JPH0629410A - Semiconductor device and its manufacture - Google Patents
Semiconductor device and its manufactureInfo
- Publication number
- JPH0629410A JPH0629410A JP18354892A JP18354892A JPH0629410A JP H0629410 A JPH0629410 A JP H0629410A JP 18354892 A JP18354892 A JP 18354892A JP 18354892 A JP18354892 A JP 18354892A JP H0629410 A JPH0629410 A JP H0629410A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon oxide
- oxide film
- semiconductor device
- coated glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特に配線上の絶縁膜の平坦性、平坦化の再現性
の改善、及び電気的特性、耐湿性の向上を狙ったもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to improving the flatness of an insulating film on wiring, the reproducibility of flattening, and the improvement of electrical characteristics and moisture resistance. is there.
【0002】[0002]
【従来の技術】従来の半導体装置の製造方法を図5で説
明するが、例えばAl合金を用いた2層配線構造のCM
OS−LSIは、MOSトランジスタや抵抗などの半導
体素子が形成されたシリコン基板表面の選択酸化や気相
成長によるシリコン酸化膜を積層したフィールド絶縁膜
1にコンタクトホールを形成し、Al合金等でなる第1
の金属配線2を施す。次に層間絶縁膜として、SiH4
とO2 やN2 Oの様な酸化性ガスをプラズマや熱反応さ
せた第一のシリコン酸化膜5を500nm〜800nm
程度気相成長させ、更に微細化構造に於ける平坦化の必
要性からアルコ−ル類にシラノールとP2 O5 等を溶か
した塗布ガラス9をスピンコートし、第1の金属配線に
支障ない温度でアニ−ルする。この時塗布ガラス中に混
入させるP2O5 は1〜5mol%の濃度で、塗布ガラ
ス薄膜のストレス緩和と耐クラック効果を向上させる為
である。次に、高周波バイアスをかけて該塗布ガラスを
ドライエッチングし、少なくとも第1の金属配線領域上
の第1の塗布ガラスは除去する。第1の金属配線上に塗
布ガラスが残っていると、塗布ガラスのエッチレートが
速いために、スルーホール開孔のためのウエットエッチ
によって塗布ガラスがさきにエッチングされ、サイドエ
ッチが起るためである。また、塗布ガラスにはP2O5が
含まれているので、直接金属配線と接すると腐食が問題
となるので、150nm程度の厚みで第2のシリコン酸
化膜6を気相成長させた後、CHF3 ,CF4 とHeガ
スを用いて第1の金属配線上のシリコン酸化膜を異方的
に選択ドライエッチングしスルーホールを開孔し、その
後Al合金の第2の金属配線3を施して、更にSiH4
とNH3をN2キャリアでプラズマ反応させることによ
り、パッシベーション膜12として1000nm程度の
プラズマシリコン窒化膜を気相成長させ、最後に外部へ
の電極取り出しの為にボンディングパッド部を開孔して
いる。2. Description of the Related Art A conventional method of manufacturing a semiconductor device will be described with reference to FIG. 5. For example, a CM having a two-layer wiring structure using an Al alloy.
The OS-LSI is made of an Al alloy or the like by forming a contact hole in a field insulating film 1 in which a silicon oxide film is laminated by selective oxidation or vapor phase growth of a silicon substrate surface on which semiconductor elements such as MOS transistors and resistors are formed. First
The metal wiring 2 is applied. Next, as an interlayer insulating film, SiH 4
500 nm to 800 nm of the first silicon oxide film 5 which is obtained by plasma-reacting an oxidizing gas such as O 2 and N 2 O with plasma.
From the necessity of flattening in a vapor phase growth and further in the miniaturization structure, a coating glass 9 in which silanol and P 2 O 5 etc. are dissolved in an alcohol is spin-coated to cause no problem in the first metal wiring. Anneal at temperature. At this time, P 2 O 5 mixed in the coated glass has a concentration of 1 to 5 mol% in order to improve the stress relaxation and the crack resistance effect of the coated glass thin film. Next, a high frequency bias is applied to dry-etch the coated glass to remove at least the first coated glass on the first metal wiring region. If the coated glass remains on the first metal wiring, the coated glass is etched at a high rate by the wet etching for opening the through holes because the coated glass has a high etch rate, and side etching occurs. is there. Further, since the coated glass contains P 2 O 5 , corrosion will be a problem if it directly contacts the metal wiring. Therefore, after vapor-depositing the second silicon oxide film 6 to a thickness of about 150 nm, The silicon oxide film on the first metal wiring is anisotropically dry-etched using CHF 3 , CF 4 and He gas to form through holes, and then the second metal wiring 3 of Al alloy is formed. , And SiH 4
By plasma-reacting NH 3 and NH 3 with N 2 carrier, a plasma silicon nitride film having a thickness of about 1000 nm is vapor-phase grown as the passivation film 12, and finally a bonding pad portion is opened to take out the electrode to the outside.
【0003】[0003]
【発明が解決しようとする課題】しかしながら従来技術
に於いては、第1に、塗布ガラス9と第1のシリコン酸
化膜5を所定量エッチバックする際、両者の組成がとも
にSiO2であるため終点の検出が困難であり、エッチ
ング量は時間によってのみ制御されてきたが、時間によ
る終点コントロールを行うと、塗布ガラスのエッチング
速度は気相成長のシリコン酸化膜よりかなり大きいた
め、エッチバック量、平坦性を再現よく得るのは困難で
あり、半導体装置の安定供給と信頼性を確保する上で問
題となっていた。第2に、従来技術による半導体装置の
構造に於いては、酸化膜を介して塗布ガラス中の不純物
が素子領域、及び配線領域へ拡散してしまうことによる
電気的特性の不安定性、配線の腐食が問題となってい
た。第3に、パッシベーション膜12に於いても、第2
の金属配線による段差が大きいためにボイド13が発生
し、ボイド内はパッシベーション膜が極端に薄くなって
しまうので耐湿性上問題となっていた。However, in the prior art, first, when the coating glass 9 and the first silicon oxide film 5 are etched back by a predetermined amount, both compositions are SiO 2. It is difficult to detect the end point, and the etching amount has been controlled only by time.However, when the end point is controlled by time, the etching rate of the coated glass is considerably higher than that of the vapor-phase grown silicon oxide film, so the etching back amount, It is difficult to obtain flatness with good reproducibility, which has been a problem in securing stable supply and reliability of the semiconductor device. Secondly, in the structure of the semiconductor device according to the prior art, the impurities in the coated glass diffuse into the element region and the wiring region through the oxide film, resulting in instability of electrical characteristics and corrosion of the wiring. Was a problem. Third, even in the passivation film 12, the second
Since the step due to the metal wiring is large, the void 13 is generated, and the passivation film is extremely thin in the void, which is a problem in terms of moisture resistance.
