JPH04142065A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04142065A
JPH04142065A JP26602190A JP26602190A JPH04142065A JP H04142065 A JPH04142065 A JP H04142065A JP 26602190 A JP26602190 A JP 26602190A JP 26602190 A JP26602190 A JP 26602190A JP H04142065 A JPH04142065 A JP H04142065A
Authority
JP
Japan
Prior art keywords
film
pattern
sog
wiring
sog film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26602190A
Other languages
Japanese (ja)
Inventor
Junichi Konno
今野 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26602190A priority Critical patent/JPH04142065A/en
Publication of JPH04142065A publication Critical patent/JPH04142065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a layer insulating film whose film thickness is proper and to flatten its surface by a method wherein a first SOG film is etched by making use of a resist film pattern as a mask, the SOG film on an interconnection layer is removed and the interconnection layer is revealed. CONSTITUTION:A semiconductor substrate 11 where interconnection layers 13, 14 are formed so as to be protrusion-shaped is coated with a first spin-on- glass(SOG) film 15; the film is solidified. Then, a resist filmpattern 17 whose pattern is reverse to an interconnection pattern is formed. The first SOG film 15 which is revealed is etched and removed by making use of the pattern as a mask; the interconnection layers 13, 14 are revealed. In this manner, after the first SOG film 15 is applied, the first SOG film which has become a protrusion shape is removed, and uneven parts on the surface are once reduced. Thereby, a second SOG film 18 is applied and a insulating film whose surface is flattened can be formed.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造方法のうち、眉間絶縁膜の形成方法に
関し、 膜厚の適切な眉間絶縁膜を形成して、且つ、その表面を
平坦化させることを目的とし、凸状に形成された配線層
を含む半導体基板上に第1のSOG膜を塗布して固化す
る工程と、次いで、前記配線層パターンとは逆のパター
ン形状を有するレジスト膜パターンを形成する工程と、 次いで、該レジスト膜パターンをマスクにして前記第1
のSOG膜をエツチングして、前記配線層上の該第1の
socMを除去して該配線層を露出させる工程と、 次いで、全面に第2のSOG膜を塗布して固化する工程
とが含まれることを特徴とする。
[Detailed Description of the Invention] [Summary] Regarding a method for forming a glabellar insulating film among semiconductor device manufacturing methods, the purpose is to form a glabellar insulating film with an appropriate thickness and to flatten its surface. and a step of applying and solidifying a first SOG film on a semiconductor substrate including a wiring layer formed in a convex shape, and then forming a resist film pattern having a pattern shape opposite to that of the wiring layer pattern. step, then, using the resist film pattern as a mask, the first
a step of etching the first SOG film on the wiring layer to expose the wiring layer; and a step of applying and solidifying a second SOG film on the entire surface. It is characterized by being

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法のうち、層間絶縁膜の形
成方法に関する。
The present invention relates to a method of forming an interlayer insulating film among methods of manufacturing a semiconductor device.

LSIなどの半導体デバイスは高密度、高集積化されて
、半導体基板上に多数の半導体素子が設けられ、それら
を接続するための配線が2層、3層と多層に形成されて
いるが、これらの配線間に設ける眉間絶縁膜は特にその
平坦化のための形成方法が重要である。
Semiconductor devices such as LSIs have become highly dense and highly integrated, and a large number of semiconductor elements are provided on a semiconductor substrate, and wiring to connect them is formed in multiple layers, such as two or three layers. The formation method for flattening the glabellar insulating film provided between the wiring lines is particularly important.

〔従来の技術と発明が解決しようとする課題]さて、半
導体デバイスの信頼性は断線や短絡が起きる配線の信頼
性に大きく関わりがあって、信頼性の高い配線および眉
間絶縁膜の形成方法が大切である。従来、層間絶縁膜の
一般的な形成方法としては、その表面をできるだけ平坦
に形成し、その平坦面上に配線を設ける方法が採られて
いるが、それは凹凸のない平坦面に配線を形成すれば配
線の厚みが均一になって、断線や短絡を減少させること
ができるためである。
[Prior art and problems to be solved by the invention] Now, the reliability of semiconductor devices is greatly related to the reliability of wiring that can cause disconnections and short circuits. It's important. Conventionally, the general method for forming an interlayer insulating film is to form the surface as flat as possible and then provide wiring on that flat surface. This is because the thickness of the wiring becomes uniform, and disconnections and short circuits can be reduced.

