JPH02284447A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02284447A
JPH02284447A JP10460489A JP10460489A JPH02284447A JP H02284447 A JPH02284447 A JP H02284447A JP 10460489 A JP10460489 A JP 10460489A JP 10460489 A JP10460489 A JP 10460489A JP H02284447 A JPH02284447 A JP H02284447A
Authority
JP
Japan
Prior art keywords
film
lower layer
insulating film
interlayer insulating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10460489A
Other languages
Japanese (ja)
Inventor
Takeshi Hashimoto
毅 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10460489A priority Critical patent/JPH02284447A/en
Publication of JPH02284447A publication Critical patent/JPH02284447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate defects in upper and lower layer wirings by a method wherein a plasma CVD SiO2 film with a tensile stress and a plasma CVD SiO2 film with a compression stress and formed as the lower layer film and the upper layer film of an interlayer insulating film in a laminated structure respectively. CONSTITUTION:After a first layer metal wiring 3 is formed on the insulating film 2 of a semiconductor substrate 1, the lower layer film 4 of an interlayer insulating film is formed. The lower layer film 4 is composed of a plasma CVD SiO2 film with a tensile stress. Then an SOG coating film 5 is formed on the film 4 as the middle layer of the interlayer insulating film to obtain a flat surface. Then a plasma CVD SiO2 film with a compression stress is formed on the film 5 as the upper layer film 6 of the interlayer insulating film and a second layer metal wiring 7 is formed on the film 6. With this constitution, defects in the first and second layer metal wirings 3 and 7 can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置の製造方法に係り、特に多層配線
構造における層間絶縁膜の形成方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming an interlayer insulating film in a multilayer wiring structure.

(従来の技術) 従来、多層配線構造における層間絶縁膜としては公知の
CVD技術による絶縁膜(SiO□膜、 PSG膜)を
使用しているが、多層配線での段差形状を考えて眉間絶
縁膜の平坦化が行われており、その結果として層間絶縁
膜構成は複雑になっている。
(Conventional technology) Conventionally, an insulating film (SiO□ film, PSG film) made by known CVD technology has been used as an interlayer insulating film in a multilayer wiring structure. As a result, the interlayer insulation film structure has become more complex.

公知の層間絶縁膜平坦化技術として代表的なものは、S
OG中塗り法、エッチハックによる平坦化法がある。
A typical known interlayer insulating film planarization technique is S
There are OG intermediate coating method and flattening method using etch hack.

第1図はSOG中塗り法を採用した半導体装置の一例を
示す。この図において、1は半導体基板、2は絶縁膜で
あり、その上に第1層メタル配vA3を形成した後、層
間絶縁膜の下層膜4を形成する。
FIG. 1 shows an example of a semiconductor device employing the SOG intermediate coating method. In this figure, 1 is a semiconductor substrate, 2 is an insulating film, and after forming a first layer metal interconnection layer A3 thereon, a lower layer film 4 of an interlayer insulating film is formed.

その後、下層膜4上に層間絶縁膜の中間層としてSOG
塗布膜(スピンオンガラス膜)5を形成し、表面を平坦
化する。その後、このSOG塗布膜5上に層間絶縁膜の
上層膜6を形成した後、その上に第2Nメタル配線7を
形成する。
After that, SOG is applied as an intermediate layer of the interlayer insulating film on the lower layer film 4.
A coating film (spin-on glass film) 5 is formed and the surface is planarized. Thereafter, an upper film 6 of an interlayer insulating film is formed on this SOG coating film 5, and then a second N metal wiring 7 is formed thereon.

第2図はエッチバックによる平坦化法を採用した半導体
装置の一例を示す。この図において、11は半導体基板
、12は絶縁膜であり、その上に第1層メタル配線13
を形成した後、層間絶縁膜の下層膜14を形成する。そ
の後、図示していないが、下層膜14上にレジストを塗
布した上で、そのレジストと下層膜I4とでエツチング
速度が同一になる条件でレジストがすべて除去されるま
で全面エッチハックを施し、図のように下層膜14の平
坦化を図る。その後、下層膜14上に層間絶縁膜の上層
膜15を形成し、その」二に第2層メタル配線16を形
成する。
FIG. 2 shows an example of a semiconductor device employing a planarization method using etchback. In this figure, 11 is a semiconductor substrate, 12 is an insulating film, and a first layer metal wiring 13 is placed on top of it.
After forming, a lower layer film 14 of an interlayer insulating film is formed. Thereafter, although not shown in the figure, a resist is applied on the lower layer film 14, and the entire surface is etched under conditions such that the resist and the lower layer film I4 are etched at the same rate until all the resist is removed. The lower layer film 14 is planarized as shown in FIG. Thereafter, an upper layer film 15 of an interlayer insulating film is formed on the lower layer film 14, and a second layer metal wiring 16 is formed on top of the upper layer film 15.

