絶縁膜の表面を平坦に形成
する技術が開発されている。例えば、特開平2−177
433号公報に示される技術では、図6(a)のよう
に、半導体基板41上に絶縁膜42を介して第1の金属
配線43を形成した後、この第1の金属配線43上にこ
の金属配線が完全に埋設されるようにCVD法を用いて
層間絶縁膜44を十分に厚く形成する。しかる後、図6
(b)のように、この層間絶縁膜44をCMP法(化学
的機械研磨法)により表面研磨して平坦化する。そし
て、図6(c)のように、この層間絶縁膜44の所要箇
所にスルーホール45を開設し、第2の金属配線46を
形成する。
Therefore, as another conventional flattening technique, S
A technique for forming a flat surface of an interlayer insulating film without using an OG layer has been developed. For example, Japanese Patent Laid-Open No. 2-177
In the technique disclosed in Japanese Patent Publication No. 433, a first metal wiring 43 is formed on a semiconductor substrate 41 via an insulating film 42 and then formed on the first metal wiring 43 as shown in FIG. The interlayer insulating film 44 is formed sufficiently thick by using the CVD method so that the metal wiring is completely buried. Then, Fig. 6
As shown in (b), the interlayer insulating film 44 is surface-polished and flattened by the CMP method (chemical mechanical polishing method). Then, as shown in FIG. 6C, a through hole 45 is opened at a required portion of the interlayer insulating film 44, and a second metal wiring 46 is formed.

【0006】[0006]

【発明が解決しようとする課題】この後者のCMP法で
は、半導体装置の全面のグローバルな平坦化が可能であ
るが、層間絶縁膜44を十分に厚く形成する必要がある
ために、同図に示されるように第1の金属配線43の間
隔が狭い部分ではこの絶縁膜に“す”Xが発生し、CM
P法で層間絶縁膜44の表面研磨を行った後にこの
“す”による凹溝X′が生じることがある。このような
凹溝X′が生じると、この凹溝X′の部分にCMP時に
発生する絶縁膜の研磨くずや研磨剤が溜まり、これが半
導体装置の特性劣化や信頼性を低下させる原因になると
いう問題がある。本発明の目的は、クラックの発生や表
面凹溝の発生がなく、しかも平坦化を図って上層配線の
断線を防止した高信頼性の半導体装置と、その製造方法
を提供することにある。
In the latter CMP method, the entire surface of the semiconductor device can be globally planarized, but the interlayer insulating film 44 needs to be formed sufficiently thick. As shown, "X" X is generated in this insulating film in the portion where the interval between the first metal wirings 43 is narrow, and CM
After the surface of the inter-layer insulation film 44 is polished by the P method, the recessed groove X'may be formed due to this "su". When such a groove X'is formed, polishing debris and a polishing agent for the insulating film, which are generated during CMP, are accumulated in the groove X ', which causes deterioration of the characteristics and reliability of the semiconductor device. There's a problem. An object of the present invention is to provide a highly reliable semiconductor device which is free from cracks and surface recesses and which is flattened to prevent disconnection of an upper layer wiring, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置は、
第1の配線層と、この第1の配線層上に形成される第1
の層間絶縁膜と、この第1の層間絶縁膜上に形成される
SOG層と、このSOG層上に形成されて表面が平坦に
研磨された第2の層間絶縁膜と、この第2の層間絶縁膜
の表面に形成される第2の配線層とを備える。ここで、
SOG層の膜厚は第1の配線層の膜厚の1/5〜1/3
の膜厚であることが好ましい。また、本発明の半導体装
置の製造方法は、半導体基板上に絶縁膜を介して第1の
配線層を形成する工程と、第1の配線層上に第1の層間
絶縁膜を形成する工程と、第1の層間絶縁膜上にSOG
層を塗布する工程と、SOG層上に第2の絶縁膜を形成
する工程と、第2の層間絶縁膜の表面をCMP法を用い
て平坦化する工程と、第2の層間絶縁膜の表面上に第2
の配線層を形成する工程を含んでいる。ここで、SOG
層は第1の金属配線の1/5〜1/3の膜厚に塗布形成
することが好ましい。また、第2の層間絶縁膜は第1の
金属配線よりも厚く形成する。更に、SOG層を形成後
にエッチバックして第1の配線層上のSOG層を除去す
る工程を含むことが好ましい。
The semiconductor device of the present invention comprises:
A first wiring layer and a first wiring layer formed on the first wiring layer
Interlayer insulating film, an SOG layer formed on the first interlayer insulating film, a second interlayer insulating film formed on the SOG layer and having a flatly polished surface, and the second interlayer insulating film. A second wiring layer formed on the surface of the insulating film. here,
The thickness of the SOG layer is 1/5 to 1/3 of the thickness of the first wiring layer.
The film thickness is preferably Further, the method for manufacturing a semiconductor device of the present invention includes a step of forming a first wiring layer on a semiconductor substrate via an insulating film, and a step of forming a first interlayer insulating film on the first wiring layer. , SOG on the first interlayer insulating film
A step of applying a layer, a step of forming a second insulating film on the SOG layer, a step of planarizing the surface of the second interlayer insulating film using a CMP method, and a surface of the second interlayer insulating film. Second on top
And the step of forming the wiring layer. Where SOG
The layer is preferably formed by coating so as to have a thickness of 1/5 to 1/3 of that of the first metal wiring. The second interlayer insulating film is formed thicker than the first metal wiring. Furthermore, it is preferable to include a step of removing the SOG layer on the first wiring layer by etching back after forming the SOG layer.

