JPS62291947A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62291947A
JPS62291947A JP13652686A JP13652686A JPS62291947A JP S62291947 A JPS62291947 A JP S62291947A JP 13652686 A JP13652686 A JP 13652686A JP 13652686 A JP13652686 A JP 13652686A JP S62291947 A JPS62291947 A JP S62291947A
Authority
JP
Japan
Prior art keywords
film
wiring
insulating film
interlayer insulating
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13652686A
Other languages
Japanese (ja)
Inventor
Masanori Fukumoto
正紀 福本
Shinji Fujii
眞治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13652686A priority Critical patent/JPS62291947A/en
Publication of JPS62291947A publication Critical patent/JPS62291947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flatten the surface of an interlayer insulating film by a method wherein a resist pattern is provided surrounding the protruded region of the interlayer insulating film on a wide-widthed wiring in the height same as that of the protruded region, a resist is coated thereon, and the resist and the insulating film are etched away at the same speed of etching. CONSTITUTION:Al wirings 3-5 are provided on an Si substrate 1, and an SiO2 film 6 is formed by performing a bias sputtering method. A resist pattern 7 is formed surrounding the protruded part 6 left on the wide-widthed wiring 3 in the same height as the protruded part 6. Then, a resist 8 is coated on the whole surface. When anisotropic etching is performed under the prescribed pressure using the mixed gas of CHF3+C2F6+O2, the resists 7 and 8 and the SiO2 film 6 are etched away at the same speed of etching, and a flat surface is obtained. Then, windows 9 and 9' are provided, and an Al wiring 10 is attached. As the thickness of an interlayer insulating film becomes same on the wiring irrespective of the width of the Al wiring, the non-uniformity in the condition of formation of windows caused by the irregularity in film thickness can be removed, and the number of unsatisfactory connections can also be reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分万 本発明は、半導体装置における多層配線、特に表面が平
坦化された層間絶縁膜を有する多層配線構造の製造方法
に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Applications The present invention relates to a method for manufacturing a multilayer wiring structure in a semiconductor device, particularly a multilayer wiring structure having an interlayer insulating film with a flattened surface. It is.

従来の技術 半導体装置、特に半導体集積回路装置の素子寸法が微小
になるに伴い、多層配線構造におけるアルミ配線の線幅
、線間隔も増々狭くなる傾向にある。このような多層配
線構造においてアルミ配線層間に設ける層間絶縁膜の形
成方法として基板に高周波電圧を印加して行うバイアス
スパッタ法があり、狭い配線間にボイドを生じることな
く絶縁膜を埋め込むことができる、微細線幅のアルミ配
線上に形成した絶縁膜の表面をほぼ平坦化できるという
他の形成方法にはない特徴を備えている。
BACKGROUND OF THE INVENTION As the element dimensions of semiconductor devices, particularly semiconductor integrated circuit devices, become smaller, the line width and line spacing of aluminum interconnects in multilayer interconnect structures tend to become narrower and narrower. Bias sputtering is a method for forming an interlayer insulating film between aluminum wiring layers in such a multilayer wiring structure by applying a high-frequency voltage to the substrate, which allows the insulating film to be buried between narrow interconnections without creating voids. This method has a feature not found in other forming methods, in that it can substantially flatten the surface of an insulating film formed on aluminum wiring with a fine line width.

発明が解決しようとする問題点 しかし、バイアススパッタ法には従来から第4図a −
%/ cの断面図に示すような問題点が存在した。
Problems to be Solved by the Invention However, the bias sputtering method has traditionally had problems as shown in FIG.
There were problems as shown in the cross-sectional view of %/c.

第4図において、半導体基板1の表面にSin、、膜2
が形成され、その上にアルミ配線3,4.6が形成され
ている。第4回器のようにアルミ配線上にバイアススパ
ッタ5102膜6を適当な条件で形成すると、線幅のせ
まい配線3上の5i02膜の表面は平坦になるのである
が、線幅が広くなると配線4および6の上に見られるよ
うに、小さい突起11や凸部12が残ってしまい、51
02膜6を完全に平坦にすることができない。
In FIG. 4, a film 2 of Sin is formed on the surface of a semiconductor substrate 1.
is formed, and aluminum interconnections 3, 4.6 are formed thereon. When the bias sputtered 5102 film 6 is formed on the aluminum wiring under appropriate conditions as in Part 4, the surface of the 5102 film on the wiring 3 with a narrow line width becomes flat, but when the line width becomes wider, the wiring As seen above 4 and 6, small protrusions 11 and protrusions 12 remain, and 51
02 film 6 cannot be made completely flat.

