JPH0273652A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0273652A
JPH0273652A JP22541388A JP22541388A JPH0273652A JP H0273652 A JPH0273652 A JP H0273652A JP 22541388 A JP22541388 A JP 22541388A JP 22541388 A JP22541388 A JP 22541388A JP H0273652 A JPH0273652 A JP H0273652A
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
film
etching
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22541388A
Other languages
Japanese (ja)
Other versions
JP2606315B2 (en
Inventor
Akira Isobe
晶 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63225413A priority Critical patent/JP2606315B2/en
Publication of JPH0273652A publication Critical patent/JPH0273652A/en
Application granted granted Critical
Publication of JP2606315B2 publication Critical patent/JP2606315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To suppress the overetching of a coating film opened with a recess, and to easily form an interlayer insulating film having excellent flatness by forming a silicon oxide film including impurity on the silicon oxide film, then forming a coating layer, and etching back it. CONSTITUTION:An aluminum interconnection 3 having a predetermined thickness is formed in a predetermined pattern on the insulating film 2 of a semiconductor substrate 1. A silicon oxide film 4 is formed by a plasma CVD method on the whole surface, and a silicon oxide film (PSG) 5 including impurity is formed thereon by a normal pressure plasma CVD method. Then, after the whole surface is coated with organic siloxane polymer solution, it is baked to form an organic siloxane polymer layer 6. Thereafter, the whole surface is etched by reactive ion etching using CF4, etc., a silicon oxide film 7 is eventually formed on a whole surface by a plasma CVD method, the film 5 having equal etching rate to that of the film 6 is formed, and the overetching of the layer 6 between aluminum interconnections 3a and 3b is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に層間絶縁膜
の平坦化を図った製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which an interlayer insulating film is planarized.

〔従来の技術〕[Conventional technology]

近年、半導体装置の配線の微細化、多層化に伴い、配線
層間の平坦化が重要となっている。平坦化法の1つであ
る塗布法は、例えば金属配線上に気相成長法による酸化
膜(CVD酸化膜)を成長し、塗布・焼成により形成さ
れるケイ酸ガラス(シリカフィルム)や有機シロキサン
ポリマーを形成し、更にこの上にCVD酸化膜を成長し
て配線層間膜としている。
In recent years, with the miniaturization and multilayering of wiring in semiconductor devices, flattening between wiring layers has become important. The coating method, which is one of the planarization methods, involves growing an oxide film (CVD oxide film) on metal wiring using a vapor phase growth method, and then using silicate glass (silica film) or organic siloxane, which is formed by coating and baking. A polymer is formed, and a CVD oxide film is further grown on the polymer to form a wiring interlayer film.

すなわち、第3図に示すように、半導体基板1の絶縁膜
2上に形成したアルミニウム配線3の上に眉間絶縁膜と
してシリコン酸化膜4を成長し、その上に有機シロキサ
ンポリマー6を塗布、焼成により形成する。しかる上で
、この上にシリコン酸化膜7を形成している。
That is, as shown in FIG. 3, a silicon oxide film 4 is grown as an insulating film between the eyebrows on an aluminum wiring 3 formed on an insulating film 2 of a semiconductor substrate 1, and an organic siloxane polymer 6 is applied thereon and baked. Formed by Then, a silicon oxide film 7 is formed thereon.

この方法では塗布膜の膜厚が厚くなるとスルーホール開
孔部の塗布膜の露出面積が大きくなり、上層配線用アル
ミニウムのスパッタ時に、塗布膜。
In this method, as the thickness of the coating film increases, the exposed area of the coating film at the through-hole opening increases, and when sputtering aluminum for upper layer wiring, the coating film is removed.

からのアウトガスによりアルミニウムの被着不良が生じ
る。これを避けるため、全面をエツチングバックしてス
ルーホール開孔部の塗布膜を除去する方法がある。
Outgas from the aluminum causes poor adhesion of aluminum. To avoid this, there is a method of etching back the entire surface to remove the coating film at the opening of the through hole.