【0008】[0008]

【実施例】次に、本発明について、図面を参照して説明
する。図1及び図2は本発明の製造方法の実施例1を製
造工程順に示す断面図である。先ず、図1(a)のよう
に、単結晶シリコンからなる半導体基板11の表面を熱
酸化処理してシリコン酸化膜からなる下地絶縁膜12を
形成する。この下地絶縁膜12上にアルミニウム合金、
例えばAl−Si−Cuの合金膜をスパッタ法により5
00nmの膜厚で形成し、かつこの合金膜をフォトリソ
グラフィ技術を利用して選択エッチングし、第1の金属
配線13を形成する。続いて、第1の金属配線13上に
第1の層間絶縁膜14、例えばシリコン酸化膜をCVD
法を用いて300nmの膜厚に形成し、第1金属配線1
3及び下地絶縁膜12の表面を被覆する。
Next, the present invention will be described with reference to the drawings. 1 and 2 are sectional views showing a first embodiment of the manufacturing method of the present invention in the order of manufacturing steps. First, as shown in FIG. 1A, the surface of a semiconductor substrate 11 made of single crystal silicon is thermally oxidized to form a base insulating film 12 made of a silicon oxide film. An aluminum alloy is formed on the base insulating film 12.
For example, an Al-Si-Cu alloy film is formed by a sputtering method.
The first metal wiring 13 is formed by forming the film with a thickness of 00 nm and selectively etching the alloy film by using the photolithography technique. Then, a first interlayer insulating film 14, for example, a silicon oxide film is formed on the first metal wiring 13 by CVD.
To a thickness of 300 nm using the
3 and the surface of the base insulating film 12 are covered.

【0009】次いで、図1(b)のように、第1の層間
絶縁膜14上にシリコンを含む有機溶液を回転塗布し、
かつ熱処理を行ってSOG層15を形成する。このSO
G層15の膜厚は前記第1の金属配線13の1/5〜1
/3の厚さに形成し、ここでは100nmの膜厚に形成
する。これにより、第1の金属配線13の間隔が広い領
域ではSOG層15は前記した膜厚に等しく塗布される
が、第1の金属配線13の間隔が狭い領域ではSOG層
15は前記した膜厚よりも多少厚く塗布され、これによ
り第1の金属配線13の間に生じている狭幅の凹部の段
差がSOG層15によって緩和される。
Then, as shown in FIG. 1B, an organic solution containing silicon is spin-coated on the first interlayer insulating film 14,
Then, heat treatment is performed to form the SOG layer 15. This SO
The thickness of the G layer 15 is 1/5 to 1 of that of the first metal wiring 13.
It is formed with a thickness of / 3, and is formed here with a film thickness of 100 nm. As a result, the SOG layer 15 is applied in an area having a wide interval between the first metal wirings 13 to the same thickness as described above, but the SOG layer 15 is applied in an area having a narrow spacing between the first metal wires 13 as described above. The SOG layer 15 alleviates the level difference of the narrow recesses formed between the first metal wirings 13.