【0004】しかるに本発明は係る問題点を解決するも
ので、シリコン酸化膜と塗布ガラスの間にシリコン窒化
膜を成膜する事によってシリコン酸化膜と塗布ガラスを
エッチバックする際の終点検出を容易にすると同時に塗
布ガラス中の不純物の拡散、パッシベーション膜に於け
るボイドの発生を抑制し、半導体装置の安定供給と信頼
性向上を目的としたものである。However, the present invention solves the above problems, and it is easy to detect the end point when the silicon oxide film and the coated glass are etched back by forming a silicon nitride film between the silicon oxide film and the coated glass. At the same time, it is intended to suppress the diffusion of impurities in the coated glass and the generation of voids in the passivation film, and to stably supply the semiconductor device and improve the reliability.
【0005】[0005]
【課題を解決するための手段】本発明の半導体装置製造
方法は、多層配線構造を有する半導体装置に於いて、少
なくとも、配線層上に、気相反応させたシリコン酸化膜
を形成する工程、シリコン窒化膜を形成する工程、塗布
ガラスを回転塗布する工程、前記積層絶縁膜の所定膜厚
をエッチバックする工程を具備したことを特徴とする。According to a method of manufacturing a semiconductor device of the present invention, in a semiconductor device having a multilayer wiring structure, at least a step of forming a vapor-phase reacted silicon oxide film on a wiring layer, The method is characterized by comprising a step of forming a nitride film, a step of spin-coating coated glass, and a step of etching back a predetermined thickness of the laminated insulating film.
【0006】また、多層配線構造を有する半導体装置に
於て、少なくとも第1の配線層上に(a)気相反応させ
た第1のシリコン酸化膜、(b)シリコン窒化膜、
(c)塗布ガラス、(d)第2のシリコン酸化膜、第2
の配線層が順に積層されたことを特徴とする。Further, in a semiconductor device having a multilayer wiring structure, (a) a vapor-phase-reacted first silicon oxide film, (b) a silicon nitride film, at least on the first wiring layer,
(C) coated glass, (d) second silicon oxide film, second
The wiring layers are sequentially stacked.
【0007】更に、多層配線構造を有する半導体装置に
於て、少なくとも金属配線層上に(a)第1のシリコン
酸化膜、(b)シリコン窒化膜、(c)塗布ガラス、
(d)シリコン窒化膜が順に積層されたことを特徴とす
る。Further, in a semiconductor device having a multi-layer wiring structure, (a) a first silicon oxide film, (b) a silicon nitride film, (c) coated glass, on at least a metal wiring layer,
(D) A silicon nitride film is sequentially laminated.
【0008】[0008]
【実施例】図1(a)〜図1(c)は本発明に関わる半
導体装置及びその製造方法の1実施例を説明するための
工程断面略図である。Al合金を用いた2層配線構造の
SiゲートCMOS−LSIに適用した場合に於て、M
OSトランジスタや抵抗などの半導体素子が形成された
シリコン基板表面の選択酸化や気相成長によるシリコン
酸化膜を積層したフィールド絶縁膜1にコンタクトホー
ルを形成し、バリアメタルと0.5%のCuを含むAl
合金2と反射防止膜4となるTiNをスパッタで積層さ
せてから、Cl2とBCl3ガスを用いたドライエッチャ
ーで該積層膜を選択エッチングし、総厚みが700nm
の第1の金属配線を施した。次に層間絶縁膜として、ま
ずTEOS〔Si(OC2H5)4〕とO2を380℃、約
9torrでプラズマ気相反応させて、第1のシリコン
酸化膜5を550nm形成した。次に、SiH4とNH3
を360℃、約6torrでプラズマ反応させ、シリコ
ン窒化膜11を50nm積層させた。続いて有機または
無機塗布ガラス9をスピンコートしてから約450℃の
N2 雰囲気で30分のアニールを行うと、第1の金属配
線領域上の平坦部には約5nm〜70nm、段差部や溝
部には厚くても300nm程度の塗布ガラスが溜まる。
次に、200mtorr程度のAr雰囲気中でC2F6ガ
スを用い、800Wの高周波バイアスをかけてドライエ
ッチングし、少なくとも第1の金属配線領域上の第1の
塗布ガラスは除去する。この塗布ガラス9を除去する工
程に於いて、塗布ガラス9と第1のシリコン酸化膜5の
間にシリコン窒化膜11を積層しているために、プラズ
マ発光波長をモニタリングする事により終点の判定が可
能になる。また、この時段差の平坦部のシリコン窒化膜
は同時に除去したが、残したままでもよい。次に、15
0nmの厚みで第2のシリコン酸化膜6を気相成長させ
た後、CHF3 ,CF4 とHeガスを用い300mto
rrの圧力で第1の金属配線上のシリコン酸化膜を異方
的に選択ドライエッチングし0.5μm角のスルーホー
ルを開孔し、同時にホール内の反射防止膜も除去した。
続いて、第1の金属配線と同じAl合金3を800nm
と反射防止膜4としてTiNを50nmの厚みでスパッ
タ成長後、該積層膜を選択エッチングし第2の金属配線
とし、更にパッシベーション膜12としてSiH4とN
H3をN2キャリアでプラズマ反応させて1000nmの
プラズマ窒化膜を形成し、最後に外部への電極取り出し
の為にボンディングパッド部を開孔した。1 (a) to 1 (c) are schematic cross-sectional views of processes for explaining one embodiment of a semiconductor device and a method of manufacturing the same according to the present invention. When applied to a Si gate CMOS-LSI having a two-layer wiring structure using an Al alloy, M
A contact hole is formed in the field insulating film 1 in which a silicon oxide film is laminated by selective oxidation or vapor phase growth on the surface of a silicon substrate on which semiconductor elements such as OS transistors and resistors are formed, and a barrier metal and 0.5% Cu are formed. Including Al
The alloy 2 and TiN to be the antireflection film 4 are laminated by sputtering, and then the laminated film is selectively etched by a dry etcher using Cl 2 and BCl 3 gas so that the total thickness is 700 nm.