即ち、第4図のように、有機シロキサンポリマー6を塗
布した後に、全面をエツチングバンクして凹部内にのみ
有機シロキサンポリマー6を残した後に、この上にシリ
コン酸化膜7を成長している。
That is, as shown in FIG. 4, after the organic siloxane polymer 6 is applied, the entire surface is etched and banked to leave the organic siloxane polymer 6 only in the recesses, and then the silicon oxide film 7 is grown thereon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の層間膜製造方法は、下側パ
ターンの凹凸による配線上の塗布膜厚に差が生じるため
、最も厚い部分がなくなるまでエツチングバックしなけ
ればならない。ざらに膜厚やエツチングの均一性からマ
ージンを考えである程度のオーバーエンチングが必要で
ある。
In the above-described conventional method for manufacturing an interlayer film for a semiconductor device, since the unevenness of the lower pattern causes a difference in the thickness of the coating film on the wiring, it is necessary to perform etching back until the thickest part is removed. A certain amount of over-etching is necessary, taking into consideration the film thickness and uniformity of etching to ensure a margin.

一方、シリカフィルムや有機シロキサンポリマーのエツ
チングレートは酸化膜に比べて2倍程度速いため、塗布
膜厚の薄い部分、すなわち微細な配線部では第4図のよ
うに塗布膜がオーバーエツチングされ易く、このため逆
に平坦性が悪化してしまうという問題がある。
On the other hand, the etching rate of silica films and organic siloxane polymers is about twice as fast as that of oxide films, so in areas where the coating film is thin, that is, in fine wiring areas, the coating film is likely to be over-etched as shown in Figure 4. For this reason, there is a problem in that flatness deteriorates.

この場合、眉間絶縁膜にシリコン窒化膜や、PSG(リ
ンガラス)、BSG(ボロンガラス)。
In this case, the insulating film between the eyebrows is a silicon nitride film, PSG (phosphorous glass), or BSG (boron glass).

BPSG (ボロンリンガラス)等の不純物を含んだシ
リコン酸化膜を用いれば、エツチングレート比をほぼ1
:1にできるが、アルミニウム上にシリコン窒化膜を成
長するとストレスマイグレーションに弱くなり、かつ高
誘電率のために眉間容量が高くなる。また、不純物を含
んだシリコン酸化膜では、酸化膜を低温で成長させるの
が難しいため、アルミニウム配線にヒロックが生じると
いう問題がある。
If a silicon oxide film containing impurities such as BPSG (borophosphorus glass) is used, the etching rate ratio can be reduced to approximately 1.
:1, but when a silicon nitride film is grown on aluminum, it becomes susceptible to stress migration, and the glabellar capacitance increases due to the high dielectric constant. In addition, with a silicon oxide film containing impurities, it is difficult to grow the oxide film at a low temperature, so there is a problem that hillocks occur in the aluminum wiring.

本発明は上述した問題を解消して平坦性に優れた眉間絶
縁膜を形成することができる半導体装置の製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can solve the above-mentioned problems and form a glabellar insulating film with excellent flatness.

[課題を解決するための手段] 本発明の半導体装置の製造方法は、基板上に形成した金
属配線層の上にシリコン酸化膜を形成する工程と、この
シリコン酸化膜上に不純物を含むシリコン酸化膜を形成
する工程と、このシリコン酸化膜上にこれと略エツチン
グレートの等しい塗布膜を形成して表面を平坦化する工
程と、前記金属配線層上における不純物を含むシリコン
酸化膜が少なくとも露呈されるまで前記塗布膜をエツチ
ングバックする工程と、全面にシリコン酸化膜を形成し
て眉間絶縁膜を完成する工程とを含んでいる。
[Means for Solving the Problems] A method for manufacturing a semiconductor device of the present invention includes a step of forming a silicon oxide film on a metal wiring layer formed on a substrate, and a step of forming a silicon oxide film containing impurities on the silicon oxide film. a step of forming a film on the silicon oxide film, a step of flattening the surface by forming a coating film having approximately the same etching rate as the silicon oxide film, and a step of flattening the surface of the silicon oxide film so that at least the silicon oxide film containing impurities on the metal wiring layer is exposed. The method includes a step of etching back the coating film until it is completely etched, and a step of forming a silicon oxide film on the entire surface to complete the glabellar insulating film.

〔作用〕[Effect]

上述した製造方法では、塗布膜のエツチングバック時に
、これとエツチングレートの等しい不純物を含むシリコ
ン酸化膜を同時にエツチングさせるので、凹部における
塗布膜のオーバエツチングを抑制し、平坦化を実現する
In the above manufacturing method, when etching back the coating film, the silicon oxide film containing impurities having the same etching rate as the coating film is etched at the same time, so over-etching of the coating film in the recessed portions is suppressed and planarization is achieved.

