JP2001097787A - Method for forming flattened film, ceramic substrate, and electronic component - Google Patents

Method for forming flattened film, ceramic substrate, and electronic component

Info

Publication number
JP2001097787A
JP2001097787A JP28123899A JP28123899A JP2001097787A JP 2001097787 A JP2001097787 A JP 2001097787A JP 28123899 A JP28123899 A JP 28123899A JP 28123899 A JP28123899 A JP 28123899A JP 2001097787 A JP2001097787 A JP 2001097787A
Authority
JP
Japan
Prior art keywords
film
sog
forming
flattening
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28123899A
Other languages
Japanese (ja)
Inventor
Koji Yoshida
幸治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP28123899A priority Critical patent/JP2001097787A/en
Publication of JP2001097787A publication Critical patent/JP2001097787A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00336Materials with a smooth surface, e.g. obtained by using glass-surfaced moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a flattened film of uniform thickness on a ceramic substrate with recesses on its surface so as to hard to cause cracking of the film and be capable of sufficiently flattening the recesses. SOLUTION: This method comprises the following steps: step 1 wherein a 1st flattening solution is applied on a ceramic substrate so as to fill recesses on the substrate therewith and to form a 1st flattened film, step 2 wherein the 1st flattened film is removed by a portion corresponding to a specified film thickness while leaving the film in the recesses, and step 3 wherein a 2nd flattening solution is applied on the 1st flattened film to form a 2nd flattened film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凹凸を有するセラ
ミック基板の表面を平坦化するための平坦化膜の形成方
法に関する。
The present invention relates to a method for forming a flattening film for flattening a surface of a ceramic substrate having irregularities.

【0002】[0002]

【従来の技術】セラミック基板の表面には通常凹凸が存
在するが、このような凹凸を有するセラミック基板上に
形成された回路パターンの微細化を図ったり、薄膜コン
デンサの歩留まりや耐久性を向上させるために、セラミ
ック基板の表面を平滑にする試みが行われている。その
一つの手法として、基板表面に平坦化溶液を塗布し、平
坦化膜を形成することによって、基板表面の凹凸を埋め
基板の平坦化を図る方法がある。
2. Description of the Related Art Irregularities are usually present on the surface of a ceramic substrate. The circuit pattern formed on the ceramic substrate having such irregularities can be miniaturized, and the yield and durability of a thin film capacitor can be improved. Therefore, attempts have been made to smooth the surface of the ceramic substrate. As one of the methods, there is a method in which a flattening solution is applied to the substrate surface to form a flattening film, thereby filling the unevenness on the substrate surface and flattening the substrate.

【0003】平坦化膜としては、例えば、SOG(Sp
in On Glass)溶液を用いたSOG膜が挙げ
られる。SOGは、シラノール結合(Si−OH)を少
なくとも1つ分子内に持つ珪素化合物を主成分とし、こ
れをアルコールなどの有機溶媒に溶解した溶液、あるい
はこの溶液を塗布、焼成することで形成される絶縁膜の
総称である。SOGは、(SiR2O)nを主成分とす
る有機SOGと、(nSiO2・m(H2O))を主成分
とする無機SOGとに大別されるが、両者とも回転塗布
後熱処理によりSiO2絶縁膜が成膜でき、その簡便さ
から配線間段差の埋め込みなど半導体分野では広く実用
化されている。
[0003] As a flattening film, for example, SOG (Sp
(On On Glass) solution. SOG is mainly formed of a silicon compound having at least one silanol bond (Si-OH) in a molecule, and is formed by dissolving this in an organic solvent such as alcohol, or by applying and firing this solution. It is a general term for insulating films. SOG is roughly classified into an organic SOG containing (SiR 2 O) n as a main component and an inorganic SOG containing (nSiO 2 · m (H 2 O)) as a main component. Thus, a SiO 2 insulating film can be formed, and because of its simplicity, it has been widely put into practical use in the field of semiconductors such as embedding steps between wirings.

【0004】以下、従来のSOGを用いたセラミック基
板の平坦化方法を図4を用いて説明する。まず、セラミ
ック基板21上へSOG溶液を回転塗布し、基板21の
凹部23をある程度埋める(図4(a))。この場合、
SOG溶液の供給量が多いほど基板の凹部23の埋め込
み性は良くなるため、SOG溶液層22を厚く塗布する
必要がある。基板凹部を十分に埋め込むためには、具体
的にはSOG溶液層22の膜厚を1μm以上にすること
が必要である。次に、基板21を100〜300℃程度
で熱処理する。この温度範囲においてSOGはリフロー
性を示し、SOG溶液層22表面の凹部24へSOGが
流れ込むことによってさらに平坦性を向上させる(図4
(b))。最後に、基板を450℃程度で熱処理(キュ
アー)することにより分子内のシラノール結合がシロキ
サン結合(Si−O−Si)に変換され、SiO2絶縁
膜26が形成される(図4(c))。
Hereinafter, a conventional method for flattening a ceramic substrate using SOG will be described with reference to FIG. First, an SOG solution is spin-coated on the ceramic substrate 21 to fill the recesses 23 of the substrate 21 to some extent (FIG. 4A). in this case,
The larger the supply amount of the SOG solution, the better the filling property of the concave portion 23 of the substrate becomes. Therefore, it is necessary to apply the SOG solution layer 22 thicker. In order to sufficiently fill the substrate recess, specifically, the thickness of the SOG solution layer 22 needs to be 1 μm or more. Next, the substrate 21 is heat-treated at about 100 to 300 ° C. In this temperature range, the SOG exhibits reflow properties, and the SOG flows into the concave portions 24 on the surface of the SOG solution layer 22 to further improve the flatness (FIG. 4).
(B)). Finally, by heat-treating (curing) the substrate at about 450 ° C., the silanol bonds in the molecules are converted into siloxane bonds (Si—O—Si), and the SiO 2 insulating film 26 is formed (FIG. 4C). ).