従って、眉間絶縁膜の平坦化形成方法としtSOG (
Spin On Glass)膜を塗布する方法、レジ
ストなどを塗布して絶縁膜とエツチング速度の等しい条
件(等エッチレート条件)でエッチハックを行なう方法
やそれらの組合せ方法が知られている。
Therefore, tSOG (
A method of applying a spin-on-glass (Spin On Glass) film, a method of applying a resist or the like and performing an etch hack under conditions where the etching rate is equal to that of the insulating film (equal etch rate condition), and a combination of these methods are known.

ここに、SOG膜とはスピンオンガラス (Spin 
On Glass)膜の略で、シラノールをアルコール
を主成分とする有機溶剤に溶解してあり、これを塗布し
て熱処理すると溶剤が飛散してSiO□膜のみ固着する
絶縁膜である。
Here, the SOG film is spin-on glass
This is an insulating film in which silanol is dissolved in an organic solvent containing alcohol as a main component, and when this is applied and heat treated, the solvent scatters and only the SiO□ film is fixed.

ところが、最近、−層高集積化・微細化が進行してきた
ために、下地の配線パターンの粗密度や面積(幅)が影
響して、塗布したSOGやレジストの表面にも凹凸が残
こり、平坦性が不十分になるといった問題が起きており
、それはSOGやレジストの粘性が高いからである。
However, as layer integration and miniaturization have recently progressed, the rough density and area (width) of the underlying wiring patterns have affected the surface of the applied SOG and resist, leaving unevenness and flatness. Problems such as insufficient properties occur due to the high viscosity of SOG and resist.

第3図はその問題点を説明する図で、同図(a)が配線
パターンの粗密度とパターン幅が影響して、平坦性が不
十分になっている状態を図示している。
FIG. 3 is a diagram illustrating the problem, and FIG. 3(a) shows a state where the flatness is insufficient due to the influence of the coarse density and pattern width of the wiring pattern.

図中の記号1は半導体基板、2は絶縁膜、3.4はアル
ミニウム配線、5は固化させたSOG膜であるが、幅広
いアルミニウム配線3の上には厚いSOG膜が形成され
て、幅狭いアルミニウム配線4の上には薄いSOG膜が
形成されている。
In the figure, symbol 1 is a semiconductor substrate, 2 is an insulating film, 3.4 is an aluminum wiring, and 5 is a solidified SOG film, but a thick SOG film is formed on the wide aluminum wiring 3, and the width is narrow. A thin SOG film is formed on the aluminum wiring 4.

この平坦性を向上させるためには、それらの塗布膜を厚
くすることが考えられるが、層間絶縁膜を余り厚く形成
するとスルーホール(上下接続孔)の形成が困難になり
、また、スルーホールへの配線材料の充填も難しくなっ
て、その点から信頼性が低下する。且つ、厚い眉間絶縁
膜は膜厚差を増大させることになるために、製造方法が
困難になり、これも同様に信頼性の低下をきたす問題で
ある。
In order to improve this flatness, it is possible to thicken these coating films, but if the interlayer insulating film is formed too thick, it will be difficult to form through holes (upper and lower connection holes). It also becomes difficult to fill the wiring material, which reduces reliability. In addition, a thick glabellar insulating film increases the difference in film thickness, making the manufacturing method difficult, which also causes a problem of reduced reliability.