(実施例) 次に、本発明を図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図(a)乃至(d)は本発明の一実施例を工程順に
示す縦断面図である。
FIGS. 1(a) to 1(d) are longitudinal sectional views showing an embodiment of the present invention in the order of steps.

先ず、第1図(a)のように、半導体基板1の絶縁膜2
上に厚さ1.0amのアルミニウム配線3を所要パター
ンに形成する。そして、全面にプラズマCVD法を用い
てシリコン酸化膜4を2000人成長し、更にこの上に
常圧プラズマCVD法を用いて不純物を含むシリコン酸
化膜、ここではPSG膜5を4000人成長する。
First, as shown in FIG. 1(a), the insulating film 2 of the semiconductor substrate 1 is
An aluminum wiring 3 having a thickness of 1.0 am is formed thereon in a desired pattern. Then, 2,000 silicon oxide films 4 are grown on the entire surface using the plasma CVD method, and on top of this, 4,000 silicon oxide films containing impurities, here PSG films 5, are grown using the atmospheric pressure plasma CVD method.

次に、第1図(b)のように、全面に有機シロキサンポ
リマー溶液を塗布、焼成して有機シロキサンポリマー層
6を形成する。この時塗布膜厚のパターン依存性により
、有機シロキサンポリマー層6の膜厚は、微細配線3a
上では約1000人、広い配線3b上では約3000人
となる。
Next, as shown in FIG. 1(b), an organic siloxane polymer solution is applied to the entire surface and fired to form an organic siloxane polymer layer 6. At this time, due to the pattern dependence of the coating film thickness, the film thickness of the organic siloxane polymer layer 6 is
There are about 1,000 people on the top, and about 3,000 people on the wide wiring 3b.

次いで、第1図(C)のように、例えばCF4を用いた
りアクティブイオンエツチングにより全面をエツチング
バックする。この時、有機シロキサンポリマーとPSG
のエツチングレート比は1:lとなる条件に設定する。
Next, as shown in FIG. 1C, the entire surface is etched back using, for example, CF4 or active ion etching. At this time, organic siloxane polymer and PSG
The etching rate ratio is set to 1:l.

エツチングバック量を4000人とすると、配線3a上
では約1000人のオーバエツチングとなり、この領域
の有機シロキサンポリマー層6は完全に除去される。ま
た、配線3b上では約3000人のオーバエツチングと
なるが、シリコン酸化膜4までは達しないため平坦性は
悪化しない。
If the amount of etching back is 4000, over-etching will occur on the wiring 3a by about 1000, and the organic siloxane polymer layer 6 in this area will be completely removed. Further, although over-etching occurs by about 3000 layers on the wiring 3b, the flatness does not deteriorate because it does not reach the silicon oxide film 4.

最後に、第1図(d)のように、全面にプラズマCVD
法を用いてシリコン酸化膜7を5000人成長すること
で層間絶縁膜を形成する。
Finally, as shown in Figure 1(d), plasma CVD is applied to the entire surface.
An interlayer insulating film is formed by growing 5,000 silicon oxide films 7 using the method.

この方法によれば、有機シロキサンポリマー層6とエン
チングレートが等しいPSG膜5を形成することによっ
て、配線3a、3b上ではPSG膜5によってこの領域
に有機シロキサンポリマー層が塗布されたのと同様な状
態となる。これにより、配線3a、3b間における有機
シロキサンポリマー層6のオーバエツチングが抑制され
、全体として平坦化が実現できる。
According to this method, by forming the PSG film 5 having the same etching rate as the organic siloxane polymer layer 6, it is possible to form the organic siloxane polymer layer on the wirings 3a and 3b in the same manner as if the organic siloxane polymer layer was applied to this area by the PSG film 5. It becomes a state. As a result, over-etching of the organic siloxane polymer layer 6 between the wirings 3a and 3b is suppressed, and planarization can be realized as a whole.

なお、エツチングハックにより開孔部側面に塗布膜層が
露出することなく、信頼性の高い多層配線を形成するこ
とができるのは言うまでもない。
It goes without saying that a highly reliable multilayer wiring can be formed by etching hacking without exposing the coating layer on the side surface of the opening.