バイアススパッタ法では、斜面18において、ターゲツ
トから飛来する5102の堆積速度より高周波バイアス
による5102のエツチング速度の方が上回る条件で行
なう結果、例えば配線6ではその両端から斜面18が内
側方向へ後退してゆく。
In the bias sputtering method, the etching rate of 5102 due to the high frequency bias is higher than the deposition rate of 5102 flying from the target on the slope 18. As a result, for example, in the wiring 6, the slope 18 recedes inward from both ends thereof. go.

そして膜6を所定の膜厚に形成するのに要する時間内に
、配線3の上に最初存在した5i02の斜面は、両端か
らのエツチングによる後退が終了して完全に除去される
が、配線4では終了直前の状態にあるため突起11が残
り、配線6では、未だ全く終了していないので、斜面1
8を持った凸部が残る。線幅の広い配線5の凸部を除去
するためには、斜面18を後退させて完全になくなるま
でバイアススバッタを続ければよいのであるが極めて長
時間を要するため実用上大きな問題となるのである、 層間絶縁膜6を形成した後、第2層目アルミ配線と第1
層目アルミ配線を接続するため、膜6にコンタクト窓を
開口することが必要である。第4図すは、配線4の表面
領域に存在する5in2膜6の膜厚分だけ膜6を選択除
去し、配線4.6上にコンタクト窓9.9′  を開口
する場合の断面図である。この場合は、配線4上の5i
n2膜に突起11が存在するため、5102膜6の膜厚
相当分だけエツチングを行うと、コンタクト窓9の内部
にSiO2の突起11′  が残る。さらに、配線6上
のSiO2膜厚は配線4上よりかなり厚いので、コンタ
クト窓9′  の底面は5in2のままであり、配線6
の表面が露出するに至らない。従って第4図すの状態は
、配線層間のコンタクト不良を発生させるという問題を
生じるものである。コンタクト不良を避けるためには、
第4図Cのように、配線5上の5io2膜厚に相幽する
量だけ5i02膜6を選択的に除去すればよいのである
が、これによって膜厚の薄い配線4上の5102膜はか
なりオーバエツチングの状態となり、配線40表面も部
分的に除去され、場合によってはコンタクト窓9の領域
に存在する配線膜4が完全に除去されて再び第2層目ア
ルミ配線層とのコンタクト不良が生じるという不都合が
生じ得るのである。要するに従来のバイアススパッタ法
による層間絶縁膜形成法では、配線上の絶縁膜表面に部
分的に凸部が残り、コンタクト窓のエツチングにアンバ
ランスが生じるという欠点が存在した。
Then, within the time required to form the film 6 to a predetermined thickness, the slope of 5i02 that initially existed on the wiring 3 is completely removed by etching from both ends, but the slope of the wiring 3 is completely removed. In this case, the protrusion 11 remains because it is in the state just before completion, and the slope 1 remains because the wiring 6 has not finished at all.
A convex portion with 8 remains. In order to remove the convex portion of the wide wiring 5, it is possible to retreat the slope 18 and continue bias sputtering until it is completely removed, but this takes an extremely long time and poses a serious problem in practice. , After forming the interlayer insulating film 6, the second layer aluminum wiring and the first layer
In order to connect the layered aluminum wiring, it is necessary to open a contact window in the membrane 6. FIG. 4 is a cross-sectional view when the film 6 is selectively removed by the thickness of the 5-inch film 6 existing on the surface area of the wiring 4, and a contact window 9.9' is opened on the wiring 4.6. . In this case, 5i on wiring 4
Since the n2 film has the protrusion 11, when etching is performed by an amount corresponding to the thickness of the 5102 film 6, the SiO2 protrusion 11' remains inside the contact window 9. Furthermore, since the SiO2 film on the wiring 6 is considerably thicker than on the wiring 4, the bottom surface of the contact window 9' remains 5in2, and
The surface is not exposed. Therefore, the situation shown in FIG. 4 causes a problem of contact failure between wiring layers. To avoid contact failure,
As shown in FIG. 4C, it is only necessary to selectively remove the 5i02 film 6 by an amount corresponding to the thickness of the 5io2 film on the wiring 5, but as a result, the 5102 film on the thin wiring 4 is considerably removed. Overetching occurs, and the surface of the wiring 40 is partially removed, and in some cases, the wiring film 4 existing in the area of the contact window 9 is completely removed, causing a contact failure with the second aluminum wiring layer again. This may cause some inconvenience. In short, the conventional method of forming an interlayer insulating film using bias sputtering has the disadvantage that a convex portion remains partially on the surface of the insulating film on the wiring, resulting in imbalance in the etching of the contact window.