The first metal wiring of Next, as an interlayer insulating film, first, TEOS [Si (OC 2 H 5 ) 4 ] and O 2 were subjected to plasma vapor phase reaction at 380 ° C. and about 9 torr to form a first silicon oxide film 5 of 550 nm. Next, SiH 4 and NH 3
Was subjected to a plasma reaction at 360 ° C. at about 6 torr, and a silicon nitride film 11 having a thickness of 50 nm was laminated. Subsequently, spin coating of the organic or inorganic coated glass 9 followed by annealing for 30 minutes in an N 2 atmosphere at about 450 ° C., a flat portion on the first metal wiring region of about 5 nm to 70 nm, a step portion or a step portion. The coated glass having a thickness of about 300 nm is accumulated in the groove.
Next, in a Ar atmosphere of about 200 mtorr, a C 2 F 6 gas is used and a high frequency bias of 800 W is applied to perform dry etching to remove at least the first coated glass on the first metal wiring region. In the step of removing the coated glass 9, since the silicon nitride film 11 is laminated between the coated glass 9 and the first silicon oxide film 5, the end point can be determined by monitoring the plasma emission wavelength. It will be possible. At this time, the silicon nitride film on the flat portion of the step is removed at the same time, but it may be left as it is. Then 15
After vapor-depositing the second silicon oxide film 6 with a thickness of 0 nm, CHF 3 , CF 4 and He gas are used to 300 mto.
The silicon oxide film on the first metal wiring was anisotropically dry-etched by a pressure of rr to form a 0.5 μm square through hole, and at the same time, the antireflection film in the hole was also removed.
Then, the same Al alloy 3 as the first metal wiring is deposited to 800 nm.
Then, TiN is sputter-grown at a thickness of 50 nm as the antireflection film 4, the laminated film is selectively etched to form a second metal wiring, and SiH 4 and N are formed as a passivation film 12.
H 3 was plasma-reacted with N 2 carrier to form a plasma nitride film having a thickness of 1000 nm, and finally a bonding pad portion was opened to take out the electrode to the outside.
【0009】この様にして製造された半導体装置は、金
属配線層間絶縁膜の平坦化を再現よく行なうことが出
来、この結果第2の金属配線の被覆性も安定し、電気的
特性や長期信頼性の向上が図れた。また、この製造方法
は金属配線層間に限らず、ポリシリコン配線層間、ポリ
シリコン配線−金属配線層間、パッシベーション構造に
も適用でき、同様の効果が得られる。更に、図1(C)
の様な構造を持つ半導体装置は、塗布ガラスとシリコン
酸化膜の間にシリコン窒化膜を介しているために塗布ガ
ラス中の不純物の拡散を防ぐことが出来たため、電気的
特性が安定し、長期信頼性の向上が図れた。この様な配
線層間構造は金属配線層間に限らず、ポリシリコン配線
層間、ポリシリコン−金属配線層間にも適用でき、同様
の効果が得られる。In the semiconductor device thus manufactured, the flattening of the metal wiring interlayer insulating film can be performed with good reproducibility, and as a result, the covering property of the second metal wiring is stable, and the electrical characteristics and long-term reliability are improved. It was possible to improve the sex. Further, this manufacturing method can be applied not only to the metal wiring layers but also to the polysilicon wiring layers, the polysilicon wiring-metal wiring layers, and the passivation structure, and the same effect can be obtained. Furthermore, FIG. 1 (C)
In the semiconductor device having the structure like the above, since the silicon nitride film is interposed between the coated glass and the silicon oxide film, the diffusion of impurities in the coated glass can be prevented, so that the electrical characteristics are stable and the long-term The reliability was improved. Such a wiring interlayer structure can be applied not only to the metal wiring layers but also to the polysilicon wiring layers and the polysilicon-metal wiring layers, and the same effect can be obtained.
