JPH0638456B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0638456B2
JPH0638456B2 JP1711086A JP1711086A JPH0638456B2 JP H0638456 B2 JPH0638456 B2 JP H0638456B2 JP 1711086 A JP1711086 A JP 1711086A JP 1711086 A JP1711086 A JP 1711086A JP H0638456 B2 JPH0638456 B2 JP H0638456B2
Authority
JP
Japan
Prior art keywords
film
nitride film
spin
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1711086A
Other languages
Japanese (ja)
Other versions
JPS62174944A (en
Inventor
公磨 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1711086A priority Critical patent/JPH0638456B2/en
Publication of JPS62174944A publication Critical patent/JPS62174944A/en
Publication of JPH0638456B2 publication Critical patent/JPH0638456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に多層配線の
層間絶縁膜の形成方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an interlayer insulating film for a multilayer wiring.

〔従来の技術〕[Conventional technology]

従来、多層配線の層間絶縁膜としてはプラズマCVD法
によるシリコン窒化膜が用いられている。
Conventionally, a silicon nitride film formed by a plasma CVD method has been used as an interlayer insulating film of a multilayer wiring.

〔発明が解決しようとする問題点〕 上述した従来のプラズマCVD法によるシリコン窒化膜
の層間膜では、以下に述べる欠点がある。
[Problems to be Solved by the Invention] The interlayer film of the silicon nitride film formed by the conventional plasma CVD method described above has the following drawbacks.

従来のプラズマCVD法では膜形成温度が300℃以上
で行なわれており、このため、アルミニウム配線中に下
地シリコン基板との熱膨張係数の差により圧縮応力が発
生し、これによってヒロックと呼ばれる突起が発生して
しまうという欠点があった。また、ヒロック発生をさけ
るため低温で成長すると膜が脆弱になり耐湿性や機械強
度が弱くなるという欠点があった。またアルニウム上に
直接プラズマ窒化膜を成長すると後工程の熱処理中にア
ルミニウム膜中、膜表面からガスの圧力によって窒化膜
がふくれて破れるという欠点もあった。
In the conventional plasma CVD method, the film forming temperature is performed at 300 ° C. or higher. Therefore, a compressive stress is generated in the aluminum wiring due to the difference in the coefficient of thermal expansion from the underlying silicon substrate, and this causes a protrusion called a hillock. There was a drawback that it would occur. Further, in order to avoid hillock generation, when grown at a low temperature, the film becomes fragile, resulting in weak moisture resistance and mechanical strength. Further, when the plasma nitride film is grown directly on the aluminum, there is a drawback that the nitride film swells and is broken by the gas pressure from the surface of the aluminum film during the heat treatment of the subsequent step.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の層間絶縁膜の製造方法は従来技術の問題点を解
決するために以下に述べる方法を有している。
The method for manufacturing an interlayer insulating film of the present invention has the following method in order to solve the problems of the prior art.

第1アルミ配線のヒロックを防止するため、プラズマC
VD法により、200℃以下の低い温度でSiHとN
Oを導入してシリコン酸化膜を形成する。次に平担性
を改善するために、全面にスピンオングラスをスピンコ
ートし、450℃で焼き固める。
Plasma C is used to prevent hillocks on the first aluminum wiring.
According to the VD method, SiH 4 and N at a low temperature of 200 ° C. or lower
2 O is introduced to form a silicon oxide film. Next, in order to improve flatness, spin-on glass is spin-coated on the entire surface and baked at 450 ° C.

