JPS61232636A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61232636A
JPS61232636A JP7476385A JP7476385A JPS61232636A JP S61232636 A JPS61232636 A JP S61232636A JP 7476385 A JP7476385 A JP 7476385A JP 7476385 A JP7476385 A JP 7476385A JP S61232636 A JPS61232636 A JP S61232636A
Authority
JP
Japan
Prior art keywords
insulating film
layer
resist
film
psg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7476385A
Other languages
Japanese (ja)
Other versions
JPH0712040B2 (en
Inventor
Kiyooki You
葉 清発
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60074763A priority Critical patent/JPH0712040B2/en
Publication of JPS61232636A publication Critical patent/JPS61232636A/en
Publication of JPH0712040B2 publication Critical patent/JPH0712040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form flat insulating films having high reliability by making a first deposition process, in which the insulating film is shaped, a resist applying process, in which a resist film is formed onto the insulating film, a flattening process, in which the projecting film of the insulating film is removed together with a resist film and the surface is flattened, and a second deposition process, in which the insulating film is deposited, to be contained. CONSTITUTION:A PSG insulating film 3 is formed through a normal pressure CVD method, the viscosity of polymethyl methacrylate is adjusted, and a resist layer 4 having a flat surface is shaped through wet-on-wet coating by spin coating. The resist layer 4 and the projecting sections of the PSG insulating film 3 are removed through etching by reactive ion etching using tetrafluoromethane to shape the PSG insulating film 3 having a flat surface. The surface layer of the PSG insulating layer is etched slightly to remove a surface contamination layer, a defect layer, etc., and a PSG insulating film 5 is deposited through the normal CVD method. A contact hole 6 is bored to the flat PSG insulating film formed, and a second wiring pattern 7 is shaped.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、半導体装置の製造方法に係り、特に層間絶縁
膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming an interlayer insulating film.

[従来技術およびその問題点コ 半導体技術の進歩と共に、超LSIをはじめ、半導体装
置の高集積化が進められてきている。半導体装置の高集
積化は素子の微細化によって実現されるため、微細かつ
高精度なパターン形成技術が注目されている。
[Prior Art and Its Problems] With the progress of semiconductor technology, the integration of semiconductor devices including very large scale integrated circuits (VLSI) has been increasing. BACKGROUND ART High integration of semiconductor devices is achieved through miniaturization of elements, so techniques for forming fine and highly accurate patterns are attracting attention.

一般に論I!I!LsTでは配線が不規則なため配線の
占右面槓が増大し、これを緩和するため多層配線技術が
必須どなっている。多層配線技術においては、基板内に
形成された各素子領域と第1層目の配線パターンどの間
、および配線パターン同志の間に介在し電気的に絶縁づ
−るど共に、所定の領域に′・′T′孔されるコンタク
1へ孔を介して、異なる層のパターンを電気的に接続す
る絶縁膜の形成が重要な役割りを果しており、多層配線
を有する半導体装置の微細化および歩留りの向上には、
後述する如く、絶縁膜表面の平j■化技術と]ンタク1
〜形成技術が、特に重大なポイン1〜どなっている。
Generally speaking I! I! In LsT, the irregularity of the wiring increases the amount of space on the wiring surface, and multilayer wiring technology is essential to alleviate this problem. In multi-layer wiring technology, electrical insulation is applied to predetermined areas between each element area formed in the substrate and the first layer wiring pattern, and between wiring patterns to provide electrical insulation.・The formation of an insulating film that electrically connects the patterns of different layers through the holes to contact 1 with the 'T' hole plays an important role, which contributes to the miniaturization and yield improvement of semiconductor devices with multilayer wiring. To improve,
As will be described later, flattening technology for the surface of the insulating film and contact 1
-The formation technology is changing, especially important point 1-.

すなわち、絶縁を完全化Jるには、下地層の段差を被覆
しピンボールによる導通現象が生じない程度に厚く形成
しなければtfらない。しかしながら厚くなればなる稈
、コンタクト孔(スルーホール)の形成は困輔どなり、
高度なコンタク1〜形成技術が必要どなってくる。
That is, in order to achieve complete insulation, it is necessary to cover the level difference in the underlayer and form it thick enough to prevent conduction due to pinballs. However, the thicker the culm, the more difficult it becomes to form contact holes (through holes).
Advanced contact forming technology becomes necessary.