【0005】[0005]

【発明が解決しようとする課題】従来のSOGを用いた
セラミック基板の平坦化方法には次のような問題があっ
た。すなわち、従来の方法では基板の凹部を十分に埋め
込むためにはSOG溶液を厚く塗布する必要がある。し
かし、塗布されたSOG溶液はキュアーの際に大きく収
縮し、内部で大きな応力が発生する。特にSOG溶液を
厚く塗布した場合、SOGの体積が大きいため、内部で
発生する応力も大きく、図3(c)に示すようにSOG
自身にクラックが多く発生することになる。
The conventional method of flattening a ceramic substrate using SOG has the following problems. That is, in the conventional method, it is necessary to apply the SOG solution thickly in order to sufficiently fill the concave portion of the substrate. However, the applied SOG solution contracts greatly during curing, and generates a large stress inside. In particular, when the SOG solution is applied thickly, since the volume of the SOG is large, the stress generated inside is large, and as shown in FIG.
Many cracks will occur in itself.

【0006】また、SOG溶液を厚く塗布するには、S
OG溶液の回転塗布時の回転速度を低速に設定する必要
がある。しかし、低速で回転塗布を行った場合SOG溶
液が基板端部に溜まりやすくなるため、基板の中央部と
端部とにおいてSOG膜厚に大きな差が生じるという問
題もある。具体的には、SOGの平均膜厚が1.7μm
の場合、膜厚のバラツキ(3σ)は約27%にもなる。
In order to apply a thick SOG solution, S
It is necessary to set the rotation speed at the time of spin coating of the OG solution to a low speed. However, when spin coating is performed at a low speed, the SOG solution tends to accumulate at the edge of the substrate, and thus there is a problem that a large difference occurs in the SOG film thickness between the center and the edge of the substrate. Specifically, the average thickness of SOG is 1.7 μm
In this case, the variation (3σ) of the film thickness is as large as about 27%.

【0007】これらの問題を解決するためには、SOG
溶液を薄く塗布するという方法が考えられる。しかしな
がら、従来の方法においてSOG溶液を薄く塗布すれ
ば、基板へのSOG溶液の供給量が不足し、基板の凹部
を十分に埋め込むことができない。
To solve these problems, SOG
A method of applying a thin solution is conceivable. However, if the SOG solution is applied thinly in the conventional method, the supply amount of the SOG solution to the substrate becomes insufficient, and the concave portion of the substrate cannot be sufficiently filled.

【0008】本発明の平坦化膜の形成方法は、上述の問
題を鑑みてなされたものであり、これらの問題を解決
し、クラックが発生しにくく膜厚が均一で、かつ、基板
の凹凸を十分に平坦化することができる平坦化膜の形成
方法を提供することを目的としている。
The method of forming a flattening film according to the present invention has been made in view of the above-mentioned problems, and solves these problems. Thus, cracks are less likely to occur, the film thickness is uniform, and unevenness of the substrate is reduced. It is an object of the present invention to provide a method for forming a planarization film which can sufficiently planarize.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明は、表面に凹部を有するセラミック基板を平坦化
するための平坦化膜の形成方法であって、セラミック基
板の凹部内に充填されるように第1の平坦化溶液を塗布
して第1平坦化膜を形成する工程と、セラミック基板の
凹部内に第1平坦化膜を残存させつつ、第1平坦化膜を
所定の膜厚分除去する工程と、第1平坦化膜上に第2の
平坦化溶液を塗布して第2平坦化膜を形成する工程とを
有することを特徴とする平坦化膜の形成方法を提供す
る。
According to the present invention, there is provided a method for forming a flattening film for flattening a ceramic substrate having a concave portion on the surface, wherein the flattening film is filled in the concave portion of the ceramic substrate. Forming a first planarizing film by applying a first planarizing solution so that the first planarizing film has a predetermined thickness while leaving the first planarizing film in the concave portion of the ceramic substrate. And a step of applying a second planarizing solution on the first planarizing film to form a second planarizing film.

【0010】このように本発明では、平坦化膜を2回に
分けて形成する。まず、基板上に第1平坦化膜を形成
し、所定の膜厚分除去することで基板の凹部の深さを浅
くしておくため、第2平坦化膜を形成する際には平坦化
溶液の供給量が少なくても基板の凹部を十分に埋めるこ
とができる。したがって、第2平坦化膜の薄膜化が可能
になり、クラックが発生しにくく膜厚が均一な平坦化膜
を得ることができる。
As described above, in the present invention, the flattening film is formed twice. First, a first planarizing film is formed on a substrate and removed by a predetermined thickness to reduce the depth of the concave portion of the substrate. Even if the supply amount of the substrate is small, the concave portion of the substrate can be sufficiently filled. Therefore, the thickness of the second flattening film can be reduced, and a flattening film with less cracks and a uniform thickness can be obtained.

【0011】前記第1平坦化膜を形成する工程と第1平
坦化膜を所定の膜厚分除去する工程とは交互に複数回繰
り返してもよく、また、第1平坦化膜上に第2平坦化膜
を形成する工程に続いて、セラミック基板の凹部内に第
2平坦化膜を残存させつつ、第2平坦化膜を所定の膜厚
分除去する工程を、さらに行ってもよい。また、前記第
2平坦化膜を形成する工程と第2平坦化膜を所定の膜厚
分除去する工程とを交互に複数回繰り返してもよい。
The step of forming the first flattening film and the step of removing the first flattening film by a predetermined thickness may be alternately repeated a plurality of times. Subsequent to the step of forming the flattening film, a step of removing the second flattening film by a predetermined thickness while leaving the second flattening film in the concave portion of the ceramic substrate may be further performed. Further, the step of forming the second planarization film and the step of removing the second planarization film by a predetermined thickness may be alternately repeated a plurality of times.

【0012】このように、平坦化膜を形成し所定の膜厚
分除去する工程を複数回繰り返すことで、基板の凹部を
より浅くすることができるため、最終工程において第2
平坦化膜を形成する際の平坦化溶液の供給量が極めて少
なくても基板の凹部を十分に埋め込むことができ、第2
平坦化膜のさらなる薄膜化が可能になる。
As described above, the step of forming the flattening film and removing it by a predetermined thickness is repeated a plurality of times, so that the concave portion of the substrate can be made shallower.
Even when the amount of the planarizing solution supplied when forming the planarizing film is extremely small, the concave portion of the substrate can be sufficiently buried, and the second
It is possible to further reduce the thickness of the flattening film.

【0013】また、前記第1および第2の平坦化溶液
は、回転塗布によって塗布するのが望ましい。回転塗布
を用いれば、基板の凹部を埋め込み比較的均一な平坦化
膜を得ることが容易なだけでなく、回転速度を調節する
ことによって所望の膜厚の平坦化膜を得ることができる
ためである。
Preferably, the first and second planarizing solutions are applied by spin coating. When spin coating is used, not only is it easy to obtain a relatively uniform flattening film by filling the recesses of the substrate, but also it is possible to obtain a flattening film having a desired film thickness by adjusting the rotation speed. is there.