さらに全面にプラズマCVD法により、300℃以上の
高温でSiHとNHを導入して固いち密な耐湿性の
良いシリコン窒化膜を形成する。
Further, SiH 4 and NH 3 are introduced at a high temperature of 300 ° C. or higher on the entire surface by plasma CVD to form a solid and dense silicon nitride film having good moisture resistance.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。P形シリ
コン基板1の主表面上にシリコン酸化物及びリンガラス
層からなる絶縁膜2が約1.0μm形成され、その上に
第1層のアルミ配線3が約1μm形成されている。(第
1図a)次に主表面全面にプラズマ化学的気相成長(C
VD)によりSiH4を100sccm,NOを1150s
ccm導入し、380kHzの高周波プラズマを0.07
W/cm2のパワーで200℃以下の温度において、シリ
コン酸化膜4を0.5μm形成する(第1図b)次にリ
ンドーブスピンオングラス5を回転塗布し段部にテーパ
ーをつけ350℃,450℃窒素雰囲気中でそれぞれ3
0分焼き固める。この時の熱処理がアルミとシリコンの
アロイ工程を兼ねる。(第1図c)さらに主表面全面に
プラズマ化学的気相成長によりSiH4を150sccm,
NH3を450sccm,Nを450sccm導入し、0.2
7W/cm2のパワーで300℃以上の温度でシリコン窒
化膜6を0.5μm形成する(第1図d)次に第2層の
アルミ配線7を約1.0μmの厚さで形成する。
FIG. 1 is a vertical sectional view of an embodiment of the present invention. An insulating film 2 made of a silicon oxide and a phosphorus glass layer is formed on the main surface of a P-type silicon substrate 1 to have a thickness of about 1.0 μm, and an aluminum wiring 3 of a first layer is formed thereon to have a thickness of about 1 μm. (Fig. 1a) Next, plasma chemical vapor deposition (C
VD) SiH 4 100sccm, N 2 O 1150s
ccm is introduced, and high frequency plasma of 380 kHz is 0.07.
A silicon oxide film 4 having a thickness of 0.5 μm is formed with a power of W / cm 2 at a temperature of 200 ° C. or lower (FIG. 1b). Then, a spin coat of Lindove spin-on glass 5 is spin-coated to taper the stepped portion at 350 ° C. 3 each in a nitrogen atmosphere at 450 ° C
Bake for 0 minutes. The heat treatment at this time also serves as an alloy process of aluminum and silicon. (FIG. 1c) Further, SiH 4 was deposited on the entire main surface by plasma chemical vapor deposition at 150 sccm,
Introducing 450 sccm of NH 3 and 450 sccm of N 2 ,
A silicon nitride film 6 is formed to a thickness of 0.5 μm at a temperature of 300 ° C. or higher with a power of 7 W / cm 2 (FIG. 1d). Then, a second layer of aluminum wiring 7 is formed to a thickness of about 1.0 μm.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は以下に示す4つの効果があ
る。第1は層間絶縁膜が上層窒化膜、下層酸化膜の2層
構造となっているため、スルーホール形成時の製造上の
バラツキを吸収することができる。すなわち、スルーホ
ールの形成において第2層アルミ配線のステップカバレ
ジを良くするため等方性エッチと異方性エッチの組み合
わせにより階段部を形成している。この時CFとO2
よる等方性エッチでは窒化膜と酸化膜のエッチングレー
トは10倍以上の選択比があるため、上層窒化膜のエッ
チングレートのバラツキが生じても下層の酸化膜表面で
エッチングを止めることができ、製造上のバラツキを吸
収できる。
As described above, the present invention has the following four effects. First, since the interlayer insulating film has a two-layer structure of an upper layer nitride film and a lower layer oxide film, it is possible to absorb manufacturing variations when forming through holes. That is, in order to improve the step coverage of the second layer aluminum wiring in forming the through hole, the step portion is formed by a combination of isotropic etching and anisotropic etching. At this time, CF 4 and O 2
In the isotropic etching, the etching rate of the nitride film and the oxide film has a selection ratio of 10 times or more. Therefore, even if the etching rate of the upper nitride film varies, the etching can be stopped at the lower oxide film surface. Can absorb manufacturing variations.

次に下層酸化膜を200℃以下の低温で形成するため、
膜成長時にシリコン基板全体にかかる熱ストレスを小さ
くすることができる。このため、基板上のアルミ配線に
かかる圧縮応力も小さくでき、ヒロックの発生を著しく
抑えることができる。
Next, in order to form the lower oxide film at a low temperature of 200 ° C. or lower,
The thermal stress applied to the entire silicon substrate during film growth can be reduced. Therefore, the compressive stress applied to the aluminum wiring on the substrate can be reduced, and the occurrence of hillocks can be significantly suppressed.

また、従来法の様に下層の絶縁膜が窒化膜の場合、後工
程の熱処理の際、窒化膜とアルミの反応もしくはアルミ
中のガスの吹き出し等による窒化膜のフクレ現象が生じ
る。本発明の様に下層が酸化膜しかも200℃以下の低
温形成膜であるため多孔質的であるから、次工程のスピ
ンオングラス焼き固めの熱処理の際アルミ中、または表
面アウトガスは、酸化膜中を通って拡散し、フクレ現象
を防ぐことができる。
Further, when the lower insulating film is a nitride film as in the conventional method, a blistering phenomenon of the nitride film occurs due to a reaction between the nitride film and aluminum or a gas blown into the aluminum during the heat treatment in the subsequent step. As in the present invention, since the lower layer is an oxide film and is a low-temperature formed film of 200 ° C. or less, it is porous, so that during the heat treatment of spin-on-glass baking in the next step, aluminum in the surface or surface outgas is generated in the oxide film. It can diffuse through and prevent blistering.

