JPH0265256A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0265256A
JPH0265256A JP21791288A JP21791288A JPH0265256A JP H0265256 A JPH0265256 A JP H0265256A JP 21791288 A JP21791288 A JP 21791288A JP 21791288 A JP21791288 A JP 21791288A JP H0265256 A JPH0265256 A JP H0265256A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
wiring
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21791288A
Other languages
Japanese (ja)
Other versions
JP2716156B2 (en
Inventor
Akira Isobe
晶 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63217912A priority Critical patent/JP2716156B2/en
Publication of JPH0265256A publication Critical patent/JPH0265256A/en
Application granted granted Critical
Publication of JP2716156B2 publication Critical patent/JP2716156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To restrain the over-etching of a silicon nitride and to enable the flattening of it by a method wherein a coating film whose etching rate is nearly equal to that of a silicon nitride film is formed on the silicon nitride film, which is etched back. CONSTITUTION:An aluminum wiring 3 is formed into a required pattern on an insulating film 2, a silicon oxide film 4 is grown, and furthermore a silicon nitride film 5 is grown thereon. Next, an organic siloxane polymer solution is applied onto the whole face, which is calcined for the formation of an organic siloxane polymer layer 6. Then, the whole face is etched back through a reactive ion etching. In this process, the ratios of the etching rate of organic siloxane polymer to that of the silicon nitride and to that of a silicon oxide film are 1:1 and 2:1 respectively. The silicon nitride 5 on a wiring 3a is thoroughly removed but the silicon nitride formed on a wiring 3b is left unremoved. Lastly, a silicon oxide film 7 is formed on the whole face through a CVD method to form an interlaminar insulating film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に眉間絶縁膜
を平坦化を図った製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a glabella insulating film to planarize it.

〔従来の技術〕[Conventional technology]

近年、半導体装置の配線の微細化、多層化に伴い、配線
層間の平坦化が重要となっている。平坦化法の1つであ
る塗布法は、例えば金属配線上に気相成長法による酸化
膜(CVD酸化膜)を成長し、塗布・焼成により形成さ
れるケイ酸ガラス(シリカフィルム)や有機シロキサン
ポリマーを形成し、更にこの上にCVD酸化膜を成長し
て配線層間膜としている。
In recent years, with the miniaturization and multilayering of wiring in semiconductor devices, flattening between wiring layers has become important. The coating method, which is one of the planarization methods, involves growing an oxide film (CVD oxide film) on metal wiring using a vapor phase growth method, and then using silicate glass (silica film) or organic siloxane, which is formed by coating and baking. A polymer is formed, and a CVD oxide film is further grown on the polymer to form a wiring interlayer film.

この方法では塗布膜の膜厚が厚くなるとスルーホール開
孔部の塗布膜の露出面積が大きくなり、上層配線用アル
ミニウムのスパッタ時に、塗布膜からのアウトガスによ
りアルミニウムの被着不良が生じる。これを避けるため
、全面をエツチングバックしてスルーホール開孔部の塗
布膜を除去する方法がある。
In this method, as the thickness of the coating film increases, the exposed area of the coating film at the through-hole opening increases, and when sputtering aluminum for upper layer wiring, outgas from the coating film causes poor adhesion of aluminum. To avoid this, there is a method of etching back the entire surface to remove the coating film at the opening of the through hole.

すなわち、第3図(a)に示すように、半導体基板1の
絶縁膜2上に形成したアルミニウム配線3の上に層間絶
縁膜としてシリコン酸化膜4を成長し、その上に有機シ
ロキサンポリマー6を塗布。
That is, as shown in FIG. 3(a), a silicon oxide film 4 is grown as an interlayer insulating film on an aluminum wiring 3 formed on an insulating film 2 of a semiconductor substrate 1, and an organic siloxane polymer 6 is grown on it. Coating.