【0014】前記第1の平坦化溶液の塗布時の回転速度
は、前記第2の平坦化溶液の塗布時の回転速度に比べて
低速とするのが望ましい。このように、第1の平坦化溶
液の塗布時の回転速度を低速とすることによって第1の
平坦化溶液を厚く塗布することができる。すなわち、第
1の平坦化溶液を十分に供給することによって、セラミ
ック基板表面に大きな凹部があってもこれを十分に埋め
ることができる。また、第1平坦化膜を基板の凹部に埋
め込むことによって、すでに基板の凹部はある程度浅く
なっているため、前記第2の平坦化溶液の塗布の際に
は、平坦化溶液の供給量が少なくても基板の凹凸を十分
に埋めることができる。したがって、前記第2の平坦化
溶液の塗布時の回転速度を前記第1の平坦化溶液の塗布
時の回転速度に比べて高速にすることで第2の平坦化溶
液を薄く塗布しても基板の凹凸を十分に埋めることがで
き、第2平坦化膜の薄膜化を図ることができる。
It is desirable that the rotation speed at the time of applying the first planarizing solution is lower than the rotation speed at the time of applying the second planarizing solution. As described above, the first planarizing solution can be applied thickly by reducing the rotation speed at the time of applying the first planarizing solution. That is, by sufficiently supplying the first planarizing solution, even if there is a large concave portion on the surface of the ceramic substrate, it can be sufficiently filled. In addition, since the concave portion of the substrate is already somewhat shallow by embedding the first planarizing film in the concave portion of the substrate, the supply amount of the planarizing solution is small when the second planarizing solution is applied. However, the unevenness of the substrate can be sufficiently filled. Therefore, even when the second planarizing solution is applied thinly, the substrate is rotated at a higher rotational speed at the time of applying the second planarizing solution than at the time of applying the first planarizing solution. Can be sufficiently filled, and the thickness of the second flattening film can be reduced.

【0015】前記第1の平坦化溶液の塗布時の回転速度
は、500rpm以下であることが望ましい。回転速度
が500rpm以下と低速であれば、第1の平坦化溶液
を十分に供給することができ、セラミック基板上に大き
な凹部があってもこれを十分に埋め込むことができるた
めである。
It is desirable that the rotation speed at the time of applying the first planarizing solution is not more than 500 rpm. If the rotation speed is as low as 500 rpm or less, the first planarizing solution can be sufficiently supplied, and even if there is a large concave portion on the ceramic substrate, it can be sufficiently buried.

【0016】前記第1および第2の平坦化溶液として
は、例えばSOG溶液を用いることができる。SOG溶
液は基板に塗布後、熱処理(キュアー)を行うことによ
ってSOG膜になるが、このキュアーの際に大きく収縮
し、内部で大きな応力が発生する。そのため、SOG溶
液を厚く塗布した場合、SOG膜にクラックが発生する
という問題が生じ易いためである。
As the first and second planarizing solutions, for example, SOG solutions can be used. The SOG solution is applied to the substrate and then heat-treated (cured) to form an SOG film. The SOG film contracts greatly during the curing, and generates a large stress inside. Therefore, when the SOG solution is applied thickly, a problem that cracks are generated in the SOG film easily occurs.

【0017】また、平坦化膜の除去は、反応性イオンエ
ッチングにより行うのが望ましい。反応性イオンエッチ
ングは選択的なエッチングが可能であるため、平坦化膜
を選択的にエッチング可能なエッチングガスを使用する
ことで、平坦化膜のみを精度良くエッチングすることが
できるためである。
The removal of the flattening film is preferably performed by reactive ion etching. This is because reactive ion etching can perform selective etching, and therefore, by using an etching gas capable of selectively etching the flattening film, only the flattening film can be accurately etched.

【0018】さらに、前記第1の平坦化膜は膜厚が1.
2〜3.0μmであることをが望ましい。第1平坦化膜
形成の目的は基板の凹部を埋め込むことであるが、この
ように平坦化溶液を厚く塗布することで基板の凹部を十
分に埋め込むことができるためである。一方、前記第2
平坦化膜は膜厚が0.1〜1.0μmであることが望ま
しい。第1平坦化膜を基板の凹部に埋め込むことによっ
て、すでに基板の凹部はある程度浅くなっているため、
前記第2の平坦化溶液の塗布の際には平坦化溶液の供給
量が少なく、平坦化膜は膜厚が0.1〜1.0μmであ
っても基板の凹凸を十分に埋めることができるためであ
る。
Further, the first planarizing film has a thickness of 1.
Desirably, it is 2 to 3.0 μm. The purpose of forming the first planarizing film is to bury the concave portion of the substrate, but by applying the planarizing solution thickly, the concave portion of the substrate can be sufficiently buried. On the other hand, the second
The flattening film preferably has a thickness of 0.1 to 1.0 μm. By embedding the first planarizing film in the concave portion of the substrate, the concave portion of the substrate is already somewhat shallow,
When the second planarizing solution is applied, the supply amount of the planarizing solution is small, and even if the planarizing film has a thickness of 0.1 to 1.0 μm, the unevenness of the substrate can be sufficiently filled. That's why.