以上の説明から明らかなように、SOG中塗り法では層
間絶縁膜は3層構造、エッヂハックによる平坦化法では
2層構造となり、いずれの場合にも上層膜と下層膜を有
する。
As is clear from the above description, the interlayer insulating film has a three-layer structure in the SOG intermediate coating method, and a two-layer structure in the edge hack planarization method, and in both cases, it has an upper layer film and a lower layer film.

この上層膜と下層膜には、一方がPSG膜、他方が34
0□膜というようにPSG膜とSiO□膜の組合わせ、
あるいは上層膜と下層膜の両方にPSG膜または5iO
z膜のいずれか一方を使用している。
The upper layer film and the lower layer film include one PSG film and the other 34
A combination of PSG film and SiO□ film, such as 0□ film,
Or PSG film or 5iO for both the upper layer film and the lower layer film.
Either one of the Z films is used.

(発明が解決しようとする課題) しかるに、眉間絶縁膜の上層膜と下層膜が上記のような
膜構成の場合には、メタル配線での欠損の発生、眉間絶
縁膜に対するボッI・キャリア注入によるトランジスタ
寿命の劣化のどちらか一方が、あるいは両方が同時に起
こるという問題がある。
(Problem to be Solved by the Invention) However, if the upper and lower layers of the glabellar insulating film have the above-mentioned film structure, defects may occur in the metal wiring, and defects may occur due to the injection of boron I and carriers into the glabellar insulating film. There is a problem in that either one of the transistor life degradations or both occur simultaneously.

この問題点について従来例を種々実験した結果を下記表
1に示す。
The results of various experiments on conventional examples regarding this problem are shown in Table 1 below.

表   1 ここで、PSG膜は公知の常圧CVD膜であり、P−3
i02膜ば公知のプラズマCVD膜である。膜厚はそれ
ぞれでのトータル膜厚が同一になるように設定しており
、表1では約8000人である。メタル配線は第1層、
第2層ともにAl−5i配線(5000人)である。ト
ランジスタの寿命ばVd=8V、V。
Table 1 Here, the PSG film is a known normal pressure CVD film, and P-3
The i02 film is a known plasma CVD film. The film thickness is set so that the total film thickness in each case is the same, and in Table 1, it is about 8,000 people. The metal wiring is the first layer,
Both of the second layers are made of Al-5i wiring (5000 wires). The life of the transistor is Vd=8V, V.

=4vでのgmの10%劣化で求めている。メタル配線
の欠損は、×印が配線の173以上の欠損を示し、Δ印
が173未満の欠損を示している。
= 10% deterioration of gm at 4v. Regarding defects in the metal wiring, an x mark indicates a defect of 173 or more in the wiring, and a Δ mark indicates a defect of less than 173.

この表1から分ることは、第1Nメタル配線の欠損は下
層膜がPSG膜であれば発生しないし、第2層メタル配
線の欠損は上層膜がP −5iO□膜であれば発生しな
いし、トランジスタ寿命の劣化は下層膜と上層膜がP−
3iO□膜であれば起こらないということである。しか
るに、従来技術の膜構成では、これらのすべてを満足す
ることはできない。
Table 1 shows that defects in the first N metal wiring will not occur if the lower layer film is a PSG film, and defects in the second layer metal wiring will not occur if the upper layer film is a P-5iO□ film. , the deterioration of transistor life occurs when the lower and upper layers are P-
This means that this does not occur if the film is 3iO□. However, the membrane structure of the prior art cannot satisfy all of these requirements.

この発明は上記の点に鑑みなされたもので、層間絶縁膜
による配線の欠損とトランジスタ寿命の劣化のすべてを
解決できる半導体装置の製造方法を提供することを目的
とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can solve all of the problems of wiring defects caused by interlayer insulating films and deterioration of transistor life.