【0010】続いて、図1(c)のように、前記SOG
層15上にCVD法を用いて第2の層間絶縁膜16を、
例えばシリコン酸化膜で十分に厚く形成する。この第2
の層間絶縁膜16の膜厚は少なくとも第1の金属配線1
3の膜厚よりも厚く、2倍以上の膜厚に形成することが
好ましい。この実施例では1300nmの膜厚に形成す
る。しかる上で、図2(a)のように、第2の層間絶縁
膜16をCMP法を用いて研磨し、表面を平坦化する。
ここでは、700nm程度研磨する。これにより、第2
の層間絶縁膜16の表面は第1の金属配線13が存在す
る領域及び存在しない領域共に平坦化されることにな
る。
Subsequently, as shown in FIG. 1C, the SOG
A second interlayer insulating film 16 is formed on the layer 15 by using the CVD method.
For example, a silicon oxide film is formed sufficiently thick. This second
The thickness of the interlayer insulating film 16 is at least the first metal wiring 1
It is preferable that the thickness is thicker than that of No. 3 and twice or more. In this embodiment, it is formed with a film thickness of 1300 nm. Then, as shown in FIG. 2A, the second interlayer insulating film 16 is polished by the CMP method to flatten the surface.
Here, polishing is performed to about 700 nm. This allows the second
The surface of the interlayer insulating film 16 is flattened in both the region where the first metal wiring 13 is present and the region where it is not present.

【0011】その後、図2(b)のように、フォトリソ
グラフィ技術を用いて第2の層間絶縁膜16、SOG層
15、第1の層間絶縁膜14を通して所要箇所に第1の
金属配線13にまで達するスルーホール17を形成す
る。その上で、図2(c)のように、第2の層間絶縁膜
16上にスパッタ技術により500nmの膜厚のAl合
金の金属膜を形成し、これをフォトリソグラフィ技術に
より選択エッチングすることで第2の金属配線18を形
成する。この第2の金属配線18は前記スルーホール1
7を通して第1の金属配線13に電気接続れることは言
うまでもない。
After that, as shown in FIG. 2B, the first metal wiring 13 is formed at a required position through the second interlayer insulating film 16, the SOG layer 15, and the first interlayer insulating film 14 by using a photolithography technique. A through hole 17 that reaches up to is formed. Then, as shown in FIG. 2C, a metal film of an Al alloy having a film thickness of 500 nm is formed on the second interlayer insulating film 16 by a sputtering technique, and this is selectively etched by a photolithography technique. The second metal wiring 18 is formed. The second metal wiring 18 is the through hole 1
It goes without saying that it can be electrically connected to the first metal wiring 13 through 7.

【0012】したがって、このように製造される半導体
装置の多層配線構造では、第1の層間絶縁膜14の上に
SOG層15を形成することにより、第1の金属配線1
3の間隔が狭い部分の段差をSOG層15で緩和するこ
とができる。このため、その上に第2の層間絶縁膜16
を形成したときに、この部分に第2の層間絶縁膜16が
成長されるときの“す”が生じることがなく、したがっ
てその後に第2の層間絶縁膜16をCMP法により研磨
したときにも凹溝が発生することがない。
Therefore, in the multilayer wiring structure of the semiconductor device manufactured as described above, by forming the SOG layer 15 on the first interlayer insulating film 14, the first metal wiring 1 is formed.
The SOG layer 15 can mitigate the step difference in the portion where the distance 3 is narrow. Therefore, the second interlayer insulating film 16 is formed thereon.
When the second interlayer insulating film 16 is formed, there is no occurrence of “mark” when the second interlayer insulating film 16 is grown, and therefore, when the second interlayer insulating film 16 is subsequently polished by the CMP method. No concave groove is generated.

【0013】また、SOG層15を形成しているが、こ
の膜厚は第1の金属配線13の膜厚の1/5〜1/3程
度と薄いため、クラックが発生することは殆どなく、製
造される半導体装置の層間絶縁膜の信頼性が低下される
こともない。また、第2層間絶縁膜16は第1の金属配
線13に比較して十分に厚く形成しているため、CMP
法による平坦化のための研磨マージンを大きくとること
ができ、第1の金属配線13が存在しない領域での層間
絶縁膜の膜厚が小さくなることが防止でき、後工程での
フォトリソグラフィ技術におけるフォーカスマージンを
大きくとることができる。
Further, although the SOG layer 15 is formed, since this film thickness is as thin as about 1/5 to 1/3 of the film thickness of the first metal wiring 13, cracks are hardly generated, The reliability of the interlayer insulating film of the manufactured semiconductor device is not lowered. Further, since the second interlayer insulating film 16 is formed sufficiently thicker than the first metal wiring 13, the CMP is performed.
A large polishing margin for planarization by the method can be taken, the film thickness of the interlayer insulating film in the region where the first metal wiring 13 does not exist can be prevented from being reduced, and the photolithography technique in the subsequent step can be used. A large focus margin can be secured.