【0019】例えば平坦化溶液としてSOG溶液を用い
た場合、本発明は次のような工程に従うことが望まし
い。すなわち、本発明は表面に凹部を有するセラミック
基板を平坦化するための平坦化膜の形成方法であって、
セラミック基板上にSOG溶液を低速で回転塗布し、熱
処理を行って第1のSOG膜を形成する工程と、セラミ
ック基板の前記凹部に第1のSOG膜を残存させつつ、
第1のSOG膜をエッチバックする工程と、さらにセラ
ミック基板上にSOG溶液を高速で回転塗布し、熱処理
を行って第2のSOG膜を形成する工程とを有すること
を特徴とする。
For example, when an SOG solution is used as the planarizing solution, the present invention desirably follows the following steps. That is, the present invention is a method of forming a flattening film for flattening a ceramic substrate having a concave portion on the surface,
A step of spin-coating the SOG solution on the ceramic substrate at a low speed and performing a heat treatment to form a first SOG film; and, while leaving the first SOG film in the concave portion of the ceramic substrate,
The method includes a step of etching back the first SOG film, and a step of spin-coating the SOG solution on the ceramic substrate at a high speed and performing a heat treatment to form a second SOG film.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施例である平坦
化膜の形成方法を、図1〜3に基づいて説明する。図1
〜3は本発明における平坦化膜の形成方法を示す断面工
程図である。(実施例1)本実施例では、平坦化溶液と
してSOG溶液を用いた場合について説明する。まず、
セラミック基板1表面の凹部3に充填されるように基板
1上にSOG溶液を回転数200rpmで30秒間回転
塗布し、第1のSOG溶液層2を形成する(図1
(a))。回転速度が低速であるため第1のSOG溶液
は厚く塗布され、SOG溶液が十分に供給される。した
がって、セラミック基板表面に10μm程度の大きな凹
部があってもこれを十分に埋めることができる。一方、
低速で回転塗布を行っているため、SOG溶液は基板端
部に溜まりやすく、基板の中央部と端部においてSOG
溶液層2の厚さに大きな差が生じている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for forming a flattening film according to an embodiment of the present invention will be described below with reference to FIGS. FIG.
3 to 3 are cross-sectional process diagrams showing a method of forming a flattening film in the present invention. (Embodiment 1) In this embodiment, a case where an SOG solution is used as a planarizing solution will be described. First,
The first SOG solution layer 2 is formed by spin-coating the SOG solution on the substrate 1 at a rotation speed of 200 rpm for 30 seconds so as to fill the concave portions 3 on the surface of the ceramic substrate 1 (FIG. 1).
(A)). Since the rotation speed is low, the first SOG solution is applied thickly, and the SOG solution is sufficiently supplied. Therefore, even if there is a large recess of about 10 μm on the surface of the ceramic substrate, this can be sufficiently filled. on the other hand,
Since the spin coating is performed at a low speed, the SOG solution easily accumulates at the edge of the substrate.
A large difference occurs in the thickness of the solution layer 2.

【0021】次に、基板1を150℃のダイレクト式ホ
ットプレート上に設置し60秒間熱処理を行った後、続
いて250℃のダイレクト式ホットプレート上に設置し
60秒間熱処理を行う。これらの温度でSOGはリフロ
ー性を示すため、SOG溶液層2表面の凹部4にSOG
が流れ込んで平坦性を向上させる(図1(b))。
Next, the substrate 1 is placed on a direct hot plate at 150 ° C. and heat-treated for 60 seconds, and then placed on a direct hot plate at 250 ° C. and heat-treated for 60 seconds. Since SOG exhibits reflow properties at these temperatures, the SOG is placed in the recess 4 on the surface of the SOG solution layer 2.
Flow to improve the flatness (FIG. 1B).

【0022】続いて、基板1を450℃の窒素雰囲気中
で30分間熱処理(キュアー)することによって、平均
膜厚が約1.7μmの第1SOG膜6(SiO2絶縁
膜)が形成される(図1(c))。このとき、第1SO
G膜6は膜厚が厚いため、キュアーの際の収縮によって
大きな応力が生じ、SOG膜6自身にクラックが生じて
いる。また、前記工程においてSOG溶液を低速で回転
塗布しているため、基板の中央部と端部とにおいてSO
G膜6の膜厚に大きな差が生じている。具体的には膜厚
のバラツキが27%にもなっている。
Subsequently, the first SOG film 6 (SiO 2 insulating film) having an average film thickness of about 1.7 μm is formed by subjecting the substrate 1 to a heat treatment (curing) in a nitrogen atmosphere at 450 ° C. for 30 minutes (FIG. 2B). FIG. 1 (c)). At this time, the first SO
Since the G film 6 is thick, a large stress is generated due to shrinkage during curing, and the SOG film 6 itself has cracks. Further, since the SOG solution is spin-coated at a low speed in the above process, the SOG solution is formed at the center and the end of the substrate.
A large difference occurs in the thickness of the G film 6. Specifically, the variation in the film thickness is as high as 27%.

【0023】次に、平行平板の反応性イオンエッチング
装置でCF4プラズマを用いて第1SOG膜6をエッチ
バックする。基板の凹部3に埋め込まれた第1SOG膜
を残し、他の部分を除去することによって、基板の凹部
3は第1SOG膜6によりある程度埋め込まれ、基板1
上にはより浅い凹部8が形成される(図1(d))。ま
た、本工程において第1SOG膜6の大部分は除去され
るため、除去前の工程においてSOG膜6にクラックが
生じており膜厚に大きなバラツキがあったとしても問題
にはならない。エッチングガスはSOGのエッチングが
可能なものであればよく、具体的には、CF4、CH
3、F2、NF3、CClF3、C26、CBrF3、C
22、CHClF2、C38、CCl22、C48
CHCl2F、CBr22、CCl3Fを一つ以上含むガ
ス等を用いることができる。
Next, the first SOG film 6 is etched back using CF 4 plasma in a parallel plate reactive ion etching apparatus. By leaving the first SOG film buried in the concave portion 3 of the substrate and removing other portions, the concave portion 3 of the substrate is partially buried with the first SOG film 6 and
A shallow recess 8 is formed on the upper portion (FIG. 1D). Further, since most of the first SOG film 6 is removed in this step, there is no problem even if the SOG film 6 has cracks in the step before the removal and there is a large variation in the film thickness. The etching gas may be any gas that can etch SOG, and specifically, CF 4 , CH
F 3, F 2, NF 3 , CClF 3, C 2 F 6, CBrF 3, C
H 2 F 2, CHClF 2, C 3 F 8, CCl 2 F 2, C 4 F 8,
A gas containing one or more of CHCl 2 F, CBr 2 F 2 , and CCl 3 F can be used.