(課題を解決するための手段) この発明は、半導体装置の製造方法、特に多層配線構造
での眉間絶縁膜形成方法において、積層構造層間絶縁膜
の下層膜として引張り応力のプラズマCVD 5iOz
膜を形成し、同絶縁膜の」二層膜として圧縮応力のプラ
ズマCVD SiO□膜を形成するものである。
(Means for Solving the Problems) The present invention provides a method for manufacturing a semiconductor device, particularly a method for forming a glabella insulating film in a multilayer wiring structure, in which tensile stress plasma CVD 5iOz is used as a lower layer film of an interlayer insulating film in a laminated structure.
A compressive stress plasma CVD SiO□ film is formed as a two-layer film of the same insulating film.

(作 用) PSG膜は、引張り応力である。この発明において、下
層膜として引張り応力のプラズマCVD5iOz膜を形
成すれば、応力的には下層膜としてPSG膜を形成した
場合と同等になり、下層配線の欠損を防止できることは
表1から明らかである。
(Function) The PSG film has tensile stress. In this invention, it is clear from Table 1 that if a plasma CVD 5iOz film with tensile stress is formed as the lower layer film, the stress will be equivalent to that when a PSG film is formed as the lower layer film, and damage to the lower layer wiring can be prevented. .

一方、上層膜として、通常圧縮応力のプラズマCVD 
5iOz膜を形成すれば、」二層配線の欠損を防止でき
ることは表1から明らかである。また、」二層膜と下層
膜の両方をプラズマCVD SiO□膜で形成すれば、
ホットキャリア注入による1−ランジスタ寿命の劣化を
防止できることは表1から明らかである。
On the other hand, for the upper layer film, plasma CVD with normal compressive stress is used.
It is clear from Table 1 that defects in the two-layer wiring can be prevented by forming a 5iOz film. In addition, if both the double layer film and the lower layer film are made of plasma CVD SiO□ film,
It is clear from Table 1 that deterioration of the 1-transistor life due to hot carrier injection can be prevented.

なお、プラズマCVD SiO□膜は通常前述のように
圧縮応力であるが、例えばS 1tl 4ガスとN20
ガスを用いてプラズマCVD 5in2膜を形成する場
合、−例としてS i Ha/N z O流量比を変え
ることにより引張り応ノjとすることができる。すなわ
ち、通常S i 11 t / N 20流量比が01
06未満で圧縮応力の膜が形成されるが、流量比を0.
06〜0.20程度とすることにより引張り応力の膜が
形成される。
Note that the plasma CVD SiO
When forming a plasma CVD 5in2 film using a gas, the tensile response can be achieved by changing the SiHa/NzO flow rate ratio, for example. That is, normally the S i 11 t / N 20 flow rate ratio is 01
If the flow rate ratio is less than 0.06, a film with compressive stress will be formed.
A film with tensile stress is formed by setting it to about 0.06 to 0.20.

(実施例) 以下この発明の一実施例を説明する。この発明の一実施
例で製造される半導体装置の構造は第1図と同一である
。そこで、この第1図を再度用いてこの発明の一実施例
を説明することとする。
(Example) An example of the present invention will be described below. The structure of a semiconductor device manufactured according to an embodiment of the present invention is the same as that shown in FIG. Therefore, one embodiment of the present invention will be explained using FIG. 1 again.

第1図において、1は半導体基板、2はその表面の絶縁
膜であり、この絶縁膜2上に第1層メタル配線3を形成
した後、層間絶縁膜の下層膜4を形成する。ここで、層
間絶縁膜の下層膜4としては、プラズマCVD技術を用
いて引張り応力のプラグ7CVD SiOz膜(以下P
−3in2膜と記す)を形成する。
In FIG. 1, 1 is a semiconductor substrate, 2 is an insulating film on the surface thereof, and after forming a first layer metal wiring 3 on this insulating film 2, a lower layer 4 of an interlayer insulating film is formed. Here, as the lower layer film 4 of the interlayer insulating film, a tensile stress plug 7CVD SiOz film (hereinafter P
-3in2 film) is formed.