【0010】続いて、他の本発明に関わる半導体装置の
他の実施例を図2を用いて説明する。図2のような構造
は、以下のような工程によって製造される。MOSトラ
ンジスタや抵抗などの半導体素子が形成されたシリコン
基板表面の選択酸化や気相成長によるシリコン酸化膜を
積層したフィールド絶縁膜1にコンタクトホールを形成
し、バリアメタルと0.5%のCuを含むAl合金2と
反射防止膜4となるTiNをスパッタで積層させてか
ら、Cl2とBCl3ガスを用いたドライエッチャーで該
積層膜を選択エッチングし、総厚みが700nmの第1
の金属配線を施した。次に層間絶縁膜として、SiH4
とO2 やN2Oの様な酸化性ガスをプラズマや熱反応さ
せた第1のシリコン酸化膜5を500nm〜800nm
程度気相成長させ、更に微細化構造に於ける平坦化の必
要性か有機または無機塗布ガラス9をスピンコートし、
第1の金属配線に支障ない温度でアニ−ルする。続いて
Ar雰囲気中でC2F6ガスを用い、800Wの高周波バ
イアスをかけてドライエッチングし、少なくとも第1の
金属配線領域上の第1の塗布ガラスは除去した。次に、
150nmの厚みで第2のシリコン酸化膜6を気相成長
させた後、CHF3 ,CF4 とHeガスを用い300m
torrの圧力で第1の金属配線上のシリコン酸化膜を
異方的に選択ドライエッチングし0.5μm角のスルー
ホールを開孔し、同時にホール内の反射防止膜も除去し
た。続いて、第1の金属配線と同じAl合金3を800
nmと反射防止膜4としてTiNを50nmの厚みでス
パッタ成長後、該積層膜を選択エッチングし第2の金属
配線とした。次に第2の金属配線上を平坦化するため
に、まずTEOS〔Si(OC2H5)4〕とO2を380
℃、約9torrでプラズマ気相反応させて、第3のシ
リコン酸化膜7を550nm形成した。次に、SiH4
とNH3を360℃、約6torrでプラズマ反応さ
せ、シリコン窒化膜11を50nm積層させた。続いて
第2の塗布ガラス10をスピンコートしてから約450
℃のN2 雰囲気で30分のアニールを行うと、第2の金
属配線領域上の平坦部には約50〜700Å、段差部や
溝部には厚くても300nm程度の塗布ガラスが溜ま
る。次に、200mtorr程度のAr雰囲気中でC2
F6ガスを用い、800Wの高周波バイアスをかけてド
ライエッチングし、少なくとも第2の金属配線領域上の
第1の塗布ガラスは除去する。この第2の塗布ガラス1
0を除去する工程に於いて、塗布ガラス10と第3のシ
リコン酸化膜7の間にシリコン窒化膜11を積層してい
るために、プラズマ発光波長をモニタリングする事によ
り終点の判定が可能になる。また、この時段差の平坦部
のシリコン窒化膜は同時に除去したが、残したままでも
よい。次に、SiH4とNH3をO2キャリアでプラズマ
反応させることによりパッシベーション膜12としてシ
リコン窒化膜を気相成長させ、最後に外部への電極取り
出しの為にボンディングパッド部を開孔した。この様な
構造を持つ半導体装置は、第2の金属配線による段差が
緩和されているためにパッシベーション膜にボイドが発
生することもなく、耐湿性上の問題がなくなり、長期信
頼性の向上が図れた。Next, another embodiment of another semiconductor device according to the present invention will be described with reference to FIG. The structure as shown in FIG. 2 is manufactured by the following steps. A contact hole is formed in the field insulating film 1 in which a silicon oxide film is stacked by selective oxidation or vapor phase growth on the surface of a silicon substrate on which semiconductor elements such as MOS transistors and resistors are formed, and a barrier metal and 0.5% Cu are formed. The Al alloy 2 containing and TiN to be the antireflection film 4 are laminated by sputtering, and then the laminated film is selectively etched by a dry etcher using Cl 2 and BCl 3 gas to form a first film having a total thickness of 700 nm.
The metal wiring of. Next, as an interlayer insulating film, SiH 4
500 nm to 800 nm of the first silicon oxide film 5 which is obtained by plasma-reacting an oxidizing gas such as O 2 and N 2 O with plasma.
Vapor phase growth to a certain extent, and further, the necessity of flattening in a fine structure, or spin coating of organic or inorganic coated glass 9,
Anneal at a temperature that does not interfere with the first metal wiring. Subsequently, a C 2 F 6 gas was used in an Ar atmosphere, and a high frequency bias of 800 W was applied to perform dry etching to remove at least the first coated glass on the first metal wiring region. next,
After vapor-depositing the second silicon oxide film 6 to a thickness of 150 nm, CHF 3 , CF 4 and He gas are used for 300 m.
The silicon oxide film on the first metal wiring was anisotropically dry-etched under a pressure of torr to form a 0.5 μm square through hole, and at the same time, the antireflection film in the hole was also removed. Then, the same Al alloy 3 as the first metal wiring is applied to 800
and TiN as the antireflection film 4 with a thickness of 50 nm by sputtering, the laminated film was selectively etched to form a second metal wiring. Next, in order to planarize the second metal wiring, first, TEOS [Si (OC 2 H 5 ) 4 ] and O 2 are mixed with 380
The third silicon oxide film 7 was formed in a thickness of 550 nm by performing a plasma gas phase reaction at a temperature of about 9 torr. Next, SiH 4
And NH 3 were plasma-reacted at 360 ° C. at about 6 torr, and a silicon nitride film 11 was laminated to a thickness of 50 nm. Then, the second coated glass 10 is spin-coated for about 450
When annealing is performed for 30 minutes in a N 2 atmosphere at a temperature of about 50 to 700 Å on the flat portion on the second metal wiring region, and a coating glass of about 300 nm is accumulated on the stepped portion and the groove portion even though it is thick. Next, in an Ar atmosphere of about 200 mtorr, C 2
Dry etching is performed by applying a high frequency bias of 800 W using F 6 gas to remove at least the first coated glass on the second metal wiring region. This second coated glass 1
In the step of removing 0, since the silicon nitride film 11 is laminated between the coating glass 10 and the third silicon oxide film 7, the end point can be determined by monitoring the plasma emission wavelength. . At this time, the silicon nitride film on the flat portion of the step is removed at the same time, but it may be left as it is. Next, SiH 4 and NH 3 were plasma-reacted with O 2 carrier to vapor-deposit a silicon nitride film as the passivation film 12, and finally a bonding pad portion was opened to take out the electrode to the outside. In the semiconductor device having such a structure, since the step due to the second metal wiring is relaxed, voids are not generated in the passivation film, the problem of moisture resistance is eliminated, and the long-term reliability is improved. It was