【0024】次に、凹部8に充填されるように再び基板
1上にSOG溶液を回転塗布する。回転数1000rp
mで30秒間回転塗布を行い、第2のSOG溶液層7を
形成する(図1(e))。回転速度が高速であるため第
2のSOG溶液層7は薄く形成されるが、前記工程にお
いて、第1SOG膜6の形成およびエッチバックによっ
て基板の凹部3はより浅い凹部8になっているため、前
記第1のSOG膜の形成の際と比べてSOG溶液の供給
量が少なくても凹部8を十分に埋めることができる。ま
た、このように第2のSOG溶液層7を薄く形成するこ
とができるため、基板の端部にSOG溶液がさほど溜ま
りやすいこともない。したがって、基板の中央部と端部
での膜厚に大きな差が生じることもなく、より平坦な平
坦化膜を図ることができる。
Next, the SOG solution is spin-coated on the substrate 1 again so as to fill the recess 8. 1000 rpm
m for 30 seconds to form a second SOG solution layer 7 (FIG. 1E). Since the rotation speed is high, the second SOG solution layer 7 is formed thin. However, in the above-described process, the concave portion 3 of the substrate becomes the shallow concave portion 8 due to the formation of the first SOG film 6 and the etch back. The concave portion 8 can be sufficiently filled even when the supply amount of the SOG solution is smaller than when the first SOG film is formed. Further, since the second SOG solution layer 7 can be formed thin as described above, the SOG solution does not easily accumulate at the end of the substrate. Therefore, it is possible to achieve a flatter planarized film without a large difference in film thickness between the central portion and the end portion of the substrate.

【0025】次に、基板を150℃のダイレクト式ホッ
トプレート上に設置し60秒間熱処理を行った後、続い
て250℃のダイレクト式ホットプレート上に設置し6
0秒間熱処理を行う。これらの温度でSOGはリフロー
性を示すため、SOG溶液層表面の凹部9にSOGが流
れ込んで、さらに平坦性を向上させる(図1(f))。
Next, the substrate is placed on a direct hot plate at 150 ° C. and heat-treated for 60 seconds, and then placed on a direct hot plate at 250 ° C.
Heat treatment is performed for 0 seconds. Since SOG exhibits reflow properties at these temperatures, SOG flows into the concave portions 9 on the surface of the SOG solution layer, and the flatness is further improved (FIG. 1F).

【0026】続いて、基板を450℃の窒素雰囲気中で
30分間熱処理(キュアー)することによって、平均膜
厚が約0.8μmの第2のSOG膜10(SiO2絶縁
膜)が形成される(図1(g))。SOGはキュアーの
際に収縮するが、第2のSOG膜10は第1のSOG膜
に比べて薄膜化されているため、収縮の際に発生する応
力は小さい。したがって、SOG自身にクラックが発生
することもなく、SOG膜の平坦化を実現することがで
きる。また、前記工程においてSOG溶液を高速で回転
塗布しているため、基板の中央部と端部とにおいてSO
G膜10の膜厚に大きな差が生じることもない。具体的
には膜厚のバラツキを14%に抑えることができてい
る。
Subsequently, the substrate is heat-treated (cured) in a nitrogen atmosphere at 450 ° C. for 30 minutes to form a second SOG film 10 (SiO 2 insulating film) having an average thickness of about 0.8 μm. (FIG. 1 (g)). The SOG contracts during curing, but the second SOG film 10 is thinner than the first SOG film, so that the stress generated during the contraction is small. Therefore, flattening of the SOG film can be realized without generating cracks in the SOG itself. Further, since the SOG solution is spin-coated at a high speed in the above process, the SOG solution is formed at the center and the end of the substrate.
There is no large difference in the thickness of the G film 10. Specifically, the variation in the film thickness can be suppressed to 14%.

【0027】(実施例2)実施例1の場合と同じく、平
坦化溶液としてSOG溶液を用いた場合について説明す
る。まず、実施例1の場合と同様の工程で、基板上に第
1SOG膜を形成し、エッチバックする。すなわち、図
2(a)〜(d)に示すように、セラミック基板1上に
平均膜厚が約1.7μmの第1SOG膜6(SiO2
縁膜)を形成した後、基板表面の凹部3に埋め込まれた
第1SOG膜6を残し、他の部分を除去する。これによ
り、凹部3はSOG膜6によりある程度埋め込まれ、基
板1上にはより浅い凹部8が形成される。
(Embodiment 2) A case where an SOG solution is used as a planarizing solution as in the case of Embodiment 1 will be described. First, a first SOG film is formed on a substrate and etched back in the same process as in the first embodiment. That is, as shown in FIGS. 2A to 2D, after forming a first SOG film 6 (SiO 2 insulating film) having an average film thickness of about 1.7 μm on a ceramic substrate 1, a concave portion 3 on the substrate surface is formed. The other portions are removed, leaving the first SOG film 6 embedded in the first. Thereby, the recess 3 is buried to some extent by the SOG film 6, and a shallower recess 8 is formed on the substrate 1.

【0028】次に、再び実施例1の場合と同様の工程
で、基板上に第1のSOG膜を形成し、エッチバックす
る。すなわち、凹部8に充填されるように基板1上に回
転数200rpmで30秒間SOG溶液を回転塗布し、
第1のSOG溶液層12を形成する(図2(e))。次
に、基板を150℃のダイレクト式ホットプレート上に
設置し60秒間熱処理後、続いて250℃のダイレクト
式ホットプレート上に設置し60秒間熱処理を行うこと
によって、SOG溶液層12表面の凹部13にSOGが
流れ込んでさらに平坦性が向上する(図3(a))。続
いて、基板1を450℃の窒素雰囲気中で30分間熱処
理(キュアー)することによって、平均膜厚が約1.7
μmの第1SOG膜16(SiO2絶縁膜)が形成され
る(図3(b))。
Next, a first SOG film is formed on the substrate and etched back in the same process as in the first embodiment. That is, the SOG solution is spin-coated on the substrate 1 at a rotation speed of 200 rpm for 30 seconds so as to fill the recess 8,
The first SOG solution layer 12 is formed (FIG. 2E). Next, the substrate is placed on a direct hot plate at 150 ° C. and heat-treated for 60 seconds. Then, the substrate is placed on a direct hot plate at 250 ° C. and heat-treated for 60 seconds. SOG flows into the substrate, and the flatness is further improved (FIG. 3A). Subsequently, the substrate 1 is subjected to a heat treatment (curing) in a nitrogen atmosphere at 450 ° C. for 30 minutes so that the average film thickness is about 1.7.
A 1 μm first SOG film 16 (SiO 2 insulating film) is formed (FIG. 3B).

