JPH05218030A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05218030A
JPH05218030A JP2022092A JP2022092A JPH05218030A JP H05218030 A JPH05218030 A JP H05218030A JP 2022092 A JP2022092 A JP 2022092A JP 2022092 A JP2022092 A JP 2022092A JP H05218030 A JPH05218030 A JP H05218030A
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
coated glass
metal wiring
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022092A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2022092A priority Critical patent/JPH05218030A/en
Publication of JPH05218030A publication Critical patent/JPH05218030A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve yield, long term reliability by flattening an interlayer insulating film of a semiconductor device having a multilayer interconnection structure through a buried conductive material formed by etching back in a through hole. CONSTITUTION:Desired amounts of first, second silicon oxide films 17, 18 plasma and thermally grown by using organic silane on a first metal interconnection 13 are etched back, spin-coated with first coating glass 22, then a desired amount is etched back, a third silicon oxide film 19 is then formed then spin-coated with second coating glass 23, then a desired amount is formed back, subsequently a fourth silicon oxide film 20 is formed, and then a through hole is opened. Further a tungsten film 16 vapor-grown on the entire surface is etched back to allow it to remain in the through hole, and then a second metal interconnection 14 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にサブミクロン以下に微細化された多層配線構
造に於ける接続技術に関し、層間絶縁膜の平坦性及びス
ルーホール部に於ける金属配線の被覆性改善を狙ったも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a connection technique in a multi-layered wiring structure which is made finer than submicron, and has a flatness of an interlayer insulating film and a metal in a through hole portion This is aimed at improving the wire coverage.

【0002】[0002]

【従来の技術】一般に半導体装置は多機能,集積化の面
から多層構造の配線が用いられ、例えばSi基板の不純
物層,不純物がドーピングされたPolySiやシリサ
イド層からAlあるいはこれらの合金等でなる第1の金
属配線でコンタクトを取り出し、更にシリコン酸化膜等
の層間絶縁膜に形成されたスルーホールを介して、Al
合金等の金属でなる第2の金属配線へ接続をとってい
る。微細化が進みスルーホールがハーフミクロン以下に
なるとアスペクト比の増大により配線材のスルーホール
への付き回りが厳しくなり、ホール抵抗やマイグレーシ
ョン等半導体装置の電気特性や信頼性を確保することが
難しく、よって改善策として、気相法によるPolyS
i,W(タングステン)の様な高融点金属やそのシリサ
イドの如き導電材をスルーホールに埋め込む方法が提案
されている。
2. Description of the Related Art Generally, a semiconductor device uses multi-layered wiring from the viewpoint of multi-function and integration. For example, an impurity layer of a Si substrate, an impurity-doped PolySi or a silicide layer made of Al or an alloy thereof is used. The contact is taken out by the first metal wiring, and further, through the through hole formed in the interlayer insulating film such as a silicon oxide film, Al
Connection is made to a second metal wiring made of a metal such as an alloy. As miniaturization progresses and the through holes become half micron or less, it becomes difficult to keep the wiring material around the through holes due to an increase in the aspect ratio, and it is difficult to secure the electrical characteristics and reliability of the semiconductor device such as hole resistance and migration. Therefore, as an improvement measure, PolyS by the vapor phase method is used.
A method of filling a through hole with a conductive material such as a refractory metal such as i or W (tungsten) or its silicide has been proposed.