第2図は本発明の他の実施例を説明するだめの縦断面図
である。
FIG. 2 is a longitudinal cross-sectional view for explaining another embodiment of the present invention.

この実施例では、アルミニウム配線3上にバイアススパ
ッタ法でシリコン酸化膜4Aを成長した上でミ第1実施
例と同様にPSG膜5.有機シロキサンポリマー層6を
形成し、全面をエツチングバンクし、最後にプラズマC
VD法を用いてシリコン酸化膜7を成長させている。
In this embodiment, a silicon oxide film 4A is grown on the aluminum wiring 3 by bias sputtering, and then a PSG film 5A is grown as in the first embodiment. An organic siloxane polymer layer 6 is formed, the entire surface is etched, and finally plasma C
Silicon oxide film 7 is grown using the VD method.

この方法では、アルミニウム配線3上に形成したシリコ
ン酸化膜4Aをバイアススパッタ法で形成することによ
り、アルミニウム配線3の段部箇所にテーパーが付けら
れ、全体としての平坦性を改善することができる。
In this method, by forming the silicon oxide film 4A on the aluminum wiring 3 by bias sputtering, the stepped portions of the aluminum wiring 3 are tapered, and the overall flatness can be improved.

また、を機シロキサンポリマー層6のエツチングバック
量を多めに設定して微細配線3a上のPSG膜5が完全
に除去された場合でも、下層のシリコン酸化膜4Aのテ
ーパーにより平坦性が悪化されることはない。
Furthermore, even if the amount of etching back of the siloxane polymer layer 6 is set to be large enough to completely remove the PSG film 5 on the fine wiring 3a, the flatness will deteriorate due to the taper of the underlying silicon oxide film 4A. Never.

なお、ここではバイアススパッタ法を用いた例を示した
が、バイアスプラズマCVD法等、段差部でテーパーの
付く成長方法であれば同様な効果が得られるのは言うま
でもない。また、前記した有機シロキサンポリマーの代
わりに無機のシリカフィルムあるいは、その多数回塗布
でも同様な効果が得られる。
Although an example using a bias sputtering method is shown here, it goes without saying that a similar effect can be obtained by using a growth method such as a bias plasma CVD method that provides a tapered portion at the step portion. Moreover, the same effect can be obtained by using an inorganic silica film instead of the above-mentioned organic siloxane polymer or by applying it multiple times.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、シリコン酸化膜上に不純
物を含むシリコン酸化膜を形成した上で塗布膜を形成し
、かつこれをエツチングハックしているので、凹部にお
ける塗布膜のオーバエツチングを抑制し、塗布膜形成後
の形状を維持した平坦性の良い層間膜を得ることができ
る。また、不純物を含むシリコン酸化膜を直接アルミニ
ウム配線上に成長していないため、ヒロックやストレス
マイグレーション等の不良を引き起こすことがなく、信
頼性の高い半導体装置を得ることができる。
As explained above, in the present invention, a silicon oxide film containing impurities is formed on a silicon oxide film, and then a coating film is formed, and this is hacked by etching, so over-etching of the coating film in the recessed portions is suppressed. However, it is possible to obtain an interlayer film with good flatness that maintains the shape after the coating film is formed. Further, since the silicon oxide film containing impurities is not grown directly on the aluminum wiring, defects such as hillocks and stress migration are not caused, and a highly reliable semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(a)は本発明の一実施例を製造工程
順に示す縦断面図、第2図は本発明の他の実施例の工程
一部の縦断面図、第3図及び第4図は夫々異なる従来方
法を示す縦断面図である。 1・・・半導体基板、2・・・絶縁膜、3.3a、3b
・・・アルミニウム配線、4・・・シリコン酸化膜、4
A・・・バイアススパッタによるシリコン酸化膜、5・
・・PSG膜、6・・・有機シロキサンポリマー層、7
・・・シリコン酸化膜。 第1図 第 ■ 図 第2 図 ^4− 弔 r) 図 第4 図
FIGS. 1(a) to (a) are longitudinal sectional views showing one embodiment of the present invention in the order of manufacturing steps, FIG. 2 is a longitudinal sectional view of a part of the process of another embodiment of the present invention, and FIGS. FIG. 4 is a longitudinal sectional view showing different conventional methods. 1... Semiconductor substrate, 2... Insulating film, 3.3a, 3b
...Aluminum wiring, 4...Silicon oxide film, 4
A... Silicon oxide film by bias sputtering, 5.
...PSG film, 6...organosiloxane polymer layer, 7
...Silicon oxide film. Figure 1 Figure ■ Figure 2 Figure 4- Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に形成した金属配線層の上にシリコン酸化膜
を形成する工程と、このシリコン酸化膜上に不純物を含
むシリコン酸化膜を形成する工程と、このシリコン酸化
膜上にこれと略エッチングレートの等しい塗布膜を形成
して表面を平坦化する工程と、前記金属配線層上におけ
る不純物を含むシリコン酸化膜が少なくとも露呈される
まで前記塗布膜をエッチングバックする工程と、全面に
シリコン酸化膜を形成して層間絶縁膜を完成する工程と
を含むことを特徴とする半導体装置の製造方法。
1. A process of forming a silicon oxide film on the metal wiring layer formed on the substrate, a process of forming a silicon oxide film containing impurities on this silicon oxide film, and a process of substantially etching this silicon oxide film. forming a coating film with an equal rate to flatten the surface; etching back the coating film until at least the silicon oxide film containing impurities on the metal wiring layer is exposed; and etching back the silicon oxide film on the entire surface. 1. A method of manufacturing a semiconductor device, comprising the step of forming an interlayer insulating film.
JP63225413A 1988-09-08 1988-09-08 Method for manufacturing semiconductor device Expired - Lifetime JP2606315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225413A JP2606315B2 (en) 1988-09-08 1988-09-08 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225413A JP2606315B2 (en) 1988-09-08 1988-09-08 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0273652A true JPH0273652A (en) 1990-03-13
JP2606315B2 JP2606315B2 (en) 1997-04-30