【0029】次に、平行平板の反応性イオンエッチング
装置でCF4プラズマを用いて第1SOG膜16をエッ
チバックする(図3(c))。基板の凹部3に埋め込ま
れたSOG膜16を残し、他の部分を除去することによ
って、基板の凹部3はSOG膜6、16により埋め込ま
れ、凹部8よりも浅くほぼ平坦な凹部18が形成され
る。
Next, the first SOG film 16 is etched back using CF 4 plasma in a parallel plate reactive ion etching apparatus (FIG. 3C). By leaving the SOG film 16 buried in the concave portion 3 of the substrate and removing other portions, the concave portion 3 of the substrate is buried with the SOG films 6 and 16, and a substantially flat concave portion 18 shallower than the concave portion 8 is formed. You.

【0030】次に実施例1の場合と同様の工程で、基板
上に第2SOG膜を形成する。すなわち、まず基板1上
にSOG溶液を回転塗布する。回転数1000rpmで
30秒間回転塗布を行い、第2のSOG溶液層17を形
成する(図3(d))。次に、基板1を150℃のダイ
レクト式ホットプレート上に設置し60秒間熱処理後、
続いて250℃のダイレクト式ホットプレート上に設置
し60秒間熱処理を行うことによって、SOG溶液層1
7表面の凹部19にSOGが流れ込んでさらに平坦性が
向上する(図3(e))。最後に、基板1を450℃の
窒素雰囲気中で30分間熱処理(キュアー)することに
よって、平均膜厚が約0.8μmの第2のSOG膜20
(SiO2絶縁膜)が形成される(図3(f))。
Next, a second SOG film is formed on the substrate by the same process as in the first embodiment. That is, first, the SOG solution is spin-coated on the substrate 1. Spin coating is performed for 30 seconds at a rotation speed of 1000 rpm to form a second SOG solution layer 17 (FIG. 3D). Next, the substrate 1 was placed on a direct hot plate at 150 ° C. and heat-treated for 60 seconds.
Subsequently, the SOG solution layer 1 was set on a direct hot plate at 250 ° C. and heat-treated for 60 seconds.
The SOG flows into the concave portion 19 on the surface of the substrate 7, and the flatness is further improved (FIG. 3E). Finally, the substrate 1 is heat-treated (cured) in a nitrogen atmosphere at 450 ° C. for 30 minutes, so that the second SOG film 20 having an average thickness of about 0.8 μm is formed.
(SiO 2 insulating film) is formed (FIG. 3F).

【0031】本実施例では、第1SOG膜を形成し所定
の膜厚分除去するという工程を続けて2回繰り返すこと
によって、基板の凹部をSOG膜によって十分に埋め込
むことができるため、実施例1の場合のように前記工程
を1回しか行わなかった場合に比べて、凹部をより浅く
ほぼ平坦にすることができる。したがって、最終工程に
おいて第2SOG膜を形成する際に、より少ない供給量
のSOG溶液で十分に凹部を埋め込むことができるた
め、SOG膜のさらなる薄膜化を図ることができ、より
クラックの発生が少なく膜厚のバラツキが小さな平坦化
膜を得ることができる。
In the present embodiment, the process of forming the first SOG film and removing it by a predetermined thickness is repeated twice successively, so that the concave portion of the substrate can be sufficiently filled with the SOG film. The recess can be made shallower and almost flat as compared with the case where the process is performed only once as in the case of (1). Therefore, when the second SOG film is formed in the final step, the concave portion can be buried sufficiently with a smaller supply amount of the SOG solution, so that the SOG film can be further thinned, and the generation of cracks can be reduced. It is possible to obtain a flattened film having a small thickness variation.

【0032】第1SOG膜を形成し所定の膜厚分除去す
るという工程は3回以上繰り返してもよい。前記工程を
何度も繰り返すことによって凹部を十分に埋め込むこと
ができ、より平坦なSOG膜を得ることができる。ま
た、第2SOG膜についても、SOG膜を形成し所定の
膜厚分除去するという工程を複数回繰り返すことによっ
て同様の効果が得られる。
The step of forming the first SOG film and removing it by a predetermined thickness may be repeated three or more times. By repeating the above process many times, the concave portion can be sufficiently filled, and a flatter SOG film can be obtained. Similar effects can be obtained for the second SOG film by repeating the process of forming the SOG film and removing it by a predetermined thickness a plurality of times.

【0033】また、上記実施例ではSOG膜を除去する
際に、基板の凹部に埋め込まれたSOG膜を残し他の部
分を除去したが、必ずしも他の全ての部分を除去する必
要はない。例えばセラミック基板上に凸部が存在するよ
うな場合等には、凸部がSOG膜で覆われる程度にSO
G膜を残し他の部分を除去してもよい。
Further, in the above embodiment, when removing the SOG film, other portions were removed except for the SOG film buried in the concave portion of the substrate, but it is not always necessary to remove all other portions. For example, in the case where a convex portion exists on the ceramic substrate, the SOG is so thick that the convex portion is covered with the SOG film.
Other portions may be removed while leaving the G film.

【0034】なお、上記実施例で用いたSOGはセラミ
ック基板の凹部の埋め込みが可能な材料であればよく、
有機SOG、無機SOGを問わない。また、上記実施例
では平坦化溶液としてSOG溶液を用いる場合について
説明したが、これに限られるものではなく、セラミック
基板の凹部の埋め込みが可能な材料であれば同様に用い
ることができる。
It should be noted that the SOG used in the above embodiment may be any material that can fill the recesses of the ceramic substrate.
Organic SOG and inorganic SOG do not matter. In the above embodiment, the case where the SOG solution is used as the planarizing solution has been described. However, the present invention is not limited to this, and any material that can embed the concave portion of the ceramic substrate can be used.

【0035】本発明の平坦化膜の形成方法を用いて平坦
化されたセラミック基板は電子部品の形成に用いること
ができ、本発明による平坦化膜が形成されたセラミック
基板を用いることによって電子部品の性能を大幅に向上
させることができる。例えば、本発明の平坦化膜が形成
されたセラミック基板上に回路パターンや薄膜コンデン
サを形成した場合、回路パターンの微細化や薄膜コンデ
ンサの歩留まりや耐久性の向上を容易に図ることができ
るようになる。
The ceramic substrate flattened by the method for forming a flattening film according to the present invention can be used for forming an electronic component. By using the ceramic substrate having the flattening film formed according to the present invention, the electronic component can be formed. Performance can be greatly improved. For example, when a circuit pattern or a thin film capacitor is formed on a ceramic substrate on which the planarizing film of the present invention is formed, it is possible to easily achieve the miniaturization of the circuit pattern and the improvement of the yield and durability of the thin film capacitor. Become.