問題点を解決するための手段 本発明は上記従来のバイアススパッタ法で形成される層
間絶縁膜の問題点を解決するためになされたものであっ
て、配線上に従来のバイアススパッタ法で層間絶縁膜を
形成した後、幅の広い配線上に残留する層間絶縁膜の凸
状領域全てを囲むように、周囲にその凸状領域の高さと
ほぼ同じ厚さの例えばフォトレジスト膜パターンを設け
、層間絶縁膜の凸状領域と上記フォトレジストパターン
上にさらに再度流動性を有する例えば7オトレジストを
塗布して全面を平坦化し、7オトレジストと層間絶縁膜
のエツチング速度がほぼ同一となるような条件で、凸状
領域が消滅する壕で平坦化されたレジスト表面から下方
へ向かって一様にエツチングするものである。
Means for Solving the Problems The present invention has been made to solve the problems of the interlayer insulating film formed by the conventional bias sputtering method. After forming the film, for example, a photoresist film pattern with a thickness approximately equal to the height of the convex region is provided around the entire convex region of the interlayer insulating film remaining on the wide wiring, and the interlayer insulating film is Further, on the convex regions of the insulating film and the above-mentioned photoresist pattern, a flowable photoresist, for example, is applied again to flatten the entire surface, and under conditions such that the etching rate of the photoresist and the interlayer insulating film are almost the same. This method uniformly etches downward from the resist surface, which has been flattened with trenches where the convex regions disappear.

作用 本発明のようにバイアススパッタ法で形成した層間絶縁
膜の凸状領域を囲んで、それとほぼ同一の厚さを有する
フォトレジスト膜パターンを設けることは、凸状領域表
面と、その周囲の7オトレジスト膜パタ一ン表面をほぼ
同じ高さにそろえる役割をする。この状態ではフォトレ
ジスト膜の端と凸状領域の端との間に溝が生じており、
この溝は、再びフォトレジストを塗布することによって
埋めることができる結果最初凸状になっていた表面は完
全に平坦になる。次にこのようにして平坦化した表面を
エツチングするのであるが、本発明の方法においてはフ
ォトレジスト膜と層間絶縁膜の工・フテング速度がほぼ
等しくなるように条件を選択するのでフォトレジストお
よび層間絶縁膜の表面が同時に露出しても、表面は平坦
性を保ったまま除去されてゆき、層間絶縁膜の凸部が全
く除去された時点でエツチングを終了すると、層間絶縁
膜の表面は全領域にわたって平坦になるのである。
Effect: Providing a photoresist film pattern having almost the same thickness surrounding the convex region of the interlayer insulating film formed by the bias sputtering method as in the present invention means that the surface of the convex region and the seven areas around it are provided. It serves to align the surfaces of the photoresist film patterns to approximately the same height. In this state, a groove is formed between the edge of the photoresist film and the edge of the convex area.
This groove can be filled by applying photoresist again, so that the initially convex surface becomes completely flat. Next, the surface planarized in this way is etched. In the method of the present invention, conditions are selected so that the etching speed of the photoresist film and the interlayer insulating film are approximately equal, so the photoresist film and the interlayer insulation film are etched. Even if the surface of the insulating film is exposed at the same time, the surface will be removed while maintaining its flatness, and if etching is finished when all the convex parts of the interlayer insulating film are removed, the entire surface area of the interlayer insulating film will be removed. It becomes flat throughout.

実施例 以上の本発明の製造方法を実施例を用いて具体−的に説
明する。
EXAMPLES The manufacturing method of the present invention described above will be specifically explained using examples.