通常、プラズマCVD技術によるP −3iO□膜は圧
縮応力膜である。したがって、CVD条件の変更により
引張り応力膜を形成する。例えばS i 114ガスと
N20ガスを用いてP−8iO2膜を形成する場合では
、−例として5i114/NzO流量比を0.06〜0
.20程度の範囲で変えることにより、必要な引張り応
力値(例えばI X 109dyn / cJ )のP
  S i Oz膜を形成する。この時、CVDの他の
条件としては、RFパワー300W程度、圧力300 
mTorr程度、CVD温度温度3御0〜400 p−5i02膜の膜厚は、SOC中塗り法に適した厚さ
とする。
Usually, a P-3iO□ film produced by plasma CVD technology is a compressive stress film. Therefore, a tensile stress film is formed by changing the CVD conditions. For example, when forming a P-8iO2 film using S i 114 gas and N20 gas, - for example, the 5i114/NzO flow rate ratio is set to 0.06 to 0.
.. P of the required tensile stress value (for example, I
A SiOz film is formed. At this time, other conditions for CVD include RF power of about 300W and pressure of about 300W.
About mTorr, CVD temperature 3 degrees, 0 to 400 The thickness of the p-5i02 film is suitable for the SOC intermediate coating method.

このようにして引張り応力のP  5iOz膜(下層膜
4)を形成したら、次にその上に眉間絶縁膜の中間層と
してSOG塗布膜5を形成し、表面を平坦とする。その
後、その上に層間絶縁膜の上層膜6を形成する。この上
層膜6としては、通常のプラズマCVD技術(Sit1
4/ N20流量比0.06未満、他の条件は下層膜4
形成時と同し)により、圧縮応力(応力値は下層膜4と
同じで例えば1×109dyn/cJ)のプラズマCV
D SiO□膜を形成する。その後、その上に第2層メ
タル配線7を形成する。
After the tensile stress P 5iOz film (lower layer film 4) is formed in this manner, an SOG coating film 5 is formed thereon as an intermediate layer of the glabella insulating film to flatten the surface. Thereafter, an upper film 6 of an interlayer insulating film is formed thereon. This upper layer film 6 is formed using the normal plasma CVD technique (Sit1
4/ N20 flow rate ratio less than 0.06, other conditions are lower layer film 4
Plasma CV of compressive stress (stress value is the same as that of the lower layer film 4, for example, 1×109 dyn/cJ) (same as during formation)
D A SiO□ film is formed. Thereafter, second layer metal wiring 7 is formed thereon.

なお、この一実施例は、SOG中塗り法で平坦化層間絶
縁膜を形成する場合であるが、第2図のエッチハック法
で層間絶縁膜の平坦化を図る場合にも同様にして下層膜
として引張り応力のプラズマCVD 5in2膜、上層
膜として圧縮応力のプラズマCVD 5iOz膜を形成
することができる。
Note that this example deals with forming a flattened interlayer insulating film using the SOG intermediate coating method, but the lower layer insulation film can also be formed in the same way when planarizing the interlayer insulating film using the etch hack method shown in FIG. A tensile stress plasma CVD 5in2 film can be formed as the upper layer, and a compressive stress plasma CVD 5iOz film can be formed as the upper layer film.