【0014】図3及び図4は本発明の製造方法の実施例
2を製造工程順に示す断面図である。図3(a)に示す
ように、先ず、実施例1と同様に単結晶シリコンからな
る半導体基板21上に下地絶縁膜22を形成し、この上
に500nmの膜厚のAl合金で第1の金属配線23を
形成する。更に、この第1の金属配線上にCVD法を用
いて第1の層間絶縁膜24を300nmの膜厚に形成す
る。そして、図3(b)のように、シリコンを含む有機
溶液を回転塗布し、熱処理を行ってSOG層25を平坦
部の膜厚で100nmになるように形成する。
3 and 4 are sectional views showing a second embodiment of the manufacturing method of the present invention in the order of manufacturing steps. As shown in FIG. 3A, first, a base insulating film 22 is formed on a semiconductor substrate 21 made of single crystal silicon as in Example 1, and a first Al alloy film having a thickness of 500 nm is formed on the base insulating film 22. The metal wiring 23 is formed. Further, a first interlayer insulating film 24 is formed to a thickness of 300 nm on this first metal wiring by using the CVD method. Then, as shown in FIG. 3B, an organic solution containing silicon is spin-coated and heat-treated to form the SOG layer 25 so that the film thickness of the flat portion is 100 nm.

【0015】その上で、ここでは図3(c)のように、
ドライエッチング技術を用いてSOG層25をエッチン
グし、第1の金属配線23上のSOG層25を除去す
る。この時、第1の金属配線23の間隔の狭い部分に埋
め込まれたSOG層25の膜厚に比べて第1の金属配線
23上に形成されたSOG層25の膜厚は極めて薄いた
め、この部分のSOG層25を除去した場合でも、埋め
込まれた部分のSOG層25が全て除去されることはな
く、この残されたSOG層25によって第1の金属配線
23の間の凹部の段差は緩和される。
Moreover, here, as shown in FIG.
The SOG layer 25 is etched by using a dry etching technique to remove the SOG layer 25 on the first metal wiring 23. At this time, since the thickness of the SOG layer 25 formed on the first metal wiring 23 is extremely smaller than the thickness of the SOG layer 25 embedded in the narrow gap portion of the first metal wiring 23, Even if the part of the SOG layer 25 is removed, the embedded part of the SOG layer 25 is not completely removed, and the remaining SOG layer 25 alleviates the step difference of the concave portion between the first metal wirings 23. To be done.

【0016】しかる上で、図4(a)のように、CVD
法を用いて第2の層間絶縁膜26を十分に厚く、ここで
は1300nmの膜厚に形成する。そして、図4(b)
のように、第2の層間絶縁膜26をCMP法を用いて7
00nm程度研磨し、その表面の平坦化を行う。更に、
図4(c)のように、平坦化された第2の層間絶縁膜2
6にスルーホール27を形成し、更にスパッタ技術やフ
ォトリソグラフィ技術等により第2の金属配線28を5
00nmの膜厚に形成する。
Then, as shown in FIG. 4A, the CVD
The second interlayer insulating film 26 is formed to be sufficiently thick, here, to a film thickness of 1300 nm by using the method. And FIG. 4 (b)
As described above, the second interlayer insulating film 26 is formed by the CMP method.
The surface is flattened by polishing to about 00 nm. Furthermore,
As shown in FIG. 4C, the flattened second interlayer insulating film 2 is formed.
A through hole 27 is formed in 6 and a second metal wiring 28 is formed by sputtering or photolithography.
It is formed to a film thickness of 00 nm.