焼成により形成する。次いで、第3図(b)のように、
全面をエツチングバックして凹部内にのみ有機シロキサ
ンポリマー6を残し、更に第3図(C)のように、この
上にシリコン酸化膜7を成長している。
Formed by firing. Next, as shown in FIG. 3(b),
The entire surface is etched back to leave the organic siloxane polymer 6 only in the recesses, and a silicon oxide film 7 is further grown thereon as shown in FIG. 3(C).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の層間膜製造方法は、下側パ
ターンの凹凸による配線上の塗布膜厚に差が生じるため
、最も厚い部分がなくなるまでエツチングバックしなけ
ればならない。さらに膜厚やエツチングの均一性からマ
ージンを考えである程度のオーバーエツチングが必要で
ある。
In the above-described conventional method for manufacturing an interlayer film for a semiconductor device, since the unevenness of the lower pattern causes a difference in the thickness of the coating film on the wiring, it is necessary to perform etching back until the thickest part is removed. Furthermore, a certain degree of overetching is required in consideration of the film thickness and uniformity of etching to ensure a margin.

一方、シリカフィルムや有機シロキサンポリマーのエツ
チングレートは酸化膜に比べて2倍程度速いため、塗布
膜厚の薄い部分、すなわち微細な配線部では第3図(b
)のように塗布膜がオーバーエツチングされ易く、この
ため逆に平坦性が悪化してしまうという問題がある。
On the other hand, the etching rate of silica films and organic siloxane polymers is about twice as fast as that of oxide films, so in areas where the coating film is thin, that is, fine wiring areas, as shown in Figure 3 (b).
), the coating film is likely to be over-etched, which causes a problem in that the flatness deteriorates.

この場合、層間絶縁膜にシリコン窒化膜を用いれば、エ
ツチングレート比をほぼ1:1にできるが、アルミニウ
ム上にシリコン窒化膜を成長するとストレスマイグレー
ションに弱くなり、また高誘電率のため、眉間容量が高
くなる。
In this case, if a silicon nitride film is used as the interlayer insulating film, the etching rate ratio can be made approximately 1:1, but if the silicon nitride film is grown on aluminum, it will be susceptible to stress migration, and due to its high dielectric constant, it will have a capacitance between the eyebrows. becomes higher.

本発明は上述した問題を解消して平坦性に優れた眉間絶
縁膜を形成することができる半導体装置の製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can solve the above-mentioned problems and form a glabellar insulating film with excellent flatness.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、基板上に形成した金
属配線層の上にシリコン酸化膜を形成する工程と、この
シリコン酸化膜上にシリコン窒化膜を形成する工程と、
このシリコン窒化膜上にシリコン窒化膜と略エツチング
1/−トの等しい塗布膜を形成して表面を平坦化する工
程と、前記金属配線層上におけるシリコン窒化膜の膜厚
が少なくとも減少されるまで前記塗布膜をエツチングバ
ックする工程と、全面にシリコン酸化膜を形成して眉間
絶縁膜を完成する工程とを含んでいる。
A method for manufacturing a semiconductor device according to the present invention includes a step of forming a silicon oxide film on a metal wiring layer formed on a substrate, a step of forming a silicon nitride film on the silicon oxide film,
A step of forming a coating film on the silicon nitride film with approximately the same etching rate as the silicon nitride film to flatten the surface, and at least until the thickness of the silicon nitride film on the metal wiring layer is reduced. The method includes a step of etching back the coating film, and a step of forming a silicon oxide film on the entire surface to complete a glabellar insulating film.

〔作用〕[Effect]

上述した製造方法では、塗布膜のエツチングバック時に
、これとエツチングレートの等しいシリコン窒化膜を同
時にエツチングさせるので、凹部における塗布膜のオー
バエツチングを抑制し、平坦化を実現する。
In the above-described manufacturing method, when the coating film is etched back, the silicon nitride film having the same etching rate as the coating film is etched at the same time, so over-etching of the coating film in the recessed portions is suppressed and planarization is achieved.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)乃至(d)は本発明の一実施例を工程順に
示す縦断面図である。
FIGS. 1(a) to 1(d) are longitudinal sectional views showing an embodiment of the present invention in the order of steps.