【0011】続いて図3(a)〜図3(c)は、本発明
に関わる半導体装置とその製造方法の他の実施例を説明
するため工程断面図である。Al合金を用いた2層配線
構造のSiゲートCMOS−LSIに於いて、第1の金
属配線層上の層間絶縁膜として、まずTEOS〔Si
(OC2H5)4〕とO2を380℃、約9torrでプラ
ズマ気相反応させて第1のシリコン酸化膜5を550n
m、O2キャリアでO3とTEOSを60〜100tor
r,380℃で減圧熱反応させ400nmの第2のシリ
コン酸化膜6を形成した。続いてCHF3 ,CF4 とA
r等によるプラズマエッチャーで約450nm相当の異
方性エッチバックし、第2のシリコン酸化膜は平坦部を
全面除去し、第1の金属配線のスペースには側壁として
残す。次に、SiH4とNH3を360℃、約6torr
でプラズマ反応させ、シリコン窒化膜11を50nm積
層させた。続いて有機または無機塗布ガラス9をスピン
コートしてから約450℃のN2 雰囲気で30分のアニ
ールを行う。次に、200mtorr程度のAr雰囲気
中でC2F6ガスを用い、800Wの高周波バイアスをか
けてドライエッチングし、少なくとも第1の金属配線領
域上の第1の塗布ガラスは除去する。この塗布ガラス9
を除去する工程に於いても、先の実施例と同様に塗布ガ
ラス9と第1のシリコン酸化膜6の間にシリコン窒化膜
11を積層しているために、プラズマ発光波長をモニタ
リングする事により終点の判定が可能になる。また、こ
の時段差の平坦部のシリコン窒化膜は同時に除去した
が、残したままでもよい。次に、150nmの厚みで第
3のシリコン酸化膜7を気相成長させた後、CHF3 ,
CF4 とHeガスを用い300mtorrの圧力で第1
の金属配線上のシリコン酸化膜を異方的に選択ドライエ
ッチングし0.5μm角のスルーホールを開孔し、同時
にホール内の反射防止膜も除去した。続いて、第1の金
属配線と同じAl合金3を800nmと反射防止膜4と
してTiNを500Åの厚みでスパッタ成長後、該積層
膜を選択エッチングし第2の金属配線とし、更にパッシ
ベーション膜12としてSiH4とNH3をN2キャリア
でプラズマ反応させて1000nmのプラズマ窒化膜を
形成し、最後に外部への電極取り出しの為にボンディン
グパッド部を開孔した。この様にして製造された半導体
装置は、金属配線層間絶縁膜の平坦化を再現よく行なう
ことが出来、この結果第2の金属配線の被覆性も安定
し、電気的特性や長期信頼性の向上が図れた。また、こ
の製造方法は金属配線層間に限らず、ポリシリコン配線
層間、ポリシリコン配線−金属配線層間、パッシベーシ
ョン構造にも適用でき、同様の効果が得られる。更に、
図3(C)の様な構造を持つ半導体装置は、塗布ガラス
とシリコン酸化膜の間にシリコン窒化膜を介する事に依
って塗布ガラス中の不純物の拡散を防ぐことが出来たた
め、電気的特性が安定し、長期信頼性の向上が図れた。
この様な配線層間構造は金属配線層間に限らず、ポリシ
リコン配線層間、ポリシリコン−金属配線層間にも適用
でき、同様の効果が得られる。Next, FIGS. 3A to 3C are process sectional views for explaining another embodiment of the semiconductor device and the manufacturing method thereof according to the present invention. In a Si gate CMOS-LSI having a two-layer wiring structure using an Al alloy, first, TEOS [Si is used as an interlayer insulating film on the first metal wiring layer.
(OC 2 H 5 ) 4 ] and O 2 are reacted in a plasma gas phase at 380 ° C. and about 9 torr to form the first silicon oxide film 5 at 550 n.
m, O 2 carrier 60 to 100 tor of O 3 and TEOS
A second silicon oxide film 6 having a thickness of 400 nm was formed by thermal reaction under reduced pressure at r and 380 ° C. Then CHF 3 , CF 4 and A
Anisotropic etch back of about 450 nm is performed by a plasma etcher using r or the like, the flat portion of the second silicon oxide film is entirely removed, and the side wall is left in the space of the first metal wiring. Next, SiH 4 and NH 3 are added at 360 ° C. at about 6 torr.
Then, the silicon nitride film 11 was laminated to a thickness of 50 nm. Subsequently, the organic or inorganic coated glass 9 is spin-coated and then annealed for 30 minutes in an N 2 atmosphere at about 450 ° C. Next, in a Ar atmosphere of about 200 mtorr, a C 2 F 6 gas is used and a high frequency bias of 800 W is applied to perform dry etching to remove at least the first coated glass on the first metal wiring region. This coated glass 9
Also in the step of removing the film, since the silicon nitride film 11 is laminated between the coating glass 9 and the first silicon oxide film 6 as in the previous embodiment, the plasma emission wavelength can be monitored. It becomes possible to determine the end point. At this time, the silicon nitride film on the flat portion of the step is removed at the same time, but it may be left as it is. Next, after vapor-depositing a third silicon oxide film 7 with a thickness of 150 nm, CHF 3 ,
First using CF 4 and He gas at a pressure of 300 mtorr
The silicon oxide film on the metal wiring was anisotropically dry-etched to form a 0.5 μm square through hole, and at the same time, the antireflection film in the hole was also removed. Subsequently, the same Al alloy 3 as that of the first metal wiring and 800 nm and TiN as the antireflection film 4 are grown by sputtering to a thickness of 500 Å, and then the laminated film is selectively etched to form the second metal wiring and further as the passivation film 12. SiH 4 and NH 3 were plasma-reacted with N 2 carrier to form a plasma nitride film having a thickness of 1000 nm, and finally a bonding pad portion was opened to take out an electrode to the outside. In the semiconductor device manufactured in this manner, the flattening of the metal wiring interlayer insulating film can be performed with good reproducibility, and as a result, the covering property of the second metal wiring is stable, and the electrical characteristics and long-term reliability are improved. Was achieved. Further, this manufacturing method can be applied not only to the metal wiring layers but also to the polysilicon wiring layers, the polysilicon wiring-metal wiring layers, and the passivation structure, and the same effect can be obtained. Furthermore,
In the semiconductor device having the structure as shown in FIG. 3C, the diffusion of impurities in the coated glass can be prevented by interposing the silicon nitride film between the coated glass and the silicon oxide film. Was stable and long-term reliability was improved.