【0017】この実施例2で形成される半導体装置にお
いても、実施例1の場合と同様に、第2の層間絶縁膜2
6の表面における凹溝の発生やSOG層25におけるク
ラックの発生が防止できるとともに、半導体装置の全体
にわたって多層配線の平坦化が実現できる。また、実施
例2では第1の金属配線23上のSOG層25をエッチ
ング除去しているため、第1の金属配線23上にスルー
ホール27を開設した場合でも、このスルーホール27
内にSOG層25が露呈されることがないため、SOG
層25からのデガス発生が抑えられるため、第2の金属
配線26の形成時にスルーホール部分で良好な形状が得
られる。
Also in the semiconductor device formed in the second embodiment, as in the first embodiment, the second interlayer insulating film 2 is formed.
It is possible to prevent the occurrence of concave grooves on the surface of 6 and the occurrence of cracks in the SOG layer 25, and it is possible to realize flattening of the multilayer wiring over the entire semiconductor device. In addition, since the SOG layer 25 on the first metal wiring 23 is removed by etching in the second embodiment, even when the through hole 27 is opened on the first metal wiring 23, the through hole 27 is formed.
Since the SOG layer 25 is not exposed inside,
Since the generation of degas from the layer 25 is suppressed, a good shape can be obtained in the through hole portion when the second metal wiring 26 is formed.

【0018】[0018]

【発明の効果】以上説明したように本発明の製造方法
は、第1の配線層上に第1の層間絶縁膜を形成し、かつ
この上にSOG層を形成し、更にこの上に第2の層間絶
縁膜を形成した上で第2の層間絶縁膜の表面を平坦に研
磨して層間絶縁膜を形成しているので、SOG層によっ
て第1の配線層における凹凸が緩和され、第2の層間絶
縁膜における“す”の発生が防止でき、かつCMP研磨
された表面に凹溝が生じることが防止できる。これによ
り、凹溝に異物が侵入される等の不具合が防止でき、半
導体装置の信頼性を高めることが可能となる。また、S
OG層は第1の配線層の間の段差を緩和するために用い
るため、その膜厚は第1の配線層の膜厚の1/5〜1/
3と薄くでき、クラックが生じることが防止でき、SO
G層自身の信頼性やその上に形成する第2の層間絶縁膜
や第2の配線層の信頼性をも高めることが可能となる。
更に、第2の層間絶縁膜は第1の金属配線よりも十分に
厚く形成されるため、表面が研磨された第2の層間絶縁
膜は、第1の配線層が存在している領域と存在しない領
域においてその厚さに差が生じることもなく、半導体装
置の全体の平坦化を図ることができる。これにより、第
1の配線層における断線を防ぐことができるのは勿論の
こと、フォトリソグラフィ技術に際してのフォーカスマ
ージンを大きくすることができる。
As described above, according to the manufacturing method of the present invention, the first interlayer insulating film is formed on the first wiring layer, the SOG layer is formed thereon, and the second interlayer insulating film is further formed thereon. Since the interlayer insulating film is formed and then the surface of the second interlayer insulating film is polished flat to form the interlayer insulating film, the SOG layer alleviates irregularities in the first wiring layer, It is possible to prevent the generation of "sun" in the interlayer insulating film, and it is possible to prevent the formation of concave grooves on the surface polished by CMP. As a result, it is possible to prevent problems such as the entry of foreign matter into the concave groove, and it is possible to improve the reliability of the semiconductor device. Also, S
Since the OG layer is used to reduce the step difference between the first wiring layers, its film thickness is 1/5 to 1 / the thickness of the first wiring layer.
It can be as thin as 3 and can prevent cracks from occurring
It is also possible to improve the reliability of the G layer itself and the reliability of the second interlayer insulating film and the second wiring layer formed thereon.
Furthermore, since the second interlayer insulating film is formed to be sufficiently thicker than the first metal wiring, the second interlayer insulating film whose surface has been polished exists in the region where the first wiring layer exists. There is no difference in the thickness in the non-use region, and the entire semiconductor device can be planarized. As a result, it is of course possible to prevent disconnection in the first wiring layer, and it is possible to increase the focus margin in the photolithography technique.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の製造工程の前半を工程順に
示す断面図である。
FIG. 1 is a cross-sectional view showing the first half of a manufacturing process according to a first embodiment of the present invention in process order.

【図2】本発明の実施例1の製造工程の後半を工程順に
示す断面図である。
FIG. 2 is a cross-sectional view showing the latter half of the manufacturing process of the first embodiment of the present invention in process order.

【図3】本発明の実施例2の製造工程の前半を工程順に
示す断面図である。
FIG. 3 is a cross-sectional view showing the first half of the manufacturing process of the second embodiment of the present invention in process order.

【図4】本発明の実施例2の製造工程の後半を工程順に
示す断面図である。
FIG. 4 is a cross-sectional view showing the latter half of the manufacturing process of the second embodiment of the present invention in process order.