先ず、第1図(a)のように、半導体基板1の絶縁膜2
上に厚さ1.0μmのアルミニウム配線3を所要パター
ンに形成する。そして、全面にプラズマCVD法を用い
てシリコン酸化膜4を2000人成長し、更にこの上に
プラズマCVD法を用いてシリコン窒化膜5を2000
人成長する。
First, as shown in FIG. 1(a), the insulating film 2 of the semiconductor substrate 1 is
An aluminum wiring 3 having a thickness of 1.0 μm is formed thereon in a desired pattern. Then, 2,000 silicon oxide films 4 were grown on the entire surface using the plasma CVD method, and on top of this, 2,000 silicon nitride films 5 were grown using the plasma CVD method.
People grow.

次に、第1図(b)のように、全面に有機シロキサンポ
リマー溶液を塗布、焼成して有機シロキサンポリマー層
6を形成する。この時塗布膜厚のパターン依存性により
、微細配線3a上では1000人、広い配線3b上では
2500人となる。
Next, as shown in FIG. 1(b), an organic siloxane polymer solution is applied to the entire surface and fired to form an organic siloxane polymer layer 6. At this time, due to the pattern dependence of the coating film thickness, the number of people is 1,000 on the fine wiring 3a, and 2,500 on the wide wiring 3b.

次いで、第1図(c)のように、例えばCF4を用いた
りアクティブイオンエツチングにより全面をエツチング
ハックする。この時、有機シロキサンポリマーとシリコ
ン窒化膜、シリコン酸化膜のエツチングレート比はそれ
ぞれ1:1,2:1である。エツチングバック量を35
00人とすると、配線3a上のシリコン窒化膜5は全て
除去されるが、配線3b上のシリコン窒化膜5は100
0人程度残在れる。
Next, as shown in FIG. 1(c), the entire surface is etched and hacked using, for example, CF4 or active ion etching. At this time, the etching rate ratios of the organic siloxane polymer, silicon nitride film, and silicon oxide film are 1:1 and 2:1, respectively. Etching back amount to 35
00 people, the silicon nitride film 5 on the wiring 3a is completely removed, but the silicon nitride film 5 on the wiring 3b is removed by 100 people.
Approximately 0 people will remain.

最後に、第1図(d)のように、全面にプラズマCVD
法を用いてシリコン酸化膜7を5000人成長すること
で層間絶縁膜を形成する。
Finally, as shown in Figure 1(d), plasma CVD is applied to the entire surface.
An interlayer insulating film is formed by growing 5,000 silicon oxide films 7 using the method.

この方法によれば、有機シロキサンポリマー層6とエツ
チングレートが等しいシリコン窒化膜5を形成すること
によって、配線3a、3b上ではシリコン窒化膜5によ
ってこの領域に有機シロキサンポリマー層が塗布された
のと同様な状態となる。これにより、配線3a、3b間
における有機シロキサンポリマー層6のオーバエツチン
グが抑制され、全体として平坦化が実現できる。
According to this method, by forming the silicon nitride film 5 having the same etching rate as the organic siloxane polymer layer 6, the organic siloxane polymer layer is coated on the wirings 3a and 3b in this region. A similar situation will occur. As a result, over-etching of the organic siloxane polymer layer 6 between the wirings 3a and 3b is suppressed, and planarization can be realized as a whole.

なお、エツチングバックにより開孔部側面に塗布膜層が
露出することなく、信顛性の高い多層配線を形成するこ
とができるのは言うまでもない。
It goes without saying that a highly reliable multilayer wiring can be formed without exposing the coating layer on the side surface of the opening due to etching back.