従って、SOG膜で形成した眉間絶縁膜を平坦化する方
法としてダミー配線パターンを設ける方法が考えられ、
第3図(b)にその断面図を示している。図中の記号6
がダミー配線パターンであるが、このダミー配線パター
ン6をアルミニウム(^l)で作成する場合とPSG 
(燐シリケートガラス)膜などのCVD (化学気相成
長)法で被着する絶縁膜で作成する場合との二通りがあ
る。前者のアルミニウムで作成する場合は、配線が複雑
になって配線間の短絡が増える欠点があり、また、配線
容量が増加して高速動作特性を悪化させ、更に、自動化
配線が困難になるという問題が起こる。
Therefore, one possible method for flattening the glabella insulating film formed of the SOG film is to provide a dummy wiring pattern.
A sectional view thereof is shown in FIG. 3(b). Symbol 6 in the diagram
is a dummy wiring pattern, and when this dummy wiring pattern 6 is made of aluminum (^l) and PSG
There are two methods: one is made of an insulating film deposited by CVD (chemical vapor deposition), such as a phosphorus silicate glass film, and the other is a phosphorus silicate glass film. If the former is made of aluminum, the wiring becomes complicated and short circuits between the wirings increase, and the wiring capacitance increases, deteriorating high-speed operation characteristics, and furthermore, automated wiring becomes difficult. happens.

方、PSG膜などのCVD絶縁膜で作成する場合は、C
VD法による被着工程とダミーパターンのパターンニン
グ工程が増加して、しかも、位置ずれの心配があり、か
えって信頼性の低下に繋がる。
On the other hand, when creating with a CVD insulating film such as PSG film, C
The deposition process using the VD method and the patterning process of the dummy pattern are increased, and there is also a risk of positional deviation, which may even lead to a decrease in reliability.

且つ、CVD絶縁膜は配線層が設けられている下地の絶
縁膜2と同一材料の可能性が高く、この材料からなるダ
ミーパターンのパターンニング工程はオーバーエツチン
グが発生し易い。
Furthermore, the CVD insulating film is likely to be made of the same material as the underlying insulating film 2 on which the wiring layer is provided, and over-etching is likely to occur in the patterning process of a dummy pattern made of this material.

本発明は、このような問題点が生じない膜厚の適切な眉
間絶縁膜を形成して、且つ、その表面を平坦化させるこ
とを目的とした製造方法を提案するものである。
The present invention proposes a manufacturing method aimed at forming a glabellar insulating film with an appropriate thickness that does not cause such problems, and flattening the surface thereof.

〔課題を解決するための手段〕[Means to solve the problem]

その課題は、第1図(a+〜[d)に示す原理図のよう
に、絶縁膜12上に凸状に形成された配線層13.14
を含む半導体基板11の上に第1のSOG膜15を塗布
して固化する工程と、 次いで、前記配線層パターンとは逆のパターン形状を有
するレジスト膜パターン17を形成する工程と、 次いで、該レジスト膜パターンをマスクにして前記第1
の5OGII115をエツチングして、前記配線層13
.14上の該第1の5OGWi、を除去して該配線層を
露出させる工程と、 次いで、全面に第2の5OGIl118を塗布して固化
、する工程とが含まれる製造方法によって解決される。
The problem is that wiring layers 13 and 14 formed in a convex shape on the insulating film 12 are
a step of applying and solidifying a first SOG film 15 on the semiconductor substrate 11 containing the wiring layer pattern; a step of forming a resist film pattern 17 having a pattern shape opposite to that of the wiring layer pattern; Using the resist film pattern as a mask, the first
5OGII 115 is etched to form the wiring layer 13.
.. The problem is solved by a manufacturing method that includes a step of removing the first 5OGWi on 14 to expose the wiring layer, and then a step of applying and solidifying the second 5OGWi on the entire surface.

[作用] 即ち、本発明は、配線層13.14が凸状に形成されて
いる半導体基板11上に第1のSOG膜15を塗布して
固化し、次に、配線層パターンとは逆パターンのレジス
ト膜パターン17を形成し、それをマスクにして露出し
た第1のS O([15をエツチングして除去し、配線
層13.14を露出させる。これは第1のSOG膜15
を被着した後、凸状になった第1のSOG膜を除去して
一応表面の凹凸を少なくしておくためで、次に、第2の
SOG膜18を被着して極めて表面の平坦化した眉間絶
縁膜を形成する。
[Operation] That is, in the present invention, the first SOG film 15 is coated and solidified on the semiconductor substrate 11 on which the wiring layers 13 and 14 are formed in a convex shape, and then a pattern opposite to the wiring layer pattern is formed. A resist film pattern 17 is formed, and using this as a mask, the exposed first SOG film 15 is etched and removed to expose the wiring layers 13 and 14.
This is to reduce the unevenness of the surface by removing the convex first SOG film 18 after depositing the SOG film 18, and then depositing the second SOG film 18 to make the surface extremely flat. Forms an insulating film between the eyebrows.