【0003】従来この様な半導体装置の製造方法を図2
で説明するが、例えばAl合金を用いた2層配線構造の
CMOS−LSIは、トランジスタや抵抗等の半導体素
子が作り込まれたSi基板11上の選択酸化や気相成長
を用いたシリコン酸化膜によるフィールド絶縁膜12の
コンタクトホールを介して、Al合金等でなる第1の金
属配線13を施す。次に層間絶縁膜として、例えば特公
昭51−21753に類似してSiH4 とO2 やN2 O
の様な酸化性ガスをプラズマや熱反応させたシリコン酸
化膜25を500nm〜800nm程度気相成長させ、
更に微細化構造に於ける平坦化の必要性からアルコ−ル
類にシラノールとP2 O5 等を溶かした塗布ガラス21
をスピンコートし、第1の金属配線13に支障ない温度
でアニ−ルする。この時塗布ガラス21中に混入させる
P2 O5 は1〜5mol%の濃度で、塗布ガラス薄膜の
ストレス緩和と耐クラック効果を向上させる為である。
次に該塗布ガラス21とシリコン酸化膜25を、CF4
,CHF3 やC2 F6 ガス等を用いてドライエッチン
グしスルーホールを開孔後、密着層15としてスパッタ
や気相法で薄いTiNやTiWを成長させてから、付回
りの良い減圧気相成長でW16を400nm程度全面成
長させる。次にSF6 やCl2 にArやHeを添加した
ドライエッチャーでW16のエッチバックを行なう(図
2(a))。この時、気相成長させたW16の膜厚相当
分を単純にエッチバックしたのでは、第1の金属配線1
3のスペース等の段差にもW16が残渣26として残っ
てしまう。この残渣26は除去しないと、この上に形成
される第2の金属配線の横方向が電気的に短絡してしま
う。そこでW16の膜厚ばらつきやエッチャーの均一性
も考慮して、残渣26がなくなる様にオーバーエッチン
グをし、更に密着層15もドライエッチングし除去す
る。その後Al合金の第2の金属配線14を施して(図
2(b))、更にプラズマシリコン窒化膜等のパッシベ
ーション膜を気相成長させ、最後に外部への電極取り出
しの為にボンディングパッド部を開孔している。
A conventional method for manufacturing such a semiconductor device is shown in FIG.
As will be described later, for example, a CMOS-LSI having a two-layer wiring structure using an Al alloy is a silicon oxide film using selective oxidation or vapor phase growth on a Si substrate 11 in which semiconductor elements such as transistors and resistors are formed. A first metal wiring 13 made of an Al alloy or the like is formed through the contact hole of the field insulating film 12 by. Next, as an interlayer insulating film, for example, SiH4 and O2 or N2O similar to Japanese Patent Publication No. 51-21753 is used.
A silicon oxide film 25 obtained by subjecting an oxidizing gas such as the above to plasma or thermal reaction to vapor-phase grow about 500 nm to 800 nm,
Further, from the necessity of flattening in the fine structure, the coated glass 21 in which silanol and P2 O5 are dissolved in alcohols is used.
Is spin-coated and annealed at a temperature that does not hinder the first metal wiring 13. At this time, the concentration of P2 O5 mixed in the coated glass 21 at a concentration of 1 to 5 mol% is for improving the stress relaxation and the crack resistance effect of the coated glass thin film.
Next, the coated glass 21 and the silicon oxide film 25 are removed with CF4.
, CHF3 or C2 F6 gas is used for dry etching to open a through hole, and then thin TiN or TiW is grown as an adhesion layer 15 by sputtering or a vapor phase method. Is grown over the entire surface to about 400 nm. Then, W16 is etched back by a dry etcher in which Ar and He are added to SF6 and Cl2 (FIG. 2A). At this time, if the film thickness of the vapor-grown W16 is simply etched back, the first metal wiring 1
W16 also remains as a residue 26 on a step such as the space of 3. If this residue 26 is not removed, the lateral direction of the second metal wiring formed thereon will be electrically short-circuited. Therefore, in consideration of the film thickness variation of W16 and the uniformity of the etcher, overetching is performed so as to eliminate the residue 26, and the adhesion layer 15 is also removed by dry etching. After that, a second metal wiring 14 of Al alloy is applied (FIG. 2B), a passivation film such as a plasma silicon nitride film is further vapor-deposited, and finally a bonding pad portion is taken out to take out an electrode to the outside. It has a hole.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来技術
に於いては、まずSiH4 と酸化性ガスで気相成長させ
たシリコン酸化膜25は第1の金属配線13のスペース
が微細化されてくるとカスピングを生じ、サブミクロン
以下のスペースにボイド27が形成され、コンタミネー
ショントラップとなる。LSI配線のスペース寸法は、
最小値が限定されても広い領域は限定されない。よって
アスペクト比が約0.7以上にもなる為、仮に気相成長
シリコン酸化膜25の付き回りが良くても選択的に埋ま
るわけではなく、第1金属配線13のスペース部には、
該配線厚み相当のU字型の溝が形成されるので、ここに
塗布ガラス21の液溜まりが出来、例えば1.0〜1.
5μmの特定スペースには、塗布ガラス21が500n
m以上にも厚くなりクラック28が発生してしまう。一
方、第1の金属配線13のスペースが1.6〜2.0μ
m程度の領域では、塗布ガラスの溜りが少なくなる為、
表面が落ち込んで平坦度悪い。このことは、気相法で全
面成長したW16をエッチバックしてスルーホール内に
埋め込む場合に、スルーホール内にW16は残るが、層
間絶縁膜の表面平坦度が悪い領域にもWの残渣26が発
生してしまう。この残渣26を除去しようとしてオーバ
ーエッチングを加えると、今度は平坦部のW16がなく
なっているのでエッチ速度が急激に増してしまう事もあ
り終点コントロールが難しい。この結果、スルーホール
内のW16表面が急激にに落ち込んでしまい、スルーホ
ール領域で第2の金属配線14の付き回りが悪く、初期
歩留りの低下,ホール抵抗の増大やエレクトロマイグレ
ーションによる断線等の信頼性問題が多く、実用化と量
産面からの安定供給を行なう上で弊害となっていた。こ
れらのことは、Al合金を用いた2層配線間のスルーホ
ールの問題に限られず、Si基板の不純物層あるいPo
lySiやシリサイドを含むゲート電極等から、コンタ
クトホール内にエッチバックにより形成された埋め込み
導電材を介してAl合金等で引き出し配線を行なう場合
にも同様な問題があった。更に、第2の金属配線14
は、吸湿し易い塗布ガラスと接触する構造となり、工程
途中に侵入した水分とP2 O5 でリン酸が形成され、A
l合金等の金属配線が腐蝕されたり、この反応過程の水
素イオンやOHイオン,水分がフィールド酸化膜中に侵
入し、素子分離のフィールド反転耐圧を変化させてしま
う問題が生じていた。この他に無機,有機の塗布ガラス
に係わらず、直接重ね塗りや粘度を高くした厚塗り方式
も提案されているが、クラック発生や耐熱性の問題が多
く実用的でなかった。
However, in the prior art, the silicon oxide film 25 vapor-deposited with SiH4 and an oxidizing gas is cusped when the space of the first metal wiring 13 becomes finer. And a void 27 is formed in a space of submicron or less, and it becomes a contamination trap. The space size of the LSI wiring is
Even if the minimum value is limited, the wide area is not limited. Therefore, since the aspect ratio becomes about 0.7 or more, even if the vapor-grown silicon oxide film 25 has good coverage, it is not selectively filled, and the space portion of the first metal wiring 13 has
Since a U-shaped groove corresponding to the wiring thickness is formed, a liquid pool of the coating glass 21 can be formed here, for example, 1.0 to 1.
In a specific space of 5 μm, the coated glass 21 is 500 n
It becomes thicker than m and cracks 28 occur. On the other hand, the space of the first metal wiring 13 is 1.6 to 2.0 μ.
In the area of about m, the amount of accumulated glass is reduced,
The surface is depressed and the flatness is poor. This means that when W16 completely grown by the vapor phase method is etched back and buried in the through hole, the W16 remains in the through hole, but the W residue 26 remains in the region where the surface flatness of the interlayer insulating film is poor. Will occur. If over-etching is performed to remove the residue 26, the flat portion W16 is removed this time, so that the etching rate may rapidly increase and it is difficult to control the end point. As a result, the surface of the W16 in the through hole is suddenly dropped, and the second metal wiring 14 is poorly distributed in the through hole region, which lowers the initial yield, increases the hole resistance, and causes disconnection due to electromigration. There are many sex problems, which have been a hindrance to stable supply in terms of practical use and mass production. These are not limited to the problem of through holes between the two-layer wirings using the Al alloy, but are not limited to the impurity layer or Po of the Si substrate.
The same problem occurs when the lead wiring is formed from a gate electrode containing lySi or silicide through an embedded conductive material formed in the contact hole by etching back with an Al alloy or the like. Furthermore, the second metal wiring 14
Has a structure in which it comes into contact with the coated glass that easily absorbs moisture, and phosphoric acid is formed by water and P2 O5 that have entered during the process.
There has been a problem that the metal wiring such as the 1-alloy is corroded, or hydrogen ions, OH ions, and moisture in this reaction process enter the field oxide film to change the field inversion withstand voltage for element isolation. In addition to this, a direct overcoating method or a thick coating method in which the viscosity is increased has been proposed irrespective of the inorganic or organic coating glass, but it is not practical due to many problems such as crack generation and heat resistance.