第2図は本発明の他の実施例を説明するための縦断面図
である。
FIG. 2 is a longitudinal sectional view for explaining another embodiment of the present invention.

この実施例では、有機シロキザンポリマー層6の形成ま
では前記実施例と同じであるが、ここではエツチングハ
ック量を4500人、ずなわち広い配線3bj二のシリ
コン窒化膜が完全に除去されるまでエツチングバックを
行っている。
In this example, the steps up to the formation of the organic siloxane polymer layer 6 are the same as in the previous example, but the etching hack amount is 4500, that is, the silicon nitride film of the wide wiring 3bj is completely removed. Etching back is performed up to the point.

これにより、シリコン窒化膜5が層間絶縁膜中に存在す
ることによる、ストレスマイグレーションや眉間容量等
の悪影響を前記実施例よりも低減できる。また、狭い配
線3aの部分では約1500人のオーバーエツチングと
なるため、前記実施例に比べ平坦性はやや劣るものの、
従来法に比べれば十分な平坦化が達成できる。
Thereby, adverse effects such as stress migration and glabellar capacitance caused by the presence of the silicon nitride film 5 in the interlayer insulating film can be reduced more than in the previous embodiment. In addition, since approximately 1,500 people are over-etched in the narrow portion of the wiring 3a, the flatness is slightly inferior to that of the previous example.
Sufficient flattening can be achieved compared to the conventional method.

なお、以上の説明では、シリコン酸化膜の成長にはプラ
ズマCVDを用いたが、常圧CVDやバイアススパッタ
法などでも同様な効果が得られる。
In the above description, plasma CVD was used to grow the silicon oxide film, but similar effects can be obtained by atmospheric pressure CVD, bias sputtering, or the like.

また、有機シロキサンポリマーの代わりに無機のシリカ
フィルムあるいは、その多数回塗布でも同様な効果が得
られる。
Moreover, the same effect can be obtained by using an inorganic silica film instead of the organic siloxane polymer or by applying it multiple times.

[発明の効果〕 以−F説明したように本発明は、シリコン酸化膜上にシ
リコン窒化膜を形成したトで塗布膜を形成し、かつこれ
をエツチングハックしているので、凹部における塗布膜
のオーバエツチングを抑制し、塗布膜形成後の形状を維
持した平坦性の良い層間膜を得ることができる。また、
金属配線上のシリコン窒化膜を除去することにより、ス
トレスマイグレーションによる不良が起こることはな(
、また層間容量が増加することもない。
[Effects of the Invention] As explained below, in the present invention, a coating film is formed by forming a silicon nitride film on a silicon oxide film, and this is hacked by etching, so that the coating film in the recesses is It is possible to obtain an interlayer film with good flatness that suppresses overetching and maintains the shape after the coating film is formed. Also,
By removing the silicon nitride film on the metal wiring, defects due to stress migration will not occur (
, and the interlayer capacitance does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(d)は本発明の一実施例を製造工程
順に示す縦断面図、第2図は本発明の他の実施例の工程
一部の縦断面図、第3図(a)乃至(C)は従来方法を
工程順に示す縦断面図である。 1・・・半導体基板、2・・・絶縁膜、3.3a、3b
・・・アルミニウム配線、4・・・シリコン酸化膜、5
・・・シリコン窒化膜、6・・・有機シロキサンポリマ
ー層、綜 Cす 憾
1(a) to (d) are vertical cross-sectional views showing one embodiment of the present invention in the order of manufacturing steps, FIG. 2 is a vertical cross-sectional view of a part of the process of another embodiment of the present invention, and FIG. a) to (C) are longitudinal cross-sectional views showing the conventional method in the order of steps. 1... Semiconductor substrate, 2... Insulating film, 3.3a, 3b
...Aluminum wiring, 4...Silicon oxide film, 5
・・・Silicon nitride film, 6...Organosiloxane polymer layer,