Such a wiring interlayer structure can be applied not only to the metal wiring layers but also to the polysilicon wiring layers and the polysilicon-metal wiring layers, and the same effect can be obtained.
【0012】最後に、本発明に関わる半導体装置の他の
実施例を図4を用いて説明する。図4のような構造を持
つ半導体装置は、例えば以下のような実施例に依って製
造される。Al合金を用いた2層配線構造のSiゲート
CMOS−LSIに於いて、MOSトランジスタや抵抗
などの半導体素子が形成されたシリコン基板表面の選択
酸化や気相成長によるシリコン酸化膜を積層したフィー
ルド絶縁膜1にコンタクトホールを形成し、バリアメタ
ルと0.5%のCuを含むAl合金2と反射防止膜4と
なるTiNをスパッタで積層させてから、Cl2とBC
l3ガスを用いたドライエッチャーで該積層膜を選択エ
ッチングし、総厚みが700nmの第1の金属配線を施
した。次に層間絶縁膜として、SiH4 とO2 やN2O
の様な酸化性ガスをプラズマや熱反応させた第1のシリ
コン酸化膜を500nm〜800nm程度気相成長さ
せ、更に微細化構造に於ける平坦化の必要性から有機ま
たは無機塗布ガラス9をスピンコートし、第1の金属配
線に支障ない温度でアニ−ルする。続いてAr雰囲気中
でC2F6ガスを用い、800Wの高周波バイアスをかけ
てドライエッチングし、少なくとも第1の金属配線領域
上の第1の塗布ガラスは除去した。 次に、150nm
の厚みで第2のシリコン酸化膜6を気相成長させた後、
CHF3 ,CF4 とHeガスを用い300mtorrの
圧力で第1の金属配線上のシリコン酸化膜を異方的に選
択ドライエッチングし0.5μm角のスルーホールを開
孔し、同時にホール内の反射防止膜も除去した。続い
て、第1の金属配線と同じAl合金3を800nmと反
射防止膜4としてTiNを50nmの厚みでスパッタ成
長後、該積層膜を選択エッチングし第2の金属配線とし
た。第2の金属配線上の段差を平坦化するために、まず
TEOS〔Si(OC2H5)4〕とO2を380℃、約9
torrでプラズマ気相反応させて第3のシリコン酸化
膜7を550nm、O2キャリアでO3とTEOSを60
〜100torr,380℃で減圧熱反応させ400n
mの第4のシリコン酸化膜8を形成した。続いてCHF
3 ,CF4 とAr等によるプラズマエッチャーで約45
0nm相当の異方性エッチバックし、第4のシリコン酸
化膜は平坦部を全面除去し、第2の金属配線のスペース
には側壁として残す。次に、SiH4とNH3を360
℃、約6torrでプラズマ反応させ、シリコン窒化膜
11を500Å積層させた。続いて有機または無機の第
2の塗布ガラス10をスピンコートしてから約450℃
のN2 雰囲気で30分のアニールを行う。次に、200
mtorr程度のAr雰囲気中でC2F6ガスを用い、8
00Wの高周波バイアスをかけてドライエッチングし、
少なくとも第2の金属配線領域上の第2の塗布ガラスは
除去する。この時、段差の平坦部のシリコン窒化膜は同
時に除去したが、残したままでもよい。次に、パッシベ
ーション膜12としてSiH4とNH3をN2キャリアで
プラズマ反応させて1000nmのプラズマ窒化膜を形
成し、最後に外部への電極取り出しの為にボンディング
パッド部を開孔した。Finally, another embodiment of the semiconductor device according to the present invention will be described with reference to FIG. The semiconductor device having the structure as shown in FIG. 4 is manufactured by the following embodiment, for example. In a Si gate CMOS-LSI having a two-layer wiring structure using an Al alloy, field insulation in which a silicon oxide film is laminated by selective oxidation or vapor phase growth of a silicon substrate surface on which semiconductor elements such as MOS transistors and resistors are formed. A contact hole is formed in the film 1, a barrier metal, an Al alloy 2 containing 0.5% Cu, and TiN to be the antireflection film 4 are laminated by sputtering, and then Cl 2 and BC are added.
The laminated film was selectively etched by a dry etcher using l 3 gas to form a first metal wiring having a total thickness of 700 nm. Next, as an interlayer insulating film, SiH 4 and O 2 or N 2 O
The first silicon oxide film, which has been subjected to plasma reaction or thermal reaction with an oxidizing gas such as the above, is vapor-grown at a thickness of about 500 nm to 800 nm, and the organic or inorganic coated glass 9 is spun from the necessity of flattening in the fine structure. It is coated and annealed at a temperature that does not interfere with the first metal wiring. Subsequently, a C 2 F 6 gas was used in an Ar atmosphere, and a high frequency bias of 800 W was applied to perform dry etching to remove at least the first coated glass on the first metal wiring region. Next, 150 nm
Of the second silicon oxide film 6 with a thickness of
CHF 3 , CF 4 and He gas are used to anisotropically dry-etch the silicon oxide film on the first metal wiring at a pressure of 300 mtorr to open a 0.5 μm square through hole, and at the same time, reflect in the hole. The barrier film was also removed. Subsequently, the same Al alloy 3 as the first metal wiring and 800 nm and TiN as the antireflection film 4 with a thickness of 50 nm were sputter-grown, and then the laminated film was selectively etched to form a second metal wiring. In order to flatten the step on the second metal wiring, first, TEOS [Si (OC 2 H 5 ) 4 ] and O 2 are added at 380 ° C. at about 9 ° C.