【0005】しかるに本発明は係る問題点を解決するも
ので、有機シランのプラズマシリコン酸化膜と塗布ガラ
スにより、層間絶縁膜のボイドフリーと表面平坦度の向
上を図り、スルーホール部に於ける金属配線の接続を確
実なものとし又コロージョン対策、更にトランジスタ特
性の改善を施し、特にエッチバックで形成した埋め込み
導電材を介して多層配線を行う構造を有する微細半導体
装置の安定供給と信頼性向上を図ることを目的としたも
のである。
The present invention, however, solves the above-mentioned problems. The plasma silicon oxide film of organic silane and the coated glass are used to improve the void-freeness of the interlayer insulating film and the surface flatness, and to improve the metal content in the through hole. Improve the reliability and reliability of a fine semiconductor device that has a structure that secures the connection of wiring, measures against corrosion, and further improves the transistor characteristics, and in particular, makes a multilayer wiring through an embedded conductive material formed by etchback. This is intended to be achieved.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、多層配線構造を有する半導体装置に於いて、
少なくとも、所望表面に素子領域が形成された半導体基
板上に第1の金属配線層を形成する工程、有機シランと
O2 を含むガスをプラズマ気相反応させた第1のシリコ
ン酸化膜を形成する工程、有機シランとO3 を含むガス
を熱気相反応させた第2のシリコン酸化膜を積層させる
工程、前記積層絶縁膜の所定膜厚をエッチバックする工
程、第1の塗布ガラスを積層する工程、該塗布ガラスの
所定膜厚をエッチバックする工程、第3のシリコン酸化
膜を積層する工程、第2の塗布ガラスを積層する工程、
該塗布ガラスの所定膜厚をエッチバックする工程、第4
のシリコン酸化膜を積層する工程、スルーホールを開孔
後第2の金属配線を形成する工程を具備したことを特徴
とする。
A method of manufacturing a semiconductor device according to the present invention provides a semiconductor device having a multilayer wiring structure,
At least a step of forming a first metal wiring layer on a semiconductor substrate having a device surface formed on a desired surface, and a step of forming a first silicon oxide film by plasma vapor phase reaction of a gas containing organic silane and O2. A step of laminating a second silicon oxide film obtained by subjecting an organic silane and a gas containing O3 to a gas reaction in a hot gas phase, a step of etching back a predetermined thickness of the laminated insulating film, a step of laminating a first coated glass, A step of etching back a predetermined thickness of the coated glass, a step of laminating a third silicon oxide film, a step of laminating a second coated glass,
Etching back a predetermined thickness of the coated glass, fourth
And a step of forming a second metal wiring after opening a through hole.