【図5】従来の製造方法の一例を工程順に示す断面図で
ある。
FIG. 5 is a cross-sectional view showing an example of a conventional manufacturing method in process order.

【図6】従来の製造方法の他の例を工程順に示す断面図
である。
FIG. 6 is a cross-sectional view showing another example of the conventional manufacturing method in the order of steps.

【符号の説明】[Explanation of symbols]

11,21 半導体基板 13,23 第1の金属配線 14,24 第1の層間絶縁膜 15,25 SOG層 16,26 第2の層間絶縁膜 17,27 スルーホール 18,28 第2の金属配線 11, 21 Semiconductor substrate 13, 23 First metal wiring 14, 24 First interlayer insulating film 15, 25 SOG layer 16, 26 Second interlayer insulating film 17, 27 Through hole 18, 28 Second metal wiring

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月22日[Submission date] September 22, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】その後、図2(b)のように、フォトリソ
グラフィ技術を用いて第2の層間絶縁膜16、SOG層
15、第1の層間絶縁膜14を通して所要箇所に第1の
金属配線13にまで達するスルーホール17を形成す
る。その上で、図2(c)のように、第2の層間絶縁膜
16上にスパッタ技術により500nmの膜厚のAl合
金の金属膜を形成し、これをフォトリソグラフィ技術に
より選択エッチングすることで第2の金属配線18を形
成する。この第2の金属配線18は前記スルーホール1
7を通して第1の金属配線13に電気接続れることは
言うまでもない。
After that, as shown in FIG. 2B, the first metal wiring 13 is formed at a required position through the second interlayer insulating film 16, the SOG layer 15, and the first interlayer insulating film 14 by using a photolithography technique. A through hole 17 that reaches up to is formed. Then, as shown in FIG. 2C, a metal film of an Al alloy having a film thickness of 500 nm is formed on the second interlayer insulating film 16 by a sputtering technique, and this is selectively etched by a photolithography technique. The second metal wiring 18 is formed. The second metal wiring 18 is the through hole 1
It goes without saying that it is electrically connected to the first metal wiring 13 through 7.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1の配線層と、この第1の配線層上に
形成される第1の層間絶縁膜と、この第1の層間絶縁膜
上に形成されるSOG層と、このSOG層上に形成され
て表面が平坦に研磨された第2の層間絶縁膜と、この第
2の層間絶縁膜の表面に形成される第2の配線層とを備
える半導体装置。
1. A first wiring layer, a first interlayer insulating film formed on this first wiring layer, an SOG layer formed on this first interlayer insulating film, and this SOG layer. A semiconductor device comprising: a second interlayer insulating film formed on the surface of which a surface is polished flat; and a second wiring layer formed on the surface of the second interlayer insulating film.
【請求項2】 SOG層の膜厚は第1の配線層の膜厚の
1/5〜1/3の膜厚である請求項1の半導体装置。
2. The semiconductor device according to claim 1, wherein the SOG layer has a film thickness that is ⅕ to ⅓ of the film thickness of the first wiring layer.
【請求項3】 半導体基板上に絶縁膜を介して第1の配
線層を形成する工程と、前記第1の配線層上に第1の層
間絶縁膜を形成する工程と、この第1の層間絶縁膜上に
SOG層を塗布する工程と、前記SOG層上に第2の絶
縁膜を形成する工程と、第2の層間絶縁膜の表面を科学
的機械研磨法を用いて平坦化する工程と、第2の層間絶
縁膜の表面上に第2の配線層を形成する工程を含むこと
を特徴とする半導体装置の製造方法。
3. A step of forming a first wiring layer on a semiconductor substrate through an insulating film, a step of forming a first interlayer insulating film on the first wiring layer, and a step of forming the first interlayer A step of applying an SOG layer on the insulating film, a step of forming a second insulating film on the SOG layer, and a step of planarizing the surface of the second interlayer insulating film using a chemical mechanical polishing method. And a step of forming a second wiring layer on the surface of the second interlayer insulating film.
【請求項4】 SOG層は第1の金属配線の1/5〜1
/3の膜厚に塗布形成する請求項3の半導体装置の製造
方法。
4. The SOG layer is 1/5 to 1 of the first metal wiring.
The method for manufacturing a semiconductor device according to claim 3, wherein the film is formed to have a thickness of / 3.
【請求項5】 第2の層間絶縁膜は第1の金属配線より
も厚く形成する請求項3または4の半導体装置の製造方
法。
5. The method of manufacturing a semiconductor device according to claim 3, wherein the second interlayer insulating film is formed thicker than the first metal wiring.
【請求項6】 SOG層を形成後にエッチバックして第
1の配線層上のSOG層を除去する工程を含む請求項3
ないし5のいずれかの半導体装置の製造方法。
6. The step of etching back after forming the SOG layer to remove the SOG layer on the first wiring layer.
6. A method of manufacturing a semiconductor device according to any one of 5 to 5.
JP5252327A 1993-09-14 1993-09-14 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2643793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252327A JP2643793B2 (en) 1993-09-14 1993-09-14 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252327A JP2643793B2 (en) 1993-09-14 1993-09-14 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0786284A true JPH0786284A (en) 1995-03-31
JP2643793B2 JP2643793B2 (en) 1997-08-20