Plasma vapor phase reaction is performed at torr to form a third silicon oxide film 7 at 550 nm, and O 3 and TEOS are made 60 by O 2 carrier.
400n at 380 ° C under reduced pressure thermal reaction
m fourth silicon oxide film 8 was formed. Then CHF
Approximately 45 with plasma etcher using 3 , CF 4 and Ar
Anisotropic etching back of 0 nm is performed, the flat portion of the fourth silicon oxide film is entirely removed, and the side wall is left in the space of the second metal wiring. Then, SiH 4 and NH 3 are added to 360
A plasma reaction was performed at a temperature of about 6 torr and a silicon nitride film 11 of 500 Å was laminated. Subsequently, spin coating of the organic or inorganic second coated glass 10 is performed at about 450 ° C.
Anneal for 30 minutes in N 2 atmosphere. Then 200
Using C 2 F 6 gas in an Ar atmosphere of about mtorr,
Applying a high frequency bias of 00W for dry etching,
At least the second coated glass on the second metal wiring region is removed. At this time, the silicon nitride film on the flat portion of the step is removed at the same time, but it may be left as it is. Next, as a passivation film 12, SiH 4 and NH 3 were plasma-reacted with N 2 carrier to form a plasma nitride film of 1000 nm, and finally a bonding pad portion was opened to take out an electrode to the outside.
【0013】この様な構造を持つ半導体装置は、第2の
金属配線による段差が緩和されているためにパッシベー
ション膜にボイドが発生することもなく、耐湿性上の問
題がなくなり、長期信頼性の向上が図れた。In the semiconductor device having such a structure, since the step due to the second metal wiring is relaxed, voids are not generated in the passivation film, the problem of moisture resistance is eliminated, and long-term reliability is improved. I was able to improve.
【0014】[0014]
【発明の効果】以上のような本発明によれば、特に多層
配線構造の集積回路に於て配線層間膜、パッシベーショ
ン膜、フィールド層間膜の平坦性及び平坦化の再現性が
向上すると同時に、塗布ガラス中の不純物の拡散、パッ
シベーション膜に於けるボイドの発生を抑制する事によ
り電気的特性、耐湿性の向上が図れ、高品質な微細半導
体装置の安定供給を可能にするものである。As described above, according to the present invention, the flatness of the wiring interlayer film, the passivation film, and the field interlayer film and the reproducibility of the planarization are improved, and at the same time, the coating is performed especially in an integrated circuit having a multilayer wiring structure. By suppressing the diffusion of impurities in the glass and the generation of voids in the passivation film, electrical characteristics and moisture resistance can be improved, and stable supply of high-quality fine semiconductor devices can be achieved.
【図1】本発明に関わる半導体装置及びその製造方法を
示す工程断面図である。FIG. 1 is a process sectional view showing a semiconductor device and a method for manufacturing the same according to the present invention.
【図2】本発明に関わる半導体装置の断面図である。FIG. 2 is a sectional view of a semiconductor device according to the present invention.
【図3】本発明に関わる半導体装置及びその製造方法を
示す工程断面図である。FIG. 3 is a process sectional view showing a semiconductor device and a method for manufacturing the same according to the present invention.
【図4】本発明に関わる半導体装置の断面図である。FIG. 4 is a sectional view of a semiconductor device according to the present invention.
【図5】従来の半導体製造方法に関わる工程断面図であ
る。FIG. 5 is a process sectional view relating to a conventional semiconductor manufacturing method.
1 フィールド絶縁膜 2 第1の金属配線 3 第2の金属配線 4 反射防止膜 5 第1のシリコン酸化膜 6 第2のシリコン酸化膜 7 第3のシリコン酸化膜 8 第4のシリコン酸化膜 9 第1の塗布ガラス 10 第2の塗布ガラス 11 シリコン窒化膜 12 パッシベーション膜 13 ボイド DESCRIPTION OF SYMBOLS 1 field insulating film 2 first metal wiring 3 second metal wiring 4 antireflection film 5 first silicon oxide film 6 second silicon oxide film 7 third silicon oxide film 8 fourth silicon oxide film 9 1 coated glass 10 2nd coated glass 11 Silicon nitride film 12 Passivation film 13 Void
Claims (6)
て、少なくとも、配線層上に(a)気相反応させた第1
のシリコン酸化膜を形成する工程、(b)シリコン窒化
膜を形成する工程、(c)塗布ガラスを回転塗布する工
程、(d)前記積層絶縁膜の所定膜厚をエッチバックす
る工程を具備したことを特徴とする半導体装置の製造方
法。1. In a semiconductor device having a multi-layer wiring structure, at least (a) a first gas phase reaction on the wiring layer.
The step of forming a silicon oxide film, (b) the step of forming a silicon nitride film, (c) the step of spin-coating a coated glass, and (d) the step of etching back a predetermined thickness of said laminated insulating film. A method of manufacturing a semiconductor device, comprising:
少なくとも第1の配線層上に(a)気相反応させた第1
のシリコン酸化膜、(b)シリコン窒化膜、(c)塗布
ガラス、(d)第2のシリコン酸化膜、第2の配線層が
順に積層されたことを特徴とする半導体装置。2. A semiconductor device having a multilayer wiring structure,
At least on the first wiring layer, (a) a first gas phase reaction
A silicon oxide film, (b) silicon nitride film, (c) coated glass, (d) second silicon oxide film, and second wiring layer are sequentially stacked.