【0007】叉、本発明の半導体装置の製造方法は、多
層配線構造の層間絶縁膜形成もしくは水洗処理後に、O
3を含む雰囲気中で加熱処理、もしくは酸化性雰囲気の
プラズマ処理を施してから塗布ガラスをスピンコートす
ることを特徴とする。
In addition, according to the method of manufacturing a semiconductor device of the present invention, after the formation of the interlayer insulating film of the multi-layer wiring structure or the water washing treatment,
The coated glass is spin-coated after heat treatment or plasma treatment in an oxidizing atmosphere in an atmosphere containing 3.

【0008】[0008]

【実施例】図1は、本発明に係わる半導体装置の一実施
例を説明する為の工程概略断面図であり、例えば、Al
合金を用いた2層配線構造のハーフミクロンSiゲート
CMOS−LSIに適用した場合に於いて、MOSトラ
ンジスタや抵抗等の半導体素子が形成されたシリコン基
板11上の選択酸化や気相成長によるシリコン酸化膜を
積層したフィールド絶縁膜12等にコンタクトホールを
形成し、バリアメタルと0.5%のCuを含むAl合金
と反射防止膜24となるTiNをスッパタで積層させて
から、Cl2とBCl3ガスを用いたドライエッチャーで
該積層膜を選択エッチングし総厚みが7000Åの第1
の金属配線13を施した。この反射防止膜24は、Al
合金自身やこの上に開けられスルーホールのフォトリソ
工程のハレーション防止の為で、導電性のTiNを用い
た。次に層間絶縁膜として、まずTEOS〔Si(OC
2 H5 )4 〕とO2 を380℃,約9torrでプラズ
マ気相反応させ約500nmの第1のシリコン酸化膜1
7とO2キャリアでO3とTEOSを60〜100tor
r,380℃で減圧熱反応させ第2のシリコン酸化膜1
8を400nm積層させた(図1(a))。これらのシ
リコン酸化膜は従来のSiH4 を用いたものに比べ何れ
もカスピングがほとんどない。特に第1のシリコン酸化
膜17は、ち密で耐コンタミ性にも優れ、圧縮応力(例
えばSiウエハーに成長したとき凸形に反る)を持つ
が、段差側壁の付き回りは平坦部の50〜60%であ
る。又第2のシリコン酸化膜18は段差側壁や溝底部で
の付き回りはほぼ100%と良好であるが、引張り応力
を有しOH基や水分を多く含み粗密である。続いてCH
F3 ,CF4 とAr等によるプラズマエッチャーで約4
50nm相当の異方性エッチバックし、第2のシリコン
酸化膜18は平坦部を全面除去し、第1の金属配線13
のスペースには側壁として残す。続いて第1の塗布ガラ
ス22をスピンコートしてから約450℃のN2 分囲気
で30分のアニールを行うと、第1の金属配線13領域
上の平坦部には約5〜70nm、段差部や溝部には厚く
ても300nm程度の第1の塗布ガラス21が溜まる。
次に、0.1mtorr程度のAr分囲気中で400W
の高周波バイアスをかけスパッタエッチングし、少なく
とも第1の金属配線13領域上の第1の塗布ガラス21
は除去する(図1(b))。この塗布ガラス22を除去
する工程に於いては、反応性イオンエッチャー等を用い
ても良いが、一般的に塗布ガラスのエッチング速度が気
相成長のシリコン酸化膜よりかなり大きいので、選択性
の低いエッチャーが好しい。次に、150nmの厚みで
第3のシリコン酸化膜19を気相成長させた後、第2の
塗布ガラス23をスピンコートしてから400℃のN2
アニールを施し、再び平坦部の該塗布ガラス23をドラ
イエッチングで除去した後、更に第4のシリコン酸化膜
20を気相成長させた(図1(c))。この時、第3,
第4のシリコン酸化膜19,20は、第1のシリコン酸
化膜17と同じ方法により成長させた。尚、第2の塗布
ガラス22のアニール温度は、第1の塗布ガラス21の
それより低い方が、脱ガスによるクラックやフィールド
反転耐圧に対して問題が少ない。続いて、CHF3 ,C
F4 とHeガスを用い300mtorrの圧力で第1の
金属配線13上のシリコン酸化膜17,19,20を異
方的に選択ドライエッチングし0.5μm角のスルーホ
ールを開孔し、同時にホール内の反射防止膜24も除去
した。反射防止膜24は残したままでも良いが、除去し
た方がホール抵抗は低くなる。次に密着層15としてT
iNを約100nm成長した後に、WF6 とH2 あるい
はSiH4 等を主ガスとして減圧気相法でW16がスル
ーホールも埋められる様に約400nmを全面成長し
た。次にSF6 とArガスを導入し高周波200W,
0.2torrの条件でWのエッチバックと、Cl2と
Arを用いて密着層15のTiNもエッチバックして除
去した。尚、密着層15のTiNはエッチングしないで
残したままとし、第2の金属配線のエッチングと同時に
パターニンすることも可能である。層間膜表面の平坦性
が良いので、エッチバックの終点はプラズマ発光波長を
モニタリングし、気相成長したW16の膜厚相当分の1
5%のオーバーエッチングとし、この結果第1の金属配
線13上のスペース領域や段差部にはW16の残渣26
を除去され、且つスルーホール部では、従来のように層
間絶縁膜表面からW16表面が大きく落ち込む様なこと
はなくなり、再現性も良好であった。続いて、第1の金
属配線13と同じAl合金を800nmと反射防止膜2
4としてTiNを50nmの厚みでスパッタ成長後、該
積層膜を選択エッチングし第2の金属配線14とし(図
1(d))、更にパッシベーション膜を気相成長させ、
最後に外部への電極取り出しの為にボンディングパッド
部を開孔した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic sectional view of a process for explaining one embodiment of a semiconductor device according to the present invention.
When applied to a half-micron Si gate CMOS-LSI having a two-layer wiring structure using an alloy, silicon oxidation by vapor oxidation or selective oxidation on a silicon substrate 11 on which semiconductor elements such as MOS transistors and resistors are formed. A contact hole is formed in the field insulating film 12 having the films laminated, and a barrier metal, an Al alloy containing 0.5% Cu, and TiN to be the antireflection film 24 are laminated by a spatter, and then Cl2 and BCl3 gas are added. The laminated film was selectively etched with the dry etcher used, and the total thickness was 7,000 Å
The metal wiring 13 was applied. This antireflection film 24 is made of Al
Conductive TiN was used to prevent halation in the photolithography process of the alloy itself and the through holes formed on the alloy. Next, as an interlayer insulating film, first, TEOS [Si (OC
2 H5) 4] and O2 are subjected to plasma vapor phase reaction at 380 ° C. and about 9 torr to form a first silicon oxide film 1 having a thickness of about 500 nm.
7 to O2 carrier for 60 to 100 tons of O3 and TEOS
The second silicon oxide film 1 is subjected to a reduced pressure thermal reaction at r and 380 ° C.