(実施例1) 第1図&−6は、本発明による製造方法を用いて二層配
線を形成する工程を示す断面図である。
(Example 1) FIGS. 1 &-6 are cross-sectional views showing the process of forming a two-layer wiring using the manufacturing method according to the present invention.

第1図aの工程ではシリコン基板1の表面上に成長した
SiO2膜2の上に線幅の異なるアルミ配線3.4.6
が設けられている。アルミ配線の厚さは0.6μmであ
り、配線3においては線幅0.5μm1間隔0.6μm
1配線4は線幅2μm、配線6は線幅10μmである。
In the process shown in FIG.
is provided. The thickness of the aluminum wiring is 0.6 μm, and in wiring 3, the line width is 0.5 μm and the interval is 0.6 μm.
One wiring 4 has a line width of 2 μm, and one wiring 6 has a line width of 10 μm.

この配線上にバイアススパッタ法等基板に高周波を印加
する成膜法で5i02膜6を形成すると、特に線幅の小
さい配線3においてその上の8102膜6が自動的に平
坦化されると同時に、せまい配線間にも5i02膜6を
ボイドを生じることなく埋め込むことができる(第1図
すの工程)。5i02膜6の膜厚は配線3の表面上で0
.7 Afn 、  5io2膜2上で1.2ttm。
When a 5i02 film 6 is formed on this wiring using a film forming method that applies high frequency to the substrate, such as bias sputtering, the 8102 film 6 above it is automatically flattened, especially in the wiring 3 with a small line width. The 5i02 film 6 can be embedded even between narrow interconnections without creating voids (step shown in FIG. 1). The thickness of the 5i02 film 6 is 0 on the surface of the wiring 3.
.. 7Afn, 1.2ttm on 5io2 membrane 2.

配線6の表面上で1.2μmとなっている。膜6の形成
後幅の広いアルミ配線6上に残留した凸部を囲むように
膜厚065μmのフォトレジストパターン7を形成し、
さらに全面にフォトレジスト膜8を、膜8の表面を平坦
化できる程度の厚さに均一に塗布する(第1図Cの工程
)。次に5i02膜6、レジスト7.8のエツチング速
度が同じになる条件でレジス) 7 、8.5in2膜
6の凸部を除去すると8102膜6の表面は平坦になる
(第1図dの工程)。このようなエツチングは例えば混
合ガスC)IF、 (20SCCM )/C2F6(6
SCCM )10,2(3SCCM)(カッコ内は流量
)、圧力13.3p2Lという条件下での異方性ドライ
エツチング法で可能であうた。第1図dの工程の後、配
線4.5上の5i02膜8にコンタクト窓9.9′  
を開口し、第2層目のアルミ配線1oを設はム第1図e
の工程)。ここで本発明による工程Q、(1により特に
配線4.6上の8102膜6の厚さが、等しりo、7μ
mとなっているので、コンタクト窓9.9′  の開口
時における5i02工ツチング条件は全く同一とするこ
とができ、従来技術において見られたようなエツチング
条件のアンバランスは生じないのである。
The thickness on the surface of the wiring 6 is 1.2 μm. After forming the film 6, a photoresist pattern 7 with a thickness of 065 μm was formed to surround the convex portion remaining on the wide aluminum wiring 6.
Furthermore, a photoresist film 8 is uniformly applied to the entire surface to a thickness sufficient to flatten the surface of the film 8 (step C in FIG. 1). Next, under the conditions that the etching speed of the 5i02 film 6 and the resist 7.8 are the same, the convex portions of the resist 7 and 8.5in2 film 6 are removed, and the surface of the 8102 film 6 becomes flat (step d in Figure 1). ). Such etching can be carried out, for example, using a mixed gas C)IF, (20SCCM)/C2F6(6
SCCM) 10,2 (3SCCM) (flow rate in parentheses) and pressure 13.3 p2L. After the process shown in FIG. 1d, contact windows 9.9'
Open it and install the second layer of aluminum wiring 1o.
process). Here, according to the process Q (1) according to the present invention, the thickness of the 8102 film 6 on the wiring 4.6 is equal to o, 7μ
m, the etching conditions for 5i02 when opening the contact windows 9,9' can be made exactly the same, and an unbalance in the etching conditions as seen in the prior art does not occur.

(実施例2) 第2の実施例として第2図a、bの工程も可能である。(Example 2) As a second embodiment, the steps shown in FIGS. 2a and 2b are also possible.