また上層の窒化膜は300℃以上の高温で形成するた
め、堅くち密で耐湿性にすぐれた膜にできる。
Further, since the upper nitride film is formed at a high temperature of 300 ° C. or higher, it can be a film that is hard and dense and has excellent moisture resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)乃至(e)は本発明の一実施例の縦断面図。 1……シリコン基板、2……シリコン酸化膜、3……第
1層アルミニウム配線、4……下層プラズマCVD酸化
膜、5……スピンオングラス、6……上層プラズマCV
D窒化膜、7……第2層アルミニウム配線。
1 (a) to 1 (e) are longitudinal sectional views of an embodiment of the present invention. 1 ... Silicon substrate, 2 ... Silicon oxide film, 3 ... First layer aluminum wiring, 4 ... Lower layer plasma CVD oxide film, 5 ... Spin-on glass, 6 ... Upper layer plasma CV
D nitride film, 7 ... Second layer aluminum wiring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1の配線電極を形成した後、表面にプラ
ズマCVD法によりシリコン酸化膜を200℃以下の温
度で形成してスピンオングラス膜をスピンコートし、熱
処理して焼き固めた後、プラズマCVD法によりシリコ
ン窒化膜を300℃以上の温度で形成することを特徴と
する半導体装置の製造方法。
1. After forming a first wiring electrode, a silicon oxide film is formed on the surface by a plasma CVD method at a temperature of 200 ° C. or lower, a spin-on-glass film is spin-coated, heat treated and baked, and A method of manufacturing a semiconductor device, comprising forming a silicon nitride film at a temperature of 300 ° C. or higher by a plasma CVD method.
JP1711086A 1986-01-28 1986-01-28 Method for manufacturing semiconductor device Expired - Lifetime JPH0638456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1711086A JPH0638456B2 (en) 1986-01-28 1986-01-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1711086A JPH0638456B2 (en) 1986-01-28 1986-01-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62174944A JPS62174944A (en) 1987-07-31
JPH0638456B2 true JPH0638456B2 (en) 1994-05-18

Family

ID=11934889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1711086A Expired - Lifetime JPH0638456B2 (en) 1986-01-28 1986-01-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0638456B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637651A (en) * 1986-06-27 1988-01-13 Toshiba Corp Manufacture of semiconductor device
JPH07302893A (en) * 1994-04-28 1995-11-14 Xerox Corp Dual layer of insulation and capping for hillock prevention in metal layer of thin film structure

Also Published As

Publication number Publication date
JPS62174944A (en) 1987-07-31

Similar Documents

Publication Publication Date Title
JP2640174B2 (en) Semiconductor device and manufacturing method thereof
US4305974A (en) Method of manufacturing a semiconductor device
JP3967567B2 (en) Semiconductor device and manufacturing method thereof
JPH08330305A (en) Insulation film formation of semiconductor device
US5366850A (en) Submicron planarization process with passivation on metal line
US5631197A (en) Sacrificial etchback layer for improved spin-on-glass planarization
JP3176017B2 (en) Method for manufacturing semiconductor device
JPH0638456B2 (en) Method for manufacturing semiconductor device
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JP2716156B2 (en) Method for manufacturing semiconductor device
JP2976442B2 (en) Method of forming insulating film
JP2830604B2 (en) Method for manufacturing semiconductor device
JPH0563019B2 (en)
JP4236805B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH03159124A (en) Manufacture of semiconductor device
JPH0629410A (en) Semiconductor device and its manufacture
JP2900718B2 (en) Semiconductor device and manufacturing method thereof
JP2629587B2 (en) Method for manufacturing semiconductor device
JPH07226438A (en) Manufacture of semiconductor device
JP2776397B2 (en) Method for manufacturing semiconductor device
JP3112755B2 (en) Method of forming TiN film
JPH07130732A (en) Semiconductor device and its manufacture
JPH07288254A (en) Semiconductor device and manufacture thereof
JPH07130847A (en) Semiconductor device and its manufacture