[実施例] 以下、図面を参照して実施例によって詳細に説明すると
、第2図(a)〜(濁は本発明にかかる形成方法の工程
順断面図を示している。
[Example] Hereinafter, a detailed explanation will be given by way of example with reference to the drawings. FIGS.

第2図(a)参照;半導体基板ll上に絶縁膜12を介
して幅の広いアルミニウム配線13と幅の狭いアルミニ
ウム配線14が設けられており、その上面に膜厚1μm
程度のPSG膜19を成長する。PSG膜の成長法はモ
ノシラン、ジシランにホスフィンを混合した反応ガスを
用いて、常圧または減圧のCVD法によっておこなう。
Refer to FIG. 2(a); A wide aluminum wiring 13 and a narrow aluminum wiring 14 are provided on a semiconductor substrate 11 with an insulating film 12 interposed therebetween, and a film thickness of 1 μm is formed on the upper surface thereof.
The PSG film 19 is grown to a certain extent. The PSG film is grown by CVD at normal pressure or reduced pressure using a reaction gas containing monosilane, disilane, and phosphine.

第2図(b)参照;次いで、第1のSOG膜15を塗布
して、温度350〜450 ”Cで30分間の熱処理(
アニール)をして固化させる。その固化した第1のSO
G膜15の膜厚は0.5μm程度にする。
Refer to FIG. 2(b); Next, the first SOG film 15 is applied and heat-treated at a temperature of 350 to 450''C for 30 minutes (
annealing) and solidify. The solidified first SO
The thickness of the G film 15 is approximately 0.5 μm.

第2図(C)参照−次いで、その第1のSOC膜15の
上に、アルミニウム配線のパターンとは逆のパターンを
もったレジスト膜パターン17を形成する。
Refer to FIG. 2(C) - Then, on the first SOC film 15, a resist film pattern 17 having a pattern opposite to that of the aluminum wiring is formed.

即ち、アルミニウム配線13.14の上に被着している
第1のSOG膜15を露出させ、他部分の第1のSOG
膜15を被覆したレジスト膜パターンである。
That is, the first SOG film 15 deposited on the aluminum wiring 13, 14 is exposed, and other parts of the first SOG film 15 are exposed.
This is a resist film pattern covering the film 15.

第2図(d)参照;次いで、そのレジスト膜パターン1
7をマスクにしてRIE(リアクティブイオンエツチン
グ)法で第1のSOG膜15をエツチングして除去し、
アルミニウム配線13.14上のPSG膜19を露出さ
せる。このRIE法はCFa:02= 400sccm
 : 40sccmの混合ガスを流入させ、減圧度0.
3Torr程度にして、電力200Wでおこなう。
See FIG. 2(d); then, the resist film pattern 1
7 as a mask, the first SOG film 15 is etched and removed by RIE (reactive ion etching) method.
The PSG film 19 on the aluminum interconnections 13 and 14 is exposed. This RIE method is CFa:02=400sccm
: 40 sccm of mixed gas is introduced, and the degree of decompression is 0.
The temperature is set to about 3 Torr and the power is 200W.

SOG膜とPSG膜とはややエツチングレートが相異す
るので、SOG膜のみ除去することができる。このエツ
チング後、レジスト膜パターン17を除去する。
Since the SOG film and the PSG film have slightly different etching rates, only the SOG film can be removed. After this etching, the resist film pattern 17 is removed.

第2図(e)参照;次いで、第2のSOG膜18を塗布
して、前記と同一条件で熱処理して固化させる。
See FIG. 2(e); next, a second SOG film 18 is applied and solidified by heat treatment under the same conditions as above.

その第2のSOG膜18の膜厚も0.5μm程度に形成
する。
The second SOG film 18 is also formed to have a thickness of about 0.5 μm.