第2回器の工程において、0.6μmの厚さのアルミ配
線3,4.5を形成−した後、基板にバイアス電圧を印
加しながらスパッタを行ない第1の層間絶縁膜としてS
iO2膜13全13J31416と同じ膜厚又はそれよ
り多少厚く(20,5μm)形成するが、この条件で形
成された5102膜13の表面形状は、第2図すのよう
に線幅の狭い配線3の上でもまだ平坦化されていない。
In the second step, after forming aluminum wirings 3 and 4.5 with a thickness of 0.6 μm, sputtering is performed while applying a bias voltage to the substrate to form the first interlayer insulating film.
The iO2 film 13 is formed to have the same film thickness as the 13J31416 or slightly thicker (20.5 μm), but the surface shape of the 5102 film 13 formed under these conditions is similar to that of the wiring 3 with a narrow line width as shown in Figure 2. It has not yet been flattened.

5102膜13の表面上に5102膜13の形成に用い
たバイアス電圧より小さい電圧を印加するか、ちるいは
バイアス無しでスパッタを行い、第2の層間絶縁SiO
2膜14を0.7μmの厚さに形成する。北○2膜14
の配線が存在する領域すべてに凸部が残るが、配線間隔
のせまい配線3の凸部を除く、全ての凸部領域の周囲に
、膜厚0,5μmのフォトレジストパターン16を設け
、さらに全面にわた9、7オトレジスト膜16を適当な
膜厚に塗布する。
A voltage lower than the bias voltage used for forming the 5102 film 13 is applied to the surface of the 5102 film 13, or sputtering is performed with or without bias to form a second interlayer insulating SiO
Two films 14 are formed to have a thickness of 0.7 μm. Kita○2 Membrane 14
However, a photoresist pattern 16 with a film thickness of 0.5 μm is provided around all the convex regions except for the convex portion of the interconnect 3 due to the narrow wiring interval, and then the entire surface is coated. A photoresist film 16 is applied across the film 9 and 7 to an appropriate thickness.

膜16の塗布時は流動性があり狭い3の配線間にも膜1
6が埋まるので膜16の表面は平坦になる(第2図すの
工程)。この後、7オトレジスト16.16.5102
膜14のエツチング速度がほぼ等しくなる条件で膜16
の表面からエツチングを行ない膜14の凸部を消滅させ
ると層間絶縁5102膜表面を平坦にできる。
When coating film 16, it has fluidity and can be applied even between the narrow wiring lines 3.
6 is filled, so that the surface of the film 16 becomes flat (step shown in Figure 2). After this, 7 Otoresist 16.16.5102
The film 16 is etched under conditions that the etching rates of the film 14 are approximately equal.
By etching the surface of the film 14 to eliminate the convex portions of the film 14, the surface of the interlayer insulating film 5102 can be made flat.

(実施例3) 実施例2の工程は第3図a、bのように工程の1:1番
を変更して実施することができる。第3回器の工程にお
いて、先ずアルミ配線3,4.5を含む全面に、基板に
バイアス電圧を印加しながらスパッタを行い、配線3,
4.6と同−又はそれらより少し厚く(20,68m 
) 5i02膜13を形成する。この後、配線間隔の狭
い配線3の領域を除き、スパッタによって生じた5in
2膜13の凸部周囲に、凸部の高さとほぼ同じ厚さく1
5μmの7オトレジストパターン16を形成し、さらに
適当な膜厚のフォトレジスト膜16を塗布形成し、膜1
60表面を平坦にする。次に第3図すの工程において、
フォトレジスト膜16.16と5in2膜13のエツチ
ング速度がほぼ等しくなるような条件で膜16の表面か
ら全面にわたり一様にエツチングを行い、膜13の凸部
が消滅した時点で終了すると、表面は平坦になる。この
後基板にバイアスを印加せずスパッタ法でSiO2膜1
7を0.7μmの厚さに形成すれば層間絶縁5i02膜
が完成する。
(Example 3) The process of Example 2 can be carried out by changing the 1:1 ratio of the process as shown in FIGS. 3a and 3b. In the third step, sputtering is first performed on the entire surface including the aluminum wirings 3 and 4.5 while applying a bias voltage to the substrate.
Same as 4.6 or slightly thicker (20.68m)
) 5i02 film 13 is formed. After this, the 5-inch area created by sputtering was
2 Around the convex part of the membrane 13, a layer 1 with a thickness approximately equal to the height of the convex part is placed.
Seven photoresist patterns 16 of 5 μm are formed, and a photoresist film 16 of an appropriate thickness is further coated to form the film 1.
60 Flatten the surface. Next, in the step shown in Figure 3,
Etching is performed uniformly over the entire surface of the film 16 under conditions such that the etching rates of the photoresist film 16 and the 5in2 film 13 are almost equal, and when the etching is finished when the convex portions of the film 13 disappear, the surface is etched. Become flat. After that, the SiO2 film 1 was formed by sputtering without applying a bias to the substrate.
By forming 7 to a thickness of 0.7 μm, an interlayer insulating film 5i02 is completed.