【0036】[0036]

【発明の効果】以上のように本発明によれば、平坦化膜
を複数回に分けて形成し、あらかじめ基板凹部を十分に
埋め込むことによって、最終工程において形成する平坦
化膜の薄膜化を図ることが可能になる。したがって、ク
ラックが発生しない平坦化膜を形成することができるだ
けでなく、塗布の際に回転数を高く設定することができ
るため、基板端部に平坦化溶液が溜まり易いこともな
く、膜厚バラツキが小さく平坦な平坦化膜を得ることが
できる。
As described above, according to the present invention, the flattening film is formed in a plurality of times, and the concave portions of the substrate are sufficiently buried in advance to reduce the thickness of the flattening film formed in the final step. It becomes possible. Therefore, not only can a flattening film free of cracks be formed, but also the number of revolutions can be set high during coating, so that the flattening solution does not easily accumulate at the substrate edge, and the film thickness varies. And a flattened film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(g)は、本発明の第1の実施例によ
る平坦化膜の形成方法を示す断面工程図である。
FIGS. 1A to 1G are cross-sectional process diagrams illustrating a method of forming a planarization film according to a first embodiment of the present invention.

【図2】(a)〜(e)は、本発明の第2の実施例によ
る平坦化膜の形成方法を示す断面工程図である。
FIGS. 2A to 2E are cross-sectional process diagrams illustrating a method of forming a planarizing film according to a second embodiment of the present invention.

【図3】(a)〜(f)は、図2(e)に続く本発明の
第2の実施例による平坦化膜の形成方法を示す断面工程
図である。
FIGS. 3A to 3F are cross-sectional process diagrams illustrating a method of forming a planarization film according to a second embodiment of the present invention, following FIG. 2E.

【図4】(a)〜(c)は、従来の平坦化膜の形成方法
を示す断面工程図である。
FIGS. 4A to 4C are cross-sectional process views showing a conventional method for forming a planarizing film.

【符号の説明】[Explanation of symbols]

1 セラミック基板 2 第1のSOG溶液層 3 凹部 6 第1平坦化膜 7 第2のSOG溶液層 10 第2SOG膜 REFERENCE SIGNS LIST 1 ceramic substrate 2 first SOG solution layer 3 recess 6 first planarization film 7 second SOG solution layer 10 second SOG film

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】表面に凹部を有するセラミック基板を平坦
化するための平坦化膜の形成方法であって、 セラミック基板の凹部内に充填されるように第1の平坦
化溶液を塗布して第1平坦化膜を形成する工程と、 セラミック基板の凹部内に第1平坦化膜を残存させつ
つ、第1平坦化膜を所定の膜厚分除去する工程と、 第1平坦化膜上に第2の平坦化溶液を塗布して第2平坦
化膜を形成する工程と、 を有することを特徴とする平坦化膜の形成方法。
1. A method for forming a flattening film for flattening a ceramic substrate having a concave portion on the surface, the method comprising applying a first planarizing solution so as to fill the concave portion of the ceramic substrate. (1) forming a flattening film; removing the first flattening film by a predetermined thickness while leaving the first flattening film in the concave portion of the ceramic substrate; Forming a second flattening film by applying the flattening solution of No. 2 above.
【請求項2】前記第1平坦化膜を形成する工程と第1平
坦化膜を所定の膜厚分除去する工程とが、交互に複数回
繰り返されることを特徴とする平坦化膜の形成方法。
2. A method of forming a flattening film, wherein the step of forming the first flattening film and the step of removing the first flattening film by a predetermined thickness are alternately repeated a plurality of times. .
【請求項3】セラミック基板の凹部内に第2平坦化膜を
残存させつつ、第2平坦化膜を所定の膜厚分除去する工
程を、さらに有することを特徴とする請求項1または2
に記載の平坦化膜の形成方法。
3. The method according to claim 1, further comprising the step of removing the second flattening film by a predetermined thickness while leaving the second flattening film in the concave portion of the ceramic substrate.
The method for forming a flattening film according to item 1.
【請求項4】前記第2平坦化膜を形成する工程と第2平
坦化膜を所定の膜厚分除去する工程とが、交互に複数回
繰り返されることを特徴とする請求項3に記載の平坦化
膜の形成方法。
4. The method according to claim 3, wherein the step of forming the second planarizing film and the step of removing the second planarizing film by a predetermined thickness are alternately repeated a plurality of times. A method for forming a planarizing film.
【請求項5】前記第1および第2の平坦化溶液は、回転
塗布によって塗布されることを特徴とする請求項1ない
し4のいずれかに記載の平坦化膜の形成方法。
5. The method according to claim 1, wherein the first and second planarizing solutions are applied by spin coating.
【請求項6】前記第1の平坦化溶液の塗布時の回転速度
は、前記第2の平坦化溶液の塗布時の回転速度に比べて
低速であることを特徴とする請求項5に記載の平坦化膜
の形成方法。
6. The method according to claim 5, wherein a rotation speed at the time of applying the first planarizing solution is lower than a rotating speed at the time of applying the second planarizing solution. A method for forming a planarizing film.
【請求項7】前記第1の平坦化溶液の塗布時の回転速度
が、500rpm以下であることを特徴とする請求項5
または6に記載の平坦化膜の形成方法。
7. The method according to claim 5, wherein a rotation speed at the time of applying the first flattening solution is 500 rpm or less.
Or the method for forming a flattening film according to 6.
【請求項8】前記第1および第2の平坦化溶液が、SO
G溶液であることを特徴とする請求項1ないし7のいず
れかに記載の平坦化膜の形成方法。
8. The method of claim 1, wherein the first and second planarizing solutions are SO
8. The method for forming a flattening film according to claim 1, wherein the solution is a G solution.
【請求項9】前記第1平坦化膜の除去が、反応性イオン
エッチングによって行われることを特徴とする請求項1
ないし8のいずれかに記載の平坦化膜の形成方法。
9. The method according to claim 1, wherein the removal of the first planarizing film is performed by reactive ion etching.
9. The method for forming a flattening film according to any one of items 8 to 8.
【請求項10】前記第1平坦化膜の膜厚が、1.2〜
3.0μmの範囲内であることを特徴とする請求項1な
いし9のいずれかに記載の平坦化膜の形成方法。
10. The first flattening film has a thickness of 1.2 to 1.2.
The method according to claim 1, wherein the thickness is in a range of 3.0 μm.
【請求項11】前記第2平坦化膜の膜厚が、0.1〜
1.0μmの範囲内であることを特徴とする請求項1な
いし10のいずれかに記載の平坦化膜の形成方法。
11. The film thickness of the second flattening film is 0.1 to 0.1.
The method for forming a flattening film according to claim 1, wherein the thickness is within a range of 1.0 μm.
【請求項12】表面に凹部を有するセラミック基板を平
坦化するための平坦化膜の形成方法であって、 セラミック基板上にSOG溶液を低速で回転塗布し、熱
処理を行って第1のSOG膜を形成する工程と、 セラミック基板の前記凹部内に第1のSOG膜を残存さ
せつつ、第1のSOG膜をエッチバックする工程と、 さらにセラミック基板上にSOG溶液を高速で回転塗布
し、熱処理を行って第2のSOG膜を形成する工程と、
を有することを特徴とする平坦化膜の形成方法。
12. A method for forming a flattening film for flattening a ceramic substrate having a concave portion on its surface, wherein a first SOG film is formed by spin-coating an SOG solution on the ceramic substrate at a low speed and performing heat treatment. Forming the first SOG film while leaving the first SOG film in the concave portion of the ceramic substrate; and spin-coating the SOG solution on the ceramic substrate at a high speed, followed by heat treatment. Performing a step of forming a second SOG film;
A method for forming a flattening film, comprising:
【請求項13】請求項1ないし12に記載の平坦化膜の
形成方法を用いて平坦化膜の形成されたセラミック基
板。
13. A ceramic substrate on which a flattening film is formed by using the method for forming a flattening film according to claim 1.
【請求項14】請求項13に記載のセラミック基板を用
いて形成された電子部品。
14. An electronic component formed using the ceramic substrate according to claim 13.
JP28123899A 1999-10-01 1999-10-01 Method for forming flattened film, ceramic substrate, and electronic component Pending JP2001097787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28123899A JP2001097787A (en) 1999-10-01 1999-10-01 Method for forming flattened film, ceramic substrate, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28123899A JP2001097787A (en) 1999-10-01 1999-10-01 Method for forming flattened film, ceramic substrate, and electronic component