Family

ID=16828982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225413A Expired - Lifetime JP2606315B2 (en) 1988-09-08 1988-09-08 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2606315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190684A (en) * 1992-01-16 1993-07-30 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5569618A (en) * 1992-03-03 1996-10-29 Nec Corporation Method for planarizing insulating film
GB2312325B (en) * 1996-04-19 2001-01-17 Nec Corp A semiconductor device and method for forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857738A (en) * 1981-10-01 1983-04-06 Nec Corp Manufacture of semiconductor device
JPS60217644A (en) * 1984-04-12 1985-10-31 Matsushita Electronics Corp Manufacture of semiconductor device
JPS6471645A (en) * 1987-09-11 1989-03-16 Sharp Kk Cutting device equiped with dust sucker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857738A (en) * 1981-10-01 1983-04-06 Nec Corp Manufacture of semiconductor device
JPS60217644A (en) * 1984-04-12 1985-10-31 Matsushita Electronics Corp Manufacture of semiconductor device
JPS6471645A (en) * 1987-09-11 1989-03-16 Sharp Kk Cutting device equiped with dust sucker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190684A (en) * 1992-01-16 1993-07-30 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5569618A (en) * 1992-03-03 1996-10-29 Nec Corporation Method for planarizing insulating film
GB2312325B (en) * 1996-04-19 2001-01-17 Nec Corp A semiconductor device and method for forming the same

Also Published As

Publication number Publication date
JP2606315B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP2640174B2 (en) Semiconductor device and manufacturing method thereof
JPH01290236A (en) Method of levelling wide trench
JP2606315B2 (en) Method for manufacturing semiconductor device
JPH0410222B2 (en)
JP2716156B2 (en) Method for manufacturing semiconductor device
JPS6376351A (en) Formation of multilayer interconnection
JPS63177537A (en) Manufacture of semiconductor element
JPH04245628A (en) Forming method of insulating film
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
JPS60115234A (en) Preparation of semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JP3070564B2 (en) Method for manufacturing semiconductor device
JPH01239941A (en) Semiconductor device
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPH03203325A (en) Manufacture of semiconductor device
JPH06349951A (en) Manufacture of semiconductor device
JPS6249735B2 (en)
JPH0638456B2 (en) Method for manufacturing semiconductor device
JPH05304150A (en) Fabrication of semiconductor integrated circuit device
JPH03159124A (en) Manufacture of semiconductor device
JPH0797583B2 (en) Method for forming interlayer insulating film
JPS63226041A (en) Manufacture of semiconductor integrated circuit device
JPH0214525A (en) Manufacture of semiconductor integrated circuit
JPH07211714A (en) Manufacture of semiconductor device