Family

ID=17235727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252327A Expired - Lifetime JP2643793B2 (en) 1993-09-14 1993-09-14 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2643793B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091131A (en) * 1998-04-28 2000-07-18 International Business Machines Corporation Integrated circuit having crack stop for interlevel dielectric layers
US6271119B1 (en) 1998-03-11 2001-08-07 Nec Corporation Method for making semiconductor device
KR100327297B1 (en) * 1998-03-24 2002-03-04 아끼구사 나오유끼 Semiconductor device and fabricating method thereof
US8975731B2 (en) 2013-02-25 2015-03-10 Samsung Electronics Co., Ltd. Semiconductor device having an insulating layer structure and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136934A (en) * 1983-01-27 1984-08-06 Nec Corp Manufacture of semiconductor device
JPH0383342A (en) * 1989-08-28 1991-04-09 Matsushita Electric Ind Co Ltd Flattening method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136934A (en) * 1983-01-27 1984-08-06 Nec Corp Manufacture of semiconductor device
JPH0383342A (en) * 1989-08-28 1991-04-09 Matsushita Electric Ind Co Ltd Flattening method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271119B1 (en) 1998-03-11 2001-08-07 Nec Corporation Method for making semiconductor device
KR100327297B1 (en) * 1998-03-24 2002-03-04 아끼구사 나오유끼 Semiconductor device and fabricating method thereof
US6091131A (en) * 1998-04-28 2000-07-18 International Business Machines Corporation Integrated circuit having crack stop for interlevel dielectric layers
US6174814B1 (en) 1998-04-28 2001-01-16 International Business Machines Corporation Method for producing a crack stop for interlevel dielectric layers
US8975731B2 (en) 2013-02-25 2015-03-10 Samsung Electronics Co., Ltd. Semiconductor device having an insulating layer structure and method of manufacturing the same

Also Published As

Publication number Publication date
JP2643793B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JPH1084042A (en) Semiconductor device and its manufacturing method as well as forming method of polysilicon fuse at the small pitch in semiconductor
JPH0745616A (en) Manufacture of semiconductor device
KR20070092122A (en) Thin film transistor device and manufacturing method thereof
US5332868A (en) Method and structure for suppressing stress-induced defects in integrated circuit conductive lines
JPH0786284A (en) Semiconductor device and its manufacture
US6448172B1 (en) Manufacturing method of forming interconnection in semiconductor device
JPH0766200A (en) Fabrication of semiconductor device
JPH10335460A (en) Semiconductor device and its manufacture
JPH0555199A (en) Semiconductor device
JP3221411B2 (en) Method for manufacturing semiconductor device
JPH0330992B2 (en)
JP2590711B2 (en) Method for manufacturing semiconductor device
KR100443148B1 (en) Method For Manufacturing Semiconductor Devices
KR100217909B1 (en) Method for forming multi metal interconnection layer of semiconductor device
JP3407516B2 (en) Semiconductor device and manufacturing method thereof
KR100307985B1 (en) A semiconductor device and a manufacturing process therefor
JPH05109715A (en) Manufacture of semiconductor device
JP2734881B2 (en) Method for manufacturing semiconductor device
JPH06112265A (en) Bonding pad structure of semiconductor device and formation thereof
JPH118244A (en) Manufacture of semiconductor device
JPH0448634A (en) Manufacture of semiconductor device
JPH06163711A (en) Semiconductor device and manufacture thereof
JPH08330306A (en) Fabrication of semiconductor device
JPH0555225A (en) Manufacture of semiconductor device
JPH07183375A (en) Forming method for layer insulating film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 17