また、L層に形成される配線パウ〜ンの微細化および歩
留りの向上をはかるには、配線層用の簿膜形成の面から
も、パターン形成のためのフォトリソ工程にお()るフ
ォトマスクからのパターン転写性の面からも、絶縁層の
平坦化が極めて強く要求されている。
In addition, in order to miniaturize the wiring pattern formed in the L layer and improve the yield, it is necessary to use a photomask in the photolithography process for pattern formation, from the viewpoint of film formation for the wiring layer. There is a strong demand for flattening of the insulating layer also from the aspect of pattern transferability.

そこで、リフロー法を用いた平坦化法や、絶縁膜として
、ポリイミド樹脂等の有機物を用いる方法等が提案され
ている。
Therefore, a planarization method using a reflow method and a method using an organic material such as polyimide resin as an insulating film have been proposed.

リフロー法は、例えばリンケイ酸ガラス(PSG)膜を
形成した後、これを加熱し溶融させることにより表面の
平坦化をはかろうどするもので、この方法では高温処理
■稈が必要であるため、不純物拡散層を有するようなデ
バイスでは熱に1にって、該不純物拡散層中の不純物が
再び拡散されて接合深さが深くなるため、チャネル長が
2μ肌以下の超LSIデバイスでは短ヂャネル効果に問
題が生じてくる。またアルミニウム配線層を含むデバイ
スの場合、配線層中のアルミニウムとシリコン基板との
間で界面反応が生じ、ヒロックが発生し接合破壊の原因
となる等の問題があり、リフロー法は適用できない。
In the reflow method, for example, a phosphosilicate glass (PSG) film is formed and then heated and melted to flatten the surface.This method requires high-temperature treatment. In a device having an impurity diffusion layer, the impurities in the impurity diffusion layer are diffused again due to heat and the junction depth becomes deeper. Therefore, in an ultra LSI device with a channel length of 2 μm or less, a short channel is required. Problems arise with effectiveness. In addition, in the case of a device including an aluminum wiring layer, there are problems such as an interfacial reaction between the aluminum in the wiring layer and the silicon substrate, which causes hillocks and breakdown of the bond, and therefore the reflow method cannot be applied.

そこで、二酸化シリコン膜等の無機物からなる絶縁膜を
形成した後、凹凸ある表面をレジストで平坦化し、レジ
ストと該絶縁膜とが同じエツチング速度をもつようなエ
ツチング条件下でドライエツチングし、該絶縁膜の凸部
をレジメ1−と共にエッヂバックして平坦化する方法が
注目されている。
Therefore, after forming an insulating film made of an inorganic material such as a silicon dioxide film, the uneven surface is flattened with a resist, dry etching is performed under etching conditions such that the resist and the insulating film have the same etching rate, and the insulating film is etched. A method of flattening the convex portion of the film by edge-backing it together with Regime 1- is attracting attention.

しかしながら、レジスト塗布によって表面を平坦化しよ
うとする場合、かなり厚いレジスI一層を形成する必要
があった。
However, when attempting to flatten the surface by applying a resist, it was necessary to form a single layer of resist I which is quite thick.

ところで、塗布するレジスI一層が厚ければ厚い程、エ
ツチング工程で除去しなければならないレジスト層は厚
<4するため、エツチングに要する時間も長くなり、前
記絶縁膜がナトリウムイオン(Na”)で汚染されたり
、ピンホールの発生などによる膜質の劣化により耐圧が
低下したりする等、の問題があった。
By the way, the thicker the resist layer I is coated, the longer the resist layer that must be removed in the etching process has a thickness of <4, so the time required for etching becomes longer. There have been problems such as contamination and deterioration of film quality due to pinholes, resulting in a drop in breakdown voltage.

本発明は、前記実情に鑑みてなされたもので、平坦で信
頼性の高い絶縁膜を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flat and highly reliable insulating film.

[問題点を解決するための手段] そこで本発明は、凹凸のある基板表面に化学的気相成長
法(CVD法)によって平坦な表面をもつ絶縁膜を形成
するに際し絶縁膜のjft積工程をエッチバック法を用
いた平坦化■稈と膜厚制御工程との2工程に分けるよう
にしたもので、CVD法により絶縁膜を形成する第1の
堆積工程と、該絶縁膜上にレジスト膜を形成するレジス
ト塗布工程と、ドライエツチング法により該レジスト膜
と共に前記絶縁膜の凸部を除去し表面を平坦化する平坦
化工程と、更に、再び絶縁膜を堆積せしめる第2の堆積
工程とを含んでいる。
[Means for Solving the Problems] Therefore, the present invention provides a JFT deposition process for forming an insulating film with a flat surface on an uneven substrate surface by chemical vapor deposition (CVD). This process is divided into two processes: planarization using an etch-back method and a film thickness control process. a flattening step of removing the convex portions of the insulating film together with the resist film by dry etching to flatten the surface; and a second deposition step of depositing the insulating film again. I'm here.

望ましくは、レジスト塗布工程を2回に分は重ね塗りを
行なうと共に前記平坦化工程の後、第2の堆積工程に先
立ち、ウェットエツチング法による表面清浄化工程を実
行するようにするとよい。
Preferably, the resist coating process is repeated twice, and after the flattening process and prior to the second deposition process, a surface cleaning process using a wet etching method is performed.

[作用] すなわち、配線層パターン等の存在による段差を含む表
面上にCVD法によって絶縁膜を形成した後、この絶縁
股上に、まず粘度の高いレジストを塗布した後次いで粘
度の低いレジストを塗布するという方法により、最小限
の厚さでかつ表面の平坦なレジスト層を形成する。この
2回生411法により、従来は1.5〜2.0μmff
1度必要であ−)だレジスl一層が1〜1.2μ7nを
大幅に41(減される。
[Operation] That is, after an insulating film is formed by CVD on a surface including steps due to the presence of a wiring layer pattern, etc., a high viscosity resist is first applied to the insulating layer, and then a low viscosity resist is applied. By this method, a resist layer with a minimum thickness and a flat surface is formed. By this second regeneration 411 method, conventionally 1.5 to 2.0 μmff
The resistor layer required once is significantly reduced by 1 to 1.2 μ7n.

そして該レジメ1一層と該絶縁膜どのエツチング速度が
等しくなるような条件下で反応性イオンエッヂング等の
異方性ドライエツヂングにより該レジスト層と共に前記
絶縁膜の凸部を除去し、エツチング前の平坦4丁表面形
状をそのまま維持した平坦な絶縁膜表面を得る。このと
き、レジメ1〜層の厚さが最小限に抑えられているため
、■ツヂング時間が少なくてすみ、絶縁膜の膜質を劣化
したりすることなく作業性の良いエツチングが可能とな
る。
Then, the convex portions of the insulating film are removed together with the resist layer by anisotropic dry etching such as reactive ion etching under conditions such that the etching rate of the first layer of the regimen and that of the insulating film are the same, and the etching rate of the insulating film before etching is removed. To obtain a flat insulating film surface that maintains the flat surface shape as it is. At this time, since the thickness of Regime 1 to layer is kept to a minimum, (1) the etching time is short, and etching can be performed with good workability without deteriorating the film quality of the insulating film.

この後、表面清浄化処理を施し、エツチング圧力等によ
り表面に生成されたりイ」着したりした物質を除去し、
更に再び、CVD法等ににり所望の厚さとなるまで絶縁
膜を成長せしめる。
After that, a surface cleaning treatment is performed to remove substances generated or attached to the surface due to etching pressure, etc.
Furthermore, the insulating film is grown again using the CVD method or the like until it reaches a desired thickness.

このようにして、エッチバック量を最小限に抑え、膜質
が良好でかつ平1!1な、信頼性の高い絶縁膜が形成さ
れる。
In this way, a highly reliable insulating film with good film quality and 1:1 flatness is formed, with the amount of etchback being minimized.

なお、この方法は常圧CVD法を用いて形成される絶縁
膜をエッチバックする際に特に有効である。
Note that this method is particularly effective when etching back an insulating film formed using the atmospheric pressure CVD method.

すなわち、従来のエッヂバック法にJ:り平坦化しよう
とする場合、絶縁膜はエッヂバック量分だけ厚く形成し
ておかねばならないわt)であるが、常圧CV[’)法
では特に厚<11を積すればする程、段差は拡大されて
いく。従って、レジメ1へもその分だけ、厚く塗布しな
ければならず、エッチバック量も多くなってしまう。そ
こで本発明の方法では、絶縁膜の堆積工程を2回に分り
、1回目の工程では、平坦面を形成することのみを目的
とした比較的薄い絶縁膜を形成し、2回目の工程では、
膜厚を調整するようにしているため、エッチバック量を
大幅に低減でき、膜質の低下を防ぐことができる。
In other words, when attempting to planarize using the conventional edge back method, the insulating film must be formed thicker by the amount of edge back. The more <11 is multiplied, the larger the step becomes. Therefore, it is necessary to apply the same amount thicker to Regime 1, and the amount of etchback increases. Therefore, in the method of the present invention, the insulating film deposition step is divided into two steps. In the first step, a relatively thin insulating film is formed for the sole purpose of forming a flat surface, and in the second step,
Since the film thickness is adjusted, the amount of etchback can be significantly reduced and deterioration in film quality can be prevented.

[実施例] 以下、本発明実施例の配線層の形成方法について、図面
を参照しつつ詳細に説明する。
[Example] Hereinafter, a method for forming a wiring layer according to an example of the present invention will be described in detail with reference to the drawings.

第1図(a)乃至(f)は、配線層の形成工程を示す図
である。
FIGS. 1(a) to 1(f) are diagrams showing the process of forming a wiring layer.

まず、第1図(a)に示す如く所定の素子rt域(図示
せず)の形成されたシリコン基板1上に、通常のスパッ
タリング法により3%のシリコンを含有するアルミニ1
クム層(AQ−8i  3%)を膜厚0,9回1mとな
るJ:うに形成した後フA1〜リソ法により第1の配線
パターン2を形成する。
First, as shown in FIG. 1(a), on a silicon substrate 1 on which a predetermined element rt region (not shown) is formed, an aluminum film containing 3% silicon is sputtered using a normal sputtering method.
After forming a cum layer (AQ-8i 3%) to a film thickness of 0.9 times and 1 m, a first wiring pattern 2 is formed by a lithography process.

次いで、第1図(b)に示す如く、常圧CVD法により
膜厚1.2μmのPSG絶縁膜3を形成する。このとき
の基板湿度は400℃とする。
Next, as shown in FIG. 1(b), a PSG insulating film 3 having a thickness of 1.2 μm is formed by atmospheric pressure CVD. The substrate humidity at this time is 400°C.

そして、ポリメチルメタクリレ−1〜(PMMA)の粘
度を4〜5CPとなるように調整し、スピンコーティン
グにより約0.9μmの厚さに塗布し、前記第1の配線
パターンの間に相当する骨部分を埋める。続いて、ポリ
メチルメタクリレ−ト(PMMA)の粘度を40CP程
度に調整し、同様にスピンコーティングにより約o、2
umの厚さに重ね塗りを行ない、第1図(C)に示す如
く、表面の平1■なレジス1へ層4を形成1゛る。
Then, adjust the viscosity of polymethyl methacrylate-1 to (PMMA) to be 4 to 5 CP, apply it to a thickness of about 0.9 μm by spin coating, and apply it to a thickness of about 0.9 μm between the first wiring patterns. Fill in the bone. Next, the viscosity of polymethyl methacrylate (PMMA) was adjusted to about 40 CP, and the viscosity of polymethyl methacrylate (PMMA) was similarly adjusted to about 0.2 CP by spin coating.
The layer 4 is coated to a thickness of 1.0 mm to form a layer 4 on the resist 1 having a flat surface, as shown in FIG. 1(C).

この後、テ1〜ラフルオルメタン(CF4)を用いた反
応性イオンエツチングにより、レジス1へ層4およびP
SG絶縁膜3のエツチング速度がほぼ等しくなるような
条件下でエツチングを行ない、レジスト層4およびPS
G絶縁膜3の凸部を除去することにより、第1図(d)
に示す如く、表面の平坦なPSG絶縁膜3を形成する。
After this, layer 4 and P of resist 1 are etched by reactive ion etching using Te1 to Rafluoromethane (CF4).
Etching is performed under conditions such that the etching rate of the SG insulating film 3 is approximately equal, and the resist layer 4 and the PS insulating film 3 are etched.
By removing the convex portion of the G insulating film 3, the structure shown in FIG. 1(d) is obtained.
As shown in FIG. 2, a PSG insulating film 3 with a flat surface is formed.

このとき、エツチング条件としては、テ1〜ラフルオル
メタン50 (SCCM)および酸素10 (SCCM
)の雰囲気で、エツチング圧力40 P a 、パワー
350Wとしイオンのエネルギーが150eV稈度とな
るようにする。このようにして、この工程では、酸素を
添加することにより、C,F、、CF 2. COF2
等のポリマが基板表面に付着するのを酸素プラズマによ
って防ぐと共に、イオンのエネルギーを1500v程度
に抑えることによりPSG絶縁膜の劣化を防ぐようにし
ている。ちなみに、第2図に、テトラフルオルメタン雰
囲気中の酸素含有率(横軸)とエツチング速度(縦軸)
との関係を示す。aはPSG絶縁膜、bはポリメチルメ
タクリレートのエツチング速度を示す曲線である。
At this time, the etching conditions were Te 1 to Rafluoromethane 50 (SCCM) and Oxygen 10 (SCCM).
), the etching pressure was 40 Pa, the power was 350 W, and the ion energy was set to 150 eV. In this way, in this step, by adding oxygen, C, F, CF2. COF2
Oxygen plasma is used to prevent such polymers from adhering to the substrate surface, and the ion energy is suppressed to about 1500V to prevent deterioration of the PSG insulating film. By the way, Figure 2 shows the oxygen content in the tetrafluoromethane atmosphere (horizontal axis) and etching rate (vertical axis).
Indicates the relationship between A is a curve showing the etching rate of the PSG insulating film, and b is a curve showing the etching rate of polymethyl methacrylate.

更に、このシリコン基板1を塩1ti(Hclll)+
過酸化水素(H2O2)の混合液に浸漬し、エツチング
生成物、炭素、弗素およびこれらの混合物を除去した後
、稀弗酸を用いて、約100〜200AにわたりPSG
絶縁膜の表面層を軽くエツチングすることにより、表面
汚染層、欠陥層等を除去する。
Furthermore, this silicon substrate 1 is treated with salt 1ti(Hcll)+
After immersing in a mixture of hydrogen peroxide (H2O2) to remove etching products, carbon, fluorine, and mixtures thereof, PSG was immersed in dilute hydrofluoric acid for approximately 100-200 A.
By lightly etching the surface layer of the insulating film, surface contamination layers, defective layers, etc. are removed.

この後、常圧CVD法により約1μmのPS’G絶縁膜
5を第1図(e)に示す如く堆積する。このとき基板温
度は400℃とする。
Thereafter, a PS'G insulating film 5 of approximately 1 μm is deposited by atmospheric pressure CVD as shown in FIG. 1(e). At this time, the substrate temperature is 400°C.

このようにして形成された平坦なPSG絶縁膜に対し、
通常の方法でコンタクトホール6を穿孔1ノ、第1図(
f)に示す如く、第2の配線パターン7を形成する。
For the flat PSG insulating film formed in this way,
Drill a contact hole 6 in the usual manner (see Fig. 1).
As shown in f), a second wiring pattern 7 is formed.

このようにして形成されたPSG絶縁膜は平坦でかつ膜
質も良好で信頼性の高いものとなっているため、第2の
配線パターンの段切れを生じたり、絶縁不良を生じたり
することもなく、信頼性の高い半導体デバイスを得るこ
とができる。
The PSG insulating film formed in this way is flat, has good film quality, and is highly reliable, so it does not cause breaks in the second wiring pattern or insulation defects. , a highly reliable semiconductor device can be obtained.

なお、実施例においては、レジメl〜としてポリメチル
メタクリレートを用いたが、必ずしもこれに限定される
ものではなく伯の有機レジストを用いてもJ、い。
In the examples, polymethyl methacrylate was used as the regimen, but it is not necessarily limited to this, and any organic resist may also be used.

また、絶縁膜の形成に際しては常圧CVD法を用いたが
、減圧CVD法、プラズマCVD法等、他の方法を使用
してもに<、特に、平坦化エツチング後の絶縁膜の形成
に際しては減圧CVD法等により、よりち密な膜を形成
するのが望ましい。
Although normal pressure CVD was used to form the insulating film, other methods such as low pressure CVD and plasma CVD may also be used, especially when forming the insulating film after planarization etching. It is desirable to form a denser film by low pressure CVD or the like.

更に、絶縁膜としては、PSG絶縁膜の伯、酸化シリコ
ン膜(SiO2)、窒化シリコン躾(Si3N、)等に
も適用可能であることはいうまでもない。
Furthermore, it goes without saying that the insulating film can also be applied to a PSG insulating film, a silicon oxide film (SiO2), a silicon nitride film (Si3N, etc.).

[効果] 以上説明してきたように、本発明によれば、絶縁膜の堆
積T稈を、堆積後エッヂバック法によりこれを平坦化す
る工程と更に、平坦な絶縁膜上に1(f積し膜厚を調整
する工程の2工程に分けると共に、エッチバック法によ
るレジメ1〜塗布工程を順次粘度の高いレジストを用い
た重ね塗りを行なうことにより、段差形状を拡大しない
程度の最小限の膜厚でJlを積された第1の絶縁膜に対
し、重ね塗りによって最小限の膜厚のレジメ1〜層によ
って表面を平坦化するようにしているため、エッヂバッ
ク量が大幅に低減され、膜質の劣化を生じることなく平
坦な第1の絶縁膜が形成され得、更にこの上に所望の膜
厚の第2の絶縁膜を形成することにより、極めて効率良
く、平坦で信頼性の高い絶縁膜の形成が可能となる。
[Effects] As described above, according to the present invention, there is a step of flattening the deposited T culm of the insulating film by an edge-back method after the deposition, and a step of flattening the deposited T culm of the insulating film by applying 1(f product) on the flat insulating film. In addition to dividing the film thickness into two steps, the process from Regime 1 through the etch-back method to the coating process is sequentially overcoated using a highly viscous resist to achieve the minimum film thickness that does not enlarge the step shape. Since the surface of the first insulating film stacked with Jl is flattened by layer 1 to the minimum film thickness by overcoating, the amount of edgeback is significantly reduced and the film quality is improved. By forming a flat first insulating film without causing deterioration and further forming a second insulating film of a desired thickness on top of this, a flat and highly reliable insulating film can be formed extremely efficiently. Formation becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(f)は、本発明実施例の配線層の形
成方法を示す工程説明図、第2図は、平坦化のための反
応性イオンエツチング工程におりるエツチング速度(テ
トラフルオルメタン雰囲気に対する酸素の添加但)とエ
ツチング速度どの関係を示す図である。 1・・・シリコン基板、2・・・第1の配線パターン、
3・・・PSG絶縁躾、4・・・レジスト層、5・・・
PSG絶縁膜、6・・・コンタクトホール、7・・・第
2の配線パターン。 第1図(CI) 第1図(b) 第1図(C) 第1図(d) rryi    、7.13 第1図(e) 第2図 ! 多1200 ′−ワ天 (A/m1n) 2  4  6  8   T。
1(a) to 1(f) are process explanatory diagrams showing a method for forming a wiring layer according to an embodiment of the present invention, and FIG. 2 shows an etching rate (tetra FIG. 3 is a diagram showing the relationship between the addition of oxygen to a fluoromethane atmosphere and the etching rate. 1... Silicon substrate, 2... First wiring pattern,
3...PSG insulation, 4...resist layer, 5...
PSG insulating film, 6... contact hole, 7... second wiring pattern. Figure 1 (CI) Figure 1 (b) Figure 1 (C) Figure 1 (d) rryi, 7.13 Figure 1 (e) Figure 2! Multi 1200'-waten (A/m1n) 2 4 6 8 T.

Claims (4)

【特許請求の範囲】[Claims] (1)段差を有する基板表面に絶縁膜を形成する工程が
、 化学的気相成長法(CVD法)により絶縁膜を形成する
第1の堆積工程と、 該絶縁膜上に表面の平坦なレジスト層を形成するレジス
ト塗布工程と、 ドライエッチング法により、該レジスト層と共に前記絶
縁膜の凸部を除去し表面を平坦化する平坦化工程と、 更に所望の膜厚となるまで絶縁層を堆積する第2の堆積
工程を含むことを特徴とする半導体装置の製造方法。
(1) The step of forming an insulating film on the surface of a substrate having steps includes a first deposition step of forming an insulating film by chemical vapor deposition (CVD), and a resist with a flat surface on the insulating film. a resist coating step to form a layer; a flattening step to flatten the surface by removing the convex portions of the insulating film together with the resist layer by dry etching; and further depositing the insulating layer until a desired thickness is achieved. A method for manufacturing a semiconductor device, comprising a second deposition step.
(2)前記レジスト塗布工程は、順次粘度の高いレジス
トを用いるようにした重ね塗り工程からなることを特徴
とする特許請求の範囲第(1)項記載の半導体装置の製
造方法。
(2) The method of manufacturing a semiconductor device according to claim (1), wherein the resist coating step includes a step of overcoating using resists having higher viscosity in sequence.
(3)前記平坦化工程後、前記第2の堆積工程に先立ち
、ウェット処理による表面清浄化工程を含むことを特徴
とする特許請求の範囲第(1)項又は第(2)項記載の
半導体装置の製造方法。
(3) The semiconductor according to claim 1 or 2, further comprising a surface cleaning step by wet treatment after the planarization step and prior to the second deposition step. Method of manufacturing the device.
(4)前記第1の堆積工程は常圧CVD法による工程で
あることを特徴とする特許請求の範囲第(1)項乃至第
(3)項のいずれかに記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to any one of claims (1) to (3), wherein the first deposition step is a step using an atmospheric pressure CVD method.
JP60074763A 1985-04-09 1985-04-09 Method for manufacturing semiconductor device Expired - Lifetime JPH0712040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60074763A JPH0712040B2 (en) 1985-04-09 1985-04-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074763A JPH0712040B2 (en) 1985-04-09 1985-04-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61232636A true JPS61232636A (en) 1986-10-16
JPH0712040B2 JPH0712040B2 (en) 1995-02-08

Family

ID=13556643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074763A Expired - Lifetime JPH0712040B2 (en) 1985-04-09 1985-04-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0712040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502596A (en) * 1987-12-19 1990-08-16 ミテル セミコンダクター リミテッド Manufacturing method of semiconductor device
US4985373A (en) * 1982-04-23 1991-01-15 At&T Bell Laboratories Multiple insulating layer for two-level interconnected metallization in semiconductor integrated circuit structures
CN107851554A (en) * 2015-08-04 2018-03-27 德克萨斯仪器股份有限公司 For the method for the CMP scratch resistances for improving non-planar surfaces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969950A (en) * 1982-10-15 1984-04-20 Nec Corp Forming method for multilayer wiring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969950A (en) * 1982-10-15 1984-04-20 Nec Corp Forming method for multilayer wiring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985373A (en) * 1982-04-23 1991-01-15 At&T Bell Laboratories Multiple insulating layer for two-level interconnected metallization in semiconductor integrated circuit structures
JPH02502596A (en) * 1987-12-19 1990-08-16 ミテル セミコンダクター リミテッド Manufacturing method of semiconductor device
CN107851554A (en) * 2015-08-04 2018-03-27 德克萨斯仪器股份有限公司 For the method for the CMP scratch resistances for improving non-planar surfaces
JP2018523312A (en) * 2015-08-04 2018-08-16 日本テキサス・インスツルメンツ株式会社 Method for improving CMP scratch resistance for uneven surfaces

Also Published As

Publication number Publication date
JPH0712040B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP3399252B2 (en) Method for manufacturing semiconductor device
US20070178712A1 (en) Planarization for Integrated Circuits
JPS61232636A (en) Manufacture of semiconductor device
JP2716156B2 (en) Method for manufacturing semiconductor device
JPH0645313A (en) Manufacture of semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JPS6376351A (en) Formation of multilayer interconnection
JPH04164330A (en) Manufacture of semiconductor device
JPH10214892A (en) Manufacture of semiconductor device
JPH0653189A (en) Method for flattening of film formation layer
JPH0273652A (en) Manufacture of semiconductor device
KR100480580B1 (en) Method for forming via hole of semiconductor device using n2 gas
JPH02246244A (en) Manufacture of semiconductor device
JPH1022382A (en) Manufacture of semiconductor device
JPH05326724A (en) Manufacture of semiconductor device
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH05304219A (en) Deposition of insulation layer in semiconductor device
JPH0330453A (en) Formation of flattened insulating film
JPH09246379A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0371635A (en) Manufacture of semiconductor device
JPH04115536A (en) Flattening treatment method
JPH05102144A (en) Manufacture of semiconductor device
JPH0476920A (en) Manufacture of semiconductor device
JPH05160126A (en) Formation of multilayer wiring
JPH03198365A (en) Manufacture of semiconductor device