8 was laminated to 400 nm (FIG. 1 (a)). These silicon oxide films have almost no cusping as compared with the conventional one using SiH4. In particular, the first silicon oxide film 17 is dense and excellent in contamination resistance, and has a compressive stress (for example, a warp in a convex shape when grown on a Si wafer). 60%. Further, the second silicon oxide film 18 has a good covering power on the side wall of the step and the bottom of the groove of about 100%, but has a tensile stress and is dense and contains a large amount of OH groups and water. Then CH
About 4 with plasma etcher using F3, CF4 and Ar
Anisotropic etch back corresponding to 50 nm is performed, the flat portion of the second silicon oxide film 18 is entirely removed, and the first metal wiring 13 is removed.
Leave as a side wall in the space. Subsequently, the first coated glass 22 was spin-coated and then annealed for 30 minutes in an N 2 atmosphere at about 450 ° C., the flat portion on the region of the first metal wiring 13 was about 5 to 70 nm, and the step portion was formed. The first coated glass 21 having a thickness of about 300 nm is accumulated in the groove and the groove.
Next, 400 W in an Ar atmosphere of about 0.1 mtorr.
Of the first coated glass 21 on at least the region of the first metal wiring 13 by applying a high frequency bias of
Are removed (FIG. 1 (b)). In the step of removing the coated glass 22, a reactive ion etcher or the like may be used, but since the etching rate of the coated glass is generally much higher than that of the vapor-phase grown silicon oxide film, the selectivity is low. I like the etcher. Next, after vapor-depositing the third silicon oxide film 19 to a thickness of 150 nm, the second coated glass 23 was spin-coated and then N 2 at 400 ° C.
After annealing and again removing the coated glass 23 on the flat portion by dry etching, a fourth silicon oxide film 20 was vapor-grown (FIG. 1C). At this time, the third
The fourth silicon oxide films 19 and 20 were grown by the same method as the first silicon oxide film 17. When the annealing temperature of the second coated glass 22 is lower than that of the first coated glass 21, there are less problems with cracks due to degassing and field reverse breakdown voltage. Then CHF3, C
The silicon oxide films 17, 19 and 20 on the first metal wiring 13 are anisotropically dry-etched by using F4 and He gas at a pressure of 300 mtorr to open through holes of 0.5 μm square, and at the same time, inside the holes. The antireflection film 24 was also removed. The antireflection film 24 may be left as it is, but the hole resistance becomes lower when it is removed. Next, as the adhesion layer 15, T
After iN was grown to a thickness of about 100 nm, W400 and H2 or SiH4 was used as a main gas, and W16 was grown to a total thickness of about 400 nm by a low pressure vapor phase method so that the through holes were also filled with W16. Next, SF6 and Ar gas are introduced, and high frequency 200 W,
The etch back of W was performed under the condition of 0.2 torr, and the TiN of the adhesion layer 15 was also etched back and removed by using Cl2 and Ar. Incidentally, it is also possible to leave the TiN of the adhesion layer 15 as it is without etching and pattern it simultaneously with the etching of the second metal wiring. Since the flatness of the interlayer film surface is good, the plasma emission wavelength is monitored at the end point of the etch back, and the film thickness of W16 vapor-grown is equivalent to 1 /
The overetching of 5% was performed, and as a result, the residue 26 of W16 was formed in the space region and the step portion on the first metal wiring 13.
Moreover, in the through hole portion, the W16 surface did not drop largely from the interlayer insulating film surface as in the conventional case, and the reproducibility was good. Then, the same Al alloy as that of the first metal wiring 13 is applied to the antireflection film 2 having a thickness of 800 nm.
4, TiN was sputter-grown to a thickness of 50 nm, the laminated film was selectively etched to form the second metal wiring 14 (FIG. 1 (d)), and the passivation film was vapor-phase grown.
Finally, a bonding pad portion was opened to take out the electrode to the outside.