第2図げ)参照;次いで、RIE法によって全面エンチ
ングして厚み1μm程度を除去する。それにはSOG膜
とPSG膜との両方を同時にエツチングすることになる
から、SOG膜とPSG膜とのエツチングレートがほぼ
等しくなる条件(混合ガス比、減圧度、パワーなどの条
件)を与えてエツチングする。そうすれば、アルミニウ
ム配線1314上にはPSG膜19が厚みのほぼ半分を
エツチングされて露出し、配線パターンの間隙にはSO
G膜が露出した絶縁膜が形成され、その表面は非常に平
坦化した状態になる。
(See Figure 2); Next, the entire surface is etched by RIE to remove a thickness of about 1 μm. To do this, both the SOG film and the PSG film must be etched at the same time, so conditions (conditions such as mixed gas ratio, degree of depressurization, power, etc.) are provided so that the etching rates of the SOG film and the PSG film are approximately equal. do. Then, approximately half of the thickness of the PSG film 19 is etched and exposed on the aluminum wiring 1314, and SO is formed in the gaps between the wiring patterns.
An insulating film is formed with the G film exposed, and its surface becomes extremely flat.

第2図(→参照;次いで、その上にCVD法によって膜
厚0.5μmのPSG膜20を成長する。
Next, a PSG film 20 with a thickness of 0.5 μm is grown thereon by the CVD method.

そうすると、PSG膜とSOG膜とからなる層間絶縁膜
が極めて平坦化されて、その構成は配線上では膜厚1u
m程度のPSG膜19.20のみが積層し、配線間隙(
配線パターンの間隙)ではSOG膜を挟んだP S G
IIi19.20が形成される。現在、PSG膜の膜質
がSoG膜よりやや良質であるから、本発明にかかる原
理を適用して上記の形成方法によって形成するのが優れ
た形成方法といえる。
As a result, the interlayer insulating film consisting of the PSG film and the SOG film becomes extremely planarized, and the thickness of the film on the wiring is 1 μm.
Only PSG films 19.20 m thick are stacked, and the wiring gap (
In the gap between wiring patterns), PSG with SOG film sandwiched between
IIi19.20 is formed. Currently, the film quality of the PSG film is slightly better than that of the SoG film, so it can be said that forming the film by the above-described method using the principles of the present invention is an excellent method.

なお、本発明にかかる形成方法において、SOG膜の代
わりにPSG膜を用いると、PSG膜は被覆性が良くて
凹凸形状を残したまま被覆しており、また、下地の絶縁
膜と同材質のために、レジスト膜パターン17が位置ず
れしてパターンニングした場合、オーバーエツチングが
起こり易い欠点がある。従って、液体を塗布して固化す
る絶縁膜(SOG膜)を用いるが最適である。
In addition, in the formation method according to the present invention, when a PSG film is used instead of the SOG film, the PSG film has good covering properties and covers with the uneven shape remaining, and it is also possible to use a PSG film that is made of the same material as the underlying insulating film. Therefore, when patterning is performed with the resist film pattern 17 shifted in position, there is a drawback that over-etching is likely to occur. Therefore, it is optimal to use an insulating film (SOG film) that is coated with a liquid and then solidified.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば眉間絶
縁膜の表面が極めて平坦化されて、益々高集積化・微細
化して多層配線を形成するLSIVLS Iなどの半導
体デバイスの信頼性の維持・向上に大きな効果があるも
のである。
As is clear from the above description, according to the present invention, the surface of the glabella insulating film is extremely flattened, thereby maintaining the reliability of semiconductor devices such as LSIVLSI, which are increasingly integrated and miniaturized to form multilayer wiring.・It has a great effect on improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は原理図、 第2図(a)〜(g)は本発明にかかる形成方法の工程
順断面図、 第3図(a)、 (b)は従来の問題点を説明する図で
ある。 図において、 1.11は半導体基板、 2.12は絶縁膜、 3、 4.13.14はアルミニウム配線、5はSOG
膜、 6はダミー配線パターン、 15は第1のSOG膜、 17はレジスト膜パターン、 18は第2のSOG膜、 19、20はPSG膜 を示している。 17レンZFIli−\苧〉 厚r¥ ■ 第 Ill 第 図 (セの2) 6 ダミー配心軟イクりレ 徒束ら閏敢奏ttifl咽Tj図 第 3 図
FIGS. 1(a) to (d) are principle diagrams, FIGS. 2(a) to (g) are cross-sectional views of the forming method according to the present invention, and FIGS. 3(a) and (b) are conventional It is a figure explaining a problem. In the figure, 1.11 is a semiconductor substrate, 2.12 is an insulating film, 3, 4.13.14 is aluminum wiring, and 5 is SOG
6 is a dummy wiring pattern, 15 is a first SOG film, 17 is a resist film pattern, 18 is a second SOG film, and 19 and 20 are PSG films. 17 Len ZFIli-\苧〉 Thick r¥ ■ No. Ill No. 2 (Second 2) 6 Dummy worry soft orgasm and rush to play ttifl throat Tj No. 3