少なくとも金属配線層上に(a)第1のシリコン酸化
膜、(b)シリコン窒化膜、(c)塗布ガラス、 (d)シリコン窒化膜が順に積層されたことを特徴とす
る半導体装置。3. A semiconductor device having a multilayer wiring structure,
A semiconductor device in which (a) a first silicon oxide film, (b) a silicon nitride film, (c) a coated glass, and (d) a silicon nitride film are sequentially stacked on at least a metal wiring layer.
少なくとも、配線層上に(a)第1のシリコン酸化膜を
形成する工程、(b)第2のシリコン酸化膜を形成する
工程、(c)前記積層絶縁膜の所望膜厚をエッチバック
する工程、(d)シリコン窒化膜を形成する工程、
(e)塗布ガラスを回転塗布する工程、(f)前記積層
絶縁膜の所定膜厚をエッチバックする工程を具備したこ
とを特徴とする半導体装置の製造方法。4. A semiconductor device having a multilayer wiring structure,
At least (a) a step of forming a first silicon oxide film on the wiring layer, (b) a step of forming a second silicon oxide film, and (c) a step of etching back a desired film thickness of the laminated insulating film. , (D) a step of forming a silicon nitride film,
A method of manufacturing a semiconductor device, comprising: (e) a step of spin-coating a coated glass; and (f) a step of etching back a predetermined thickness of the laminated insulating film.
少なくとも第1の配線層上に(a)気相反応させた第1
のシリコン酸化膜、(b)第2のシリコン酸化膜、
(c)シリコン窒化膜、(d)塗布ガラス、(e)第3
のシリコン酸化膜、 (f)第2の配線層が順に積層されたことを特徴とする
半導体装置。5. A semiconductor device having a multilayer wiring structure,
At least on the first wiring layer, (a) a first gas phase reaction
Silicon oxide film, (b) second silicon oxide film,
(C) Silicon nitride film, (d) coated glass, (e) third
A semiconductor oxide film, and (f) a second wiring layer are sequentially stacked.
少なくとも金属配線層上に(a)第1のシリコン酸化
膜、(b)第2のシリコン酸化膜、(c)シリコン窒化
膜、(d)塗布ガラス、(e)シリコン窒化膜が順に積
層されたことを特徴とする半導体装置。6. A semiconductor device having a multilayer wiring structure,
(A) A first silicon oxide film, (b) a second silicon oxide film, (c) a silicon nitride film, (d) coated glass, and (e) a silicon nitride film were sequentially stacked on at least a metal wiring layer. A semiconductor device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18354892A JPH0629410A (en) | 1992-07-10 | 1992-07-10 | Semiconductor device and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18354892A JPH0629410A (en) | 1992-07-10 | 1992-07-10 | Semiconductor device and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0629410A true JPH0629410A (en) | 1994-02-04 |
Family
ID=16137738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18354892A Pending JPH0629410A (en) | 1992-07-10 | 1992-07-10 | Semiconductor device and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629410A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0945690A (en) * | 1995-07-31 | 1997-02-14 | Nec Corp | Semiconductor device and its manufacture |
KR100370126B1 (en) * | 1999-12-28 | 2003-01-30 | 주식회사 하이닉스반도체 | method for manufacturing capacitor of semiconductor device |
US6888247B2 (en) * | 1999-09-03 | 2005-05-03 | United Microelectronics Corp. | Interconnect structure with an enlarged air gaps disposed between conductive structures or surrounding a conductive structure within the same |
JP2008294123A (en) * | 2007-05-23 | 2008-12-04 | Nec Electronics Corp | Semiconductor device, and method of manufacturing semiconductor device |
-
1992
- 1992-07-10 JP JP18354892A patent/JPH0629410A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0945690A (en) * | 1995-07-31 | 1997-02-14 | Nec Corp | Semiconductor device and its manufacture |
US6888247B2 (en) * | 1999-09-03 | 2005-05-03 | United Microelectronics Corp. | Interconnect structure with an enlarged air gaps disposed between conductive structures or surrounding a conductive structure within the same |
KR100370126B1 (en) * | 1999-12-28 | 2003-01-30 | 주식회사 하이닉스반도체 | method for manufacturing capacitor of semiconductor device |
JP2008294123A (en) * | 2007-05-23 | 2008-12-04 | Nec Electronics Corp | Semiconductor device, and method of manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3128811B2 (en) | Method for manufacturing semiconductor device | |
US7480990B2 (en) | Method of making conductor contacts having enhanced reliability | |
JP3967567B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH08330305A (en) | Insulation film formation of semiconductor device | |
KR100380890B1 (en) | Semiconductor device and method for manufacturing the same | |
JPH05144811A (en) | Thin film semiconductor device and manufacture thereof | |
JPH0629410A (en) | Semiconductor device and its manufacture | |
JP2704575B2 (en) | Manufacturing method of capacitive element | |
JPH10116904A (en) | Manufacture of semiconductor device | |
JP3400353B2 (en) | Method for manufacturing semiconductor device | |
JP3099813B2 (en) | Method for manufacturing semiconductor device | |
JPH05206282A (en) | Manufacturing method of multilayer wiring structure of semiconductor device | |
JPH08139190A (en) | Manufacture of semiconductor device | |
US5834370A (en) | Manufacture of semiconductor device containing polycide electrode | |
JP3592209B2 (en) | Method for manufacturing semiconductor device | |
JP2900718B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0629282A (en) | Manufacture of semiconductor device | |
JP2776397B2 (en) | Method for manufacturing semiconductor device | |
JPH06196573A (en) | Fabrication of semiconductor device | |
JPH098137A (en) | Semiconductor device and its manufacture | |
JP2000082740A (en) | Manufacture of semiconductor device | |
JPH05218030A (en) | Manufacture of semiconductor device | |
JPH0682662B2 (en) | Method for manufacturing semiconductor device | |
JPH0817928A (en) | Manufacture of semiconductor device | |
JPH06120213A (en) | Manufacture of semiconductor device |