以上の実施例においては層間絶縁膜の形成にバイアス印
加のスパッタ法を用いたが、基板バイアスを印加して絶
縁膜形成した時狭い配線間に絶縁膜が埋まればよく、バ
イアス印加の常圧CVD法。
In the above embodiments, a bias-applied sputtering method was used to form the interlayer insulating film, but when a substrate bias is applied to form the insulating film, it is sufficient that the insulating film is buried between narrow interconnections, and a bias-applied normal pressure CV method is used. Law.

LPCVD法、プラス−r CV D 法、 IE C
RプラズマCVD法も用いることができる。、また、平
坦化のために用いたフォトレジスト膜はSiO□、 S
iNx等他の材料でもよく、特に第2の7オトレジスト
膜の代替として、 Siの有機化合物のアルコール溶液
等流動性に富むスピンオングラスも使用できる。さらに
本発明は5102以外の層間絶縁膜材料にも適用できる
ことはいうまでもない。
LPCVD method, plus-r CVD method, IEC
R plasma CVD method can also be used. , and the photoresist film used for planarization was SiO□, S
Other materials such as iNx may be used, and in particular, as a substitute for the second 7 photoresist film, highly fluid spin-on glass such as an alcoholic solution of an organic compound of Si may also be used. Furthermore, it goes without saying that the present invention can be applied to interlayer insulating film materials other than 5102.

発明の効果 以上のように本発明は、特に多層配線構造の層間絶縁膜
を形成する工程において、従来から行なわれているよう
にバイアスを印加して、層間絶縁膜を形成するに加えて
幅の広い配線上に残留する上記絶縁膜の凸部領域をもフ
ォトレジスト等流動性を有する膜を被覆してエツチング
することにより、はぼ完全に除去し、層間絶縁膜表面を
平坦にすると共に、アルミ配線の線幅によらず上記配線
上に存在する層間絶縁膜厚を全て同一にするものである
。このため従来問題であった異る幅の配線上の層間絶縁
膜厚のバラツキに起因するコンタクト窓エツチング条件
のアンバランスが解消され、コンタクト不良が防止でき
、多層配線を有する半導体装置の製造歩留り向上に寄与
するものである。
Effects of the Invention As described above, the present invention is particularly useful in the process of forming an interlayer insulating film in a multilayer wiring structure, in addition to applying a bias as conventionally done to form an interlayer insulating film. The convex areas of the above-mentioned insulating film remaining on the wide wiring are almost completely removed by covering with a fluid film such as photoresist and etching, and the surface of the interlayer insulating film is flattened. The thickness of the interlayer insulating film existing on the wiring is all made the same regardless of the line width of the wiring. This eliminates the conventional problem of unbalanced contact window etching conditions caused by variations in interlayer insulating film thickness on interconnects of different widths, prevents contact defects, and improves the manufacturing yield of semiconductor devices with multilayer interconnects. This contributes to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例における多層配線製造方法
を示す工程断面図、第2図は本発明の第2実施例方法を
示す工程断面図、第3図は本発明の第3実施例方法を示
す工程断面図、第4図は従来のバイアススパッタ法によ
って形成した層間絶縁膜の問題点を説明するための断面
図である。 1・・・・・・シリコン基板、2・・・・・・5in2
膜、3.4゜5・・・・・・第1層アルミ配線、6,1
3,14.17・・・・・・バイアススパッタ5i02
 膜、7 、8 、16゜16・・・・・・フォトレジ
スト、9 、9’・・・・・・コンタクト窓、10・・
・・・・第2層アルミ配線、11・・・・・・SiO2
膜の突起、12・・・・・・SiO2膜の凸部、18・
・・・・・バイアススパッタ5i02膜の斜面。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第2
図 第3図
FIG. 1 is a process cross-sectional view showing a multilayer wiring manufacturing method according to a first embodiment of the present invention, FIG. 2 is a process cross-sectional view showing a method according to a second embodiment of the present invention, and FIG. FIG. 4 is a process cross-sectional view showing an example method. FIG. 4 is a cross-sectional view for explaining problems with an interlayer insulating film formed by a conventional bias sputtering method. 1...Silicon substrate, 2...5in2
Film, 3.4°5...First layer aluminum wiring, 6,1
3,14.17...Bias sputtering 5i02
Film, 7, 8, 16° 16...Photoresist, 9, 9'...Contact window, 10...
...Second layer aluminum wiring, 11...SiO2
Protrusion of film, 12...Protrusion of SiO2 film, 18.
...Slope of bias sputtered 5i02 film. Name of agent: Patent attorney Toshio Nakao, 1st person, 2nd person
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の少なくとも配線を含む領域上に、前記半
導体基板にバイアス電圧を印加しながら絶縁膜を形成す
る工程と、前記配線上に生じた少なくとも前記絶縁膜凸
部の一部の周囲に、前記凸部の高さとほぼ等しい膜厚を
もつ第1の膜パターンを形成する工程と、前記凸部およ
び第1の膜を被覆するように流動性を有する第2の膜を
形成し表面全面をほぼ平坦にする工程と、前記絶縁膜お
よび第1、第2の膜のエッチング速度がほぼ等しくなる
ような条件で、前記絶縁膜の凸部および第1、第2の膜
を含む領域全面を所望の量だけ一様にエッチング除去す
る工程を含んでなる半導体装置の製造方法。
forming an insulating film on a region including at least a wiring on a semiconductor substrate while applying a bias voltage to the semiconductor substrate; A step of forming a first film pattern having a film thickness approximately equal to the height of the convex portion, and a step of forming a second film having fluidity so as to cover the convex portion and the first film so as to cover almost the entire surface. In the flattening step, the entire area including the convex portion of the insulating film and the first and second films is etched into a desired area under conditions such that the etching rates of the insulating film and the first and second films are approximately equal. A method for manufacturing a semiconductor device comprising a step of uniformly etching away only the amount.
JP13652686A 1986-06-12 1986-06-12 Manufacture of semiconductor device Pending JPS62291947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13652686A JPS62291947A (en) 1986-06-12 1986-06-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13652686A JPS62291947A (en) 1986-06-12 1986-06-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62291947A true JPS62291947A (en) 1987-12-18

Family

ID=15177241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13652686A Pending JPS62291947A (en) 1986-06-12 1986-06-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62291947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188733A (en) * 1990-11-21 1992-07-07 Sharp Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188733A (en) * 1990-11-21 1992-07-07 Sharp Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2611615B2 (en) Method for manufacturing semiconductor device
JP3077990B2 (en) Method for manufacturing semiconductor device
JPS62291947A (en) Manufacture of semiconductor device
JP2716156B2 (en) Method for manufacturing semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0982799A (en) Wiring board and manufacture thereof
JPH0653189A (en) Method for flattening of film formation layer
JPH05308073A (en) Manufacture of semiconductor device
JPH04142065A (en) Manufacture of semiconductor device
JPH05160126A (en) Formation of multilayer wiring
JPS61140135A (en) Flattening method for resist coat film
JPH0222844A (en) Semiconductor integrated circuit
JPS63143839A (en) Manufacture of semiconductor integrated circuit
JPH05102144A (en) Manufacture of semiconductor device
JPH07230992A (en) Method of forming multilayer interconnection in semiconductor device
JPH07211714A (en) Manufacture of semiconductor device
JPH04255252A (en) Manufacture of semiconductor device
JPH0322431A (en) Semiconductor integrated circuit
JPH0897213A (en) Manufacture of semiconductor device
JPS61294835A (en) Multilayer interconnection forming method
JPH0448634A (en) Manufacture of semiconductor device
JPH09102543A (en) Manufacture of semiconductor device
JPH02215123A (en) Manufacture of semiconductor device