【0009】この様にして製造された半導体装置は、第
1の金属配線の特定スペースに限定される事なく層間絶
縁膜にクラックやボイドもなくし全体の平坦化を図るこ
とが出来、この結果スルーホ−ルに埋め込まれるWをエ
ッチバックによって形成する際、残渣26やホール内の
W16の落込みも問題なくなり、ホールエッジ部に於け
る第2の金属配線の被覆性や接触性が改善され、電気特
性や長期信頼性の向上が図れた。更に、塗布ガラスと金
属配線の接触がない構造となりコロージョンにも強く、
水素イオン等によるコンタミの発生、及び第1のシリコ
ン酸化膜17がTEOSをプラズマ反応で形成されてい
ることにより、コンタミに対する遮蔽効果もあり従来の
様にフィールドの反転耐圧の低下問題も無くなった。
尚、第3,第4のシリコン酸化膜19,20の厚みは、
膜厚制御性等から1000Å以上が適当であるが、配線
の層間容量の必要に応じてこれらの膜で厚み調整を行う
ことが可能であり、且つ塗布ガラス上に形成する構造と
なるので、平坦性だけの要求からすると従来のSiH4
を用いたシリコン酸化膜でも大きな支障はない。
The semiconductor device manufactured as described above is not limited to a specific space of the first metal wiring, and can be planarized as a whole without any cracks or voids in the interlayer insulating film. -When the W embedded in the hole is formed by etch back, the residue 26 and the drop of W16 in the hole are also no problem, and the covering property and contact property of the second metal wiring at the hole edge portion are improved. The characteristics and long-term reliability were improved. Furthermore, it has a structure where there is no contact between the coated glass and the metal wiring, and it is strong against corrosion.
Due to the generation of contamination due to hydrogen ions and the first silicon oxide film 17 formed by TEOS plasma reaction, there is a shielding effect against contamination and the problem of lowering the field inversion breakdown voltage as in the conventional case is eliminated.
The thickness of the third and fourth silicon oxide films 19 and 20 is
1000 Å or more is suitable from the viewpoint of film thickness controllability, etc., but it is possible to adjust the thickness with these films according to the need for the interlayer capacitance of the wiring, and the structure is formed on the coated glass, so it is flat. The conventional SiH 4
A silicon oxide film using is not a big problem.