Publications (1)

Publication Number Publication Date
JP2001097787A true JP2001097787A (en) 2001-04-10

Family

ID=17636296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28123899A Pending JP2001097787A (en) 1999-10-01 1999-10-01 Method for forming flattened film, ceramic substrate, and electronic component

Country Status (1)

Country Link
JP (1) JP2001097787A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983856B1 (en) 2006-01-25 2010-09-28 니시야마 스테인레스 케미컬 가부시키가이샤 Method for manufacturing glass substrate for display and glass substrate
KR20190020336A (en) * 2016-06-24 2019-02-28 큐로미스, 인크 Polycrystalline ceramic substrate and manufacturing method thereof
CN110473919A (en) * 2018-05-11 2019-11-19 世界先进积体电路股份有限公司 Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method
JP2020161814A (en) * 2019-03-25 2020-10-01 世界先進積體電路股▲ふん▼有限公司 Semiconductor structure, high electron mobility transistor, and method for manufacturing semiconductor structure
CN111785773A (en) * 2019-04-04 2020-10-16 世界先进积体电路股份有限公司 Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983856B1 (en) 2006-01-25 2010-09-28 니시야마 스테인레스 케미컬 가부시키가이샤 Method for manufacturing glass substrate for display and glass substrate
TWI734794B (en) * 2016-06-24 2021-08-01 美商克若密斯股份有限公司 Polycrystalline ceramic substrate and method of manufacture
CN109716508A (en) * 2016-06-24 2019-05-03 克罗米斯有限公司 Polycrystalline ceramics substrate and its manufacturing method
JP2019524615A (en) * 2016-06-24 2019-09-05 クロミス,インコーポレイテッド Polycrystalline ceramic substrate and manufacturing method thereof
EP3475975A4 (en) * 2016-06-24 2020-03-11 Qromis, Inc. Polycrystalline ceramic substrate and method of manufacture
US10964535B2 (en) 2016-06-24 2021-03-30 QROMIS, Inc. Polycrystalline ceramic substrate and method of manufacture
KR20190020336A (en) * 2016-06-24 2019-02-28 큐로미스, 인크 Polycrystalline ceramic substrate and manufacturing method thereof
KR102391997B1 (en) 2016-06-24 2022-04-28 큐로미스, 인크 Polycrystalline ceramic substrate and manufacturing method thereof
CN109716508B (en) * 2016-06-24 2023-08-15 克罗米斯有限公司 Polycrystalline ceramic substrate and method for manufacturing the same
CN110473919A (en) * 2018-05-11 2019-11-19 世界先进积体电路股份有限公司 Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method
JP2020161814A (en) * 2019-03-25 2020-10-01 世界先進積體電路股▲ふん▼有限公司 Semiconductor structure, high electron mobility transistor, and method for manufacturing semiconductor structure
JP7136828B2 (en) 2019-03-25 2022-09-13 世界先進積體電路股▲ふん▼有限公司 Semiconductor structures, high electron mobility transistors, and methods of making semiconductor structures
CN111785773A (en) * 2019-04-04 2020-10-16 世界先进积体电路股份有限公司 Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method

Similar Documents

Publication Publication Date Title
US4806504A (en) Planarization method
JP2640174B2 (en) Semiconductor device and manufacturing method thereof
JP3619597B2 (en) Method for forming insulating film of semiconductor device
EP0657925A1 (en) Enhanced planarization technique for an integrated circuit
JP2004179614A (en) Manufacturing method of semiconductor device
WO2005119758A1 (en) Method for forming trench isolation structure
JP2004273519A (en) Method of forming trench isolation structure
JPH01225326A (en) Method of passivation of integrated circuit
JP2001097787A (en) Method for forming flattened film, ceramic substrate, and electronic component
JPH01185947A (en) Manufacture of semiconductor device
JPH03295239A (en) Manufacture of semiconductor device
TW445586B (en) Method to form metal interconnects of semiconductor
JPH10294361A (en) Manufacture of semiconductor device
US20050020046A1 (en) Planarization for integrated circuits
JPH0430524A (en) Manufacture of semiconductor device
JP2928409