(発明の効果) 以上詳細に説明したように、この発明によれば、積層構
造層間絶縁膜の下層膜として引張り応力のプラズマCV
D SiO□膜を形成したので、下層配線の欠損を防止
でき、また上層膜としては圧縮応力のプラズマCVD 
SiO□膜を形成したので上層配線の欠損も防止でき、
さらに上層膜と下層膜の両方が5i02膜であるから、
ポットキャリア注入による1−ランジスタ寿命の劣化を
防くことができる。このように、この発明は、配線とト
ランジスタの信頼性を格段に向上させることができる。
(Effects of the Invention) As described above in detail, according to the present invention, a tensile stress plasma CV
D Since the SiO□ film is formed, damage to the lower layer wiring can be prevented, and the upper layer film can be formed using compressive stress plasma CVD.
Since the SiO□ film is formed, damage to the upper layer wiring can be prevented.
Furthermore, since both the upper layer film and the lower layer film are 5i02 films,
Deterioration of the 1-transistor life due to pot carrier injection can be prevented. In this way, the present invention can significantly improve the reliability of wiring and transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSOG中塗り法による層間絶縁膜平坦化技術を
採用した半導体装置を示す断面図、第2図はエッチハッ
クによる平坦化技術を採用した半導体装置を示す断面図
である。 1、11・・・半導体基板、3.13・・・第1層メタ
ル配線、4,14・・・下層膜、6.15・・・上層膜
、7、16・・・第2層メタル配線。 4稗蟇析5 7 : 第2 層メづl)し■口1会魯しSOG中W 
1,1 +p化+−sb*#第 図 11:手11本基本反 エツナバッフ干担イヒ〉天)二λ◇衰面第2図
FIG. 1 is a cross-sectional view showing a semiconductor device employing an interlayer insulating film planarization technique using the SOG intermediate coating method, and FIG. 2 is a cross-sectional view showing a semiconductor device employing a planarization technique using etch hacking. 1, 11... Semiconductor substrate, 3.13... First layer metal wiring, 4, 14... Lower layer film, 6.15... Upper layer film, 7, 16... Second layer metal wiring . 4th grade analysis 5 7: 2nd layer mezl) and ■mouth 1 meeting and SOG middle W
1,1 + p conversion + - sb * # Figure 11: 11 hands basic anti-Etsuna buff bearing Ihi〉Heaven) 2λ◇ Decline plane Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に下層配線を形成し、その上に層間絶縁膜
を形成し、その上に上層配線を形成するようにした半導
体装置の製造方法において、積層構造層間絶縁膜の下層
膜として引張り応力のプラズマCVDSiO_2膜を形
成し、同絶縁膜の上層膜として圧縮応力のプラズマCV
DSiO_2膜を形成することを特徴とする半導体装置
の製造方法。
In a method of manufacturing a semiconductor device in which a lower layer wiring is formed on a semiconductor substrate, an interlayer insulating film is formed on the lower layer wiring, and an upper layer wiring is formed on top of the lower layer wiring, the lower layer of the interlayer insulating film in a stacked structure is Plasma CVDS SiO_2 film is formed, and compressive stress plasma CV is used as the upper layer film of the same insulating film.
A method for manufacturing a semiconductor device, characterized by forming a DSiO_2 film.
JP10460489A 1989-04-26 1989-04-26 Manufacture of semiconductor device Pending JPH02284447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10460489A JPH02284447A (en) 1989-04-26 1989-04-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10460489A JPH02284447A (en) 1989-04-26 1989-04-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02284447A true JPH02284447A (en) 1990-11-21

Family

ID=14385026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10460489A Pending JPH02284447A (en) 1989-04-26 1989-04-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02284447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100054A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Positive type photosensitive composition
JPH07106330A (en) * 1993-10-08 1995-04-21 Nippon Precision Circuits Kk Formation of insulating layer in semiconductor device
US5514624A (en) * 1990-08-07 1996-05-07 Seiko Epson Corporation Method of manufacturing a microelectronic interlayer dielectric structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100054A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Positive type photosensitive composition
US5514624A (en) * 1990-08-07 1996-05-07 Seiko Epson Corporation Method of manufacturing a microelectronic interlayer dielectric structure
JPH07106330A (en) * 1993-10-08 1995-04-21 Nippon Precision Circuits Kk Formation of insulating layer in semiconductor device

Similar Documents

Publication Publication Date Title
JPS63268258A (en) Semiconductor device
JPH01225326A (en) Method of passivation of integrated circuit
JPH01185947A (en) Manufacture of semiconductor device
JPH02284447A (en) Manufacture of semiconductor device
JPH04355951A (en) Semiconductor device and manufacture thereof
JPS613431A (en) Semiconductor device with multilayer interconnection and manufacture thereof
JPS61260639A (en) Manufacture of semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JPH1140666A (en) Semiconductor integrated circuit device
JPH07147281A (en) Manufacture of semiconductor integrated circuit device
JPH0653189A (en) Method for flattening of film formation layer
JPH04152551A (en) Manufacture of semiconductor device
JPS6095938A (en) Manufacture of semiconductor device
JPH05308073A (en) Manufacture of semiconductor device
JPH02238629A (en) Manufacture of semiconductor device
JPS62108542A (en) Manufacture of semiconductor device
JP2942063B2 (en) Method for manufacturing semiconductor device
JPH0122984B2 (en)
JPH088249A (en) Method for forming interlayer insulation film
JPS6315457A (en) Manufacture of semiconductor device
JPS63172444A (en) Manufacture of semiconductor device
JPS61260638A (en) Manufacture of semiconductor device
JPH01128449A (en) Manufacture of flat interlayer insulation film
JPS63308346A (en) Semiconductor device
JPH04207032A (en) Flattening process for semiconductor device