【0010】一方、第2のシリコン酸化膜18をエッチ
バックする工程は、エッチングポリマーの発生や、装置
の使用効率上フォトレジストマスクにコンタクトやスル
ーホールのエッチング工程と共用する場合もあり、変質
したフォトレジストの再付着がパーティクル欠陥となり
歩留り低下を期たすので、後工程として有機薬品による
レジスト剥離や水洗工程を施す必要がある。ところが、
表面クリーニングや乾燥が十分でないと、次の塗布ガラ
ス工程で塗れ性が悪く、液を弾いたり膜厚の不均一性や
アニールでクラックを生じることが時々あった。この対
策として種々の実験の結果、350℃以上のランプ加熱
炉でO2に3%以上のO3を混合させて30秒以上の処理
を行うことやO2プラズマ処理、例えば枚葉処理装置で
5〜80℃に加熱した200W,0.5torrで20
秒分間のクリーニングを施してやることが有効と判り、
塗布ガラス工程での問題が解決された。これらの処理
は、枚葉,バッチ式あるいは加熱方式もランプに限られ
ずヒーター等を用いたたものでも良い。
On the other hand, the process of etching back the second silicon oxide film 18 may be changed in some cases because it may be used in common with the process of etching a contact or a through hole in the photoresist mask due to the generation of etching polymer or the use efficiency of the device. Since redeposition of the photoresist causes particle defects to reduce the yield, it is necessary to perform resist stripping with an organic chemical or washing with water as a post process. However,
If surface cleaning and drying are not sufficient, the wettability is poor in the subsequent coating glass step, and sometimes the liquid is repelled, the film thickness becomes nonuniform, and annealing causes cracks. As a countermeasure against this, as a result of various experiments, it is possible to mix O2 with 3% or more of O3 for 30 seconds or more in a lamp heating furnace of 350 ° C. or more, or to perform O2 plasma treatment, for example, 5 to 80 in a single wafer processing apparatus. 200W heated to ℃, 20 at 0.5 torr
It turns out that it is effective to do cleaning for a second,
Problems with the coating glass process have been resolved. These treatments are not limited to the lamps in the single-wafer type, the batch type, or the heating method, and may be those using a heater or the like.

【0011】この他、配線構造としては、実施例で示し
たAl合金の2層配線に限られず高融点金属や半導体あ
るいはこれらの化合物を用いた場合にも応用可能であ
る。
In addition, the wiring structure is not limited to the two-layer wiring of the Al alloy shown in the embodiment, but can be applied to the case of using a refractory metal, a semiconductor, or a compound thereof.

【0012】[0012]

【発明の効果】以上の様に本発明によれば、特に多層配
線構造の集積回路等に於いて、デザインルールに限定さ
れず配線層間膜の平坦化がなされ、特にスルーホールに
エッチバックで形成した埋め込み導電材を介した多層配
線のカバレージ向上,金属配線のコロージョン防止等に
より、電気特性の安定化と歩留りが良く高品質な微細半
導体装置の安定供給を可能にするものである。
As described above, according to the present invention, particularly in an integrated circuit having a multi-layer wiring structure, the wiring interlayer film is flattened without being restricted by the design rule, and the through holes are formed by etching back. By improving the coverage of the multi-layered wiring through the embedded conductive material and preventing the corrosion of the metal wiring, it is possible to stabilize the electric characteristics and to stably supply a high-quality fine semiconductor device with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は本発明に係わる半導体装置の
製造方法を示す工程概略断面図である。
1A to 1D are schematic cross-sectional views of processes showing a method for manufacturing a semiconductor device according to the present invention.

【図2】(a)〜(b)は従来の半導体装置の製造方法
に係わる概略断面図である。
2A to 2B are schematic cross-sectional views related to a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

11 Si基板 12 フィールド絶縁膜 13 第1の金属配線 14 第2の金属配線 15 密着層 16 W 17 第1のシリコン酸化膜 18 第2のシリコン酸化膜 19 第3のシリコン酸化膜 20 第4のシリコン酸化膜 21,22,23 塗布ガラス 24 反射防止膜 25 シリコン酸化膜 26 残渣 27 ボイド 28 クラック 11 Si Substrate 12 Field Insulating Film 13 First Metal Wiring 14 Second Metal Wiring 15 Adhesion Layer 16 W 17 First Silicon Oxide Film 18 Second Silicon Oxide Film 19 Third Silicon Oxide Film 20 Fourth Silicon Oxide film 21,22,23 Coating glass 24 Antireflection film 25 Silicon oxide film 26 Residue 27 Void 28 Crack

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多層配線構造を有する半導体装置に於い
て、少なくとも、所望表面に素子領域が形成された半導
体基板上に第1の金属配線層を形成する工程、有機シラ
ンとO2 を含むガスをプラズマ気相反応させた第1のシ
リコン酸化膜を形成する工程、有機シランとO3 を含む
ガスを熱気相反応させた第2のシリコン酸化膜を積層さ
せる工程、前記積層絶縁膜の所定膜厚をエッチバックす
る工程、第1の塗布ガラスを積層する工程、該塗布ガラ
スの所定膜厚をエッチバックする工程、第3のシリコン
酸化膜を積層する工程、第2の塗布ガラスを積層する工
程、該塗布ガラスの所定膜厚をエッチバックする工程、
第4のシリコン酸化膜を積層する工程、スルーホールを
開孔後第2の金属配線を形成する工程を具備したことを
特徴とする半導体装置の製造方法。
1. In a semiconductor device having a multi-layer wiring structure, at least a step of forming a first metal wiring layer on a semiconductor substrate having a device surface formed on a desired surface, a gas containing organic silane and O2. A step of forming a first silicon oxide film which has been subjected to a plasma vapor phase reaction, a step of laminating a second silicon oxide film which has undergone a thermal vapor phase reaction of a gas containing organic silane and O3, and a predetermined thickness of the laminated insulating film. Etching back, laminating the first coated glass, etching back a predetermined thickness of the coated glass, laminating a third silicon oxide film, laminating the second coated glass, A step of etching back a predetermined thickness of the coated glass,
A method of manufacturing a semiconductor device, comprising: a step of laminating a fourth silicon oxide film; and a step of forming a second metal wiring after opening a through hole.
【請求項2】請求項1記載の第2の金属配線は、少なく
ともスルーホール内に気相成長した導電材をエッチバッ
クによって埋め込み、該導電材を介して第1の配線層に
電気的接続がされていることを特徴とする半導体装置の
製造方法。
2. The second metal wiring according to claim 1, wherein at least the through hole is filled with a vapor-phase grown conductive material by etching back, and the second metal wiring is electrically connected to the first wiring layer through the conductive material. And a method for manufacturing a semiconductor device.
【請求項3】多層配線構造の層間絶縁膜形成もしくは水
洗処理後に、O3を含む雰囲気中で加熱処理、もしくは
酸化性雰囲気のプラズマ処理を施してから塗布ガラスを
スピンコートすることを特徴とする半導体装置の製造方
法。
3. A semiconductor, characterized in that, after forming an interlayer insulating film of a multi-layer wiring structure or washing with water, heat treatment is performed in an atmosphere containing O3 or plasma treatment in an oxidizing atmosphere is performed, and then the coated glass is spin-coated. Device manufacturing method.
JP2022092A 1992-02-05 1992-02-05 Manufacture of semiconductor device Pending JPH05218030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022092A JPH05218030A (en) 1992-02-05 1992-02-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022092A JPH05218030A (en) 1992-02-05 1992-02-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05218030A true JPH05218030A (en) 1993-08-27

Family

ID=12021088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022092A Pending JPH05218030A (en) 1992-02-05 1992-02-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05218030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586175A (en) * 2020-09-30 2022-06-03 英诺赛科(苏州)科技有限公司 Semiconductor device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586175A (en) * 2020-09-30 2022-06-03 英诺赛科(苏州)科技有限公司 Semiconductor device and method of manufacturing the same
CN114586175B (en) * 2020-09-30 2023-04-18 英诺赛科(苏州)科技有限公司 Semiconductor device and method of manufacturing semiconductor device
US11862721B2 (en) 2020-09-30 2024-01-02 Innoscience (Suzhou) Technology Co., Ltd. HEMT semiconductor device with a stepped sidewall

Similar Documents

Publication Publication Date Title
JP3128811B2 (en) Method for manufacturing semiconductor device
US4988423A (en) Method for fabricating interconnection structure
US6815823B2 (en) Copper metal structure for the reduction of intra-metal capacitance
US5833817A (en) Method for improving conformity and contact bottom coverage of sputtered titanium nitride barrier layers
US6194304B1 (en) Semiconductor device and method of fabricating the same
US6159857A (en) Robust post Cu-CMP IMD process
US20060246714A1 (en) Method of forming a conductive contact
US11929423B2 (en) Etching platinum-containing thin film using protective cap layer
US20020094695A1 (en) Method of dry etching organic SOG film
KR19980032792A (en) Manufacturing Method of Semiconductor Device
JPH11145134A (en) Semiconductor device and manufacture thereof
KR100707656B1 (en) Method for forming metal line and semiconductor device including the same
US6037250A (en) Process for forming multilevel interconnection structure
US6248665B1 (en) Delamination improvement between Cu and dielectrics for damascene process
JPH0653337A (en) Manufacture of semiconductor device
US6812140B2 (en) Method for contact profile improvement
US5453402A (en) Selective metal via plug growth technology for deep sub-micrometer ULSI
US6812113B1 (en) Process for achieving intermetallic and/or intrametallic air isolation in an integrated circuit, and integrated circuit obtained
US5904576A (en) Method of forming wiring structure
WO1991010261A1 (en) Semiconductor interconnect structure utilizing a polyimide insulator
US20040251553A1 (en) Semiconductor device and manufacturing method thereof
JP2001118928A (en) Method for manufacturing integrated circuit
JPH05218030A (en) Manufacture of semiconductor device
US7402513B2 (en) Method for forming interlayer insulation film
JPH08139190A (en) Manufacture of semiconductor device