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に形成した金属配線層の上にシリコン酸化膜
を形成する工程と、このシリコン酸化膜上にシリコン窒
化膜を形成する工程と、このシリコン窒化膜上にシリコ
ン窒化膜と略エッチングレートの等しい塗布膜を形成し
て表面を平坦化する工程と、前記金属配線層上における
シリコン窒化膜の膜厚が少なくとも減少されるまで前記
塗布膜をエッチングバックする工程と、全面にシリコン
酸化膜を形成して層間絶縁膜を完成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
1. The process of forming a silicon oxide film on the metal wiring layer formed on the substrate, the process of forming a silicon nitride film on this silicon oxide film, and the approximately etching rate of the silicon nitride film on this silicon nitride film. a step of forming a coating film with a uniform thickness to flatten the surface; a step of etching back the coating film until the thickness of the silicon nitride film on the metal wiring layer is at least reduced; and a step of forming a silicon oxide film on the entire surface. 1. A method of manufacturing a semiconductor device, comprising: forming an interlayer insulating film to complete an interlayer insulating film.
JP63217912A 1988-08-31 1988-08-31 Method for manufacturing semiconductor device Expired - Lifetime JP2716156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217912A JP2716156B2 (en) 1988-08-31 1988-08-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217912A JP2716156B2 (en) 1988-08-31 1988-08-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0265256A true JPH0265256A (en) 1990-03-05
JP2716156B2 JP2716156B2 (en) 1998-02-18

Family

ID=16711691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217912A Expired - Lifetime JP2716156B2 (en) 1988-08-31 1988-08-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2716156B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350727A (en) * 1989-07-18 1991-03-05 Seiko Epson Corp Manufacture of semiconductor device
JPH04266028A (en) * 1990-10-31 1992-09-22 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
JPH0936226A (en) * 1995-07-18 1997-02-07 Nec Corp Semiconductor device and its manufacture
JPH0945690A (en) * 1995-07-31 1997-02-14 Nec Corp Semiconductor device and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217644A (en) * 1984-04-12 1985-10-31 Matsushita Electronics Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217644A (en) * 1984-04-12 1985-10-31 Matsushita Electronics Corp Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350727A (en) * 1989-07-18 1991-03-05 Seiko Epson Corp Manufacture of semiconductor device
JPH04266028A (en) * 1990-10-31 1992-09-22 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
JPH0936226A (en) * 1995-07-18 1997-02-07 Nec Corp Semiconductor device and its manufacture
JPH0945690A (en) * 1995-07-31 1997-02-14 Nec Corp Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JP2716156B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JPH0645327A (en) Semiconductor device and manufacture thereof
JPH01290236A (en) Method of levelling wide trench
JP4540847B2 (en) Semiconductor device planarization method using high-density plasma system
JPH06283485A (en) Manufacture of semiconductor device
JP3077990B2 (en) Method for manufacturing semiconductor device
JPH0265256A (en) Manufacture of semiconductor device
JPH0410222B2 (en)
JP2606315B2 (en) Method for manufacturing semiconductor device
JPS6376351A (en) Formation of multilayer interconnection
JPH0637069A (en) Manufacture of semiconductor device
JP2663739B2 (en) Method for manufacturing semiconductor device
JPS5893328A (en) Method of flattening insulating layer
JPH06244286A (en) Manufacture of semiconductor device
JPS60115234A (en) Preparation of semiconductor device
JPH07115132A (en) Manufacture of semiconductor device
JPS61232636A (en) Manufacture of semiconductor device
JPH02254741A (en) Manufacture of multilayer wiring
JPS59195846A (en) Fabrication of inter-layer insulating film
JPS61260638A (en) Manufacture of semiconductor device
JPH0534839B2 (en)
JPH01192136A (en) Manufacture of semiconductor device
JPH0220141B2 (en)
JPS62291947A (en) Manufacture of semiconductor device
JPH0729905A (en) Manufacture of semiconductor element
JPH04255227A (en) Manufacture of semiconductor device