Claims (1)

【特許請求の範囲】  凸状に形成された配線層を含む半導体基板上に第1の
SOG膜を塗布して固化する工程と、次いで、前記配線
層パターンとは逆のパターン形状を有するレジスト膜パ
ターンを形成する工程と、 次いで、該レジスト膜パターンをマスクにして前記第1
のSOG膜をエッチングして、前記配線層上の該第1の
SOG膜を除去して該配線層を露出させる工程と、 次いで、全面に第2のSOG膜を塗布して固化する工程
とが含まれてなることを特徴とする半導体装置の製造方
法。
[Claims] A step of applying and solidifying a first SOG film on a semiconductor substrate including a wiring layer formed in a convex shape, and then a resist film having a pattern shape opposite to that of the wiring layer pattern. a step of forming a pattern, and then using the resist film pattern as a mask to form the first pattern.
a step of etching the first SOG film on the wiring layer to expose the wiring layer; and a step of applying and solidifying a second SOG film on the entire surface. A method of manufacturing a semiconductor device, comprising:
JP26602190A 1990-10-02 1990-10-02 Manufacture of semiconductor device Pending JPH04142065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26602190A JPH04142065A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26602190A JPH04142065A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04142065A true JPH04142065A (en) 1992-05-15

Family

ID=17425281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26602190A Pending JPH04142065A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04142065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252141A (en) * 1993-02-23 1994-09-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
US5635428A (en) * 1994-10-25 1997-06-03 Texas Instruments Incorporated Global planarization using a polyimide block
US7741696B2 (en) 2004-05-13 2010-06-22 St-Ericsson Sa Semiconductor integrated circuit including metal mesh structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252141A (en) * 1993-02-23 1994-09-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
US5635428A (en) * 1994-10-25 1997-06-03 Texas Instruments Incorporated Global planarization using a polyimide block
US7741696B2 (en) 2004-05-13 2010-06-22 St-Ericsson Sa Semiconductor integrated circuit including metal mesh structure

Similar Documents

Publication Publication Date Title
US5502007A (en) Method of forming flat surface of insulator film of semiconductor device
JPH06181209A (en) Manufacture of semiconductor device
JPH0563940B2 (en)
JPH04142065A (en) Manufacture of semiconductor device
JP2716156B2 (en) Method for manufacturing semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JPS6313347B2 (en)
JPS63115341A (en) Method of smoothening surface
JPH05175342A (en) Manufacture of semiconductor device
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS59175124A (en) Manufacture of semiconductor device
JPH098007A (en) Method for flattening insulation film
JPS59195846A (en) Fabrication of inter-layer insulating film
JPH06252141A (en) Manufacture of semiconductor device
JPS60115234A (en) Preparation of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPS59167020A (en) Manufacture of semiconductor device
JPH04116825A (en) Manufacture of semiconductor device
JPH03237721A (en) Method of flattening multilayer wiring
JPH05335421A (en) Manufacture of semiconductor device
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH0376127A (en) Manufacture of semiconductor device
JPS63172444A (en) Manufacture of semiconductor device
JPS62291947A (en) Manufacture of semiconductor device
JPH10340903A (en) Planarization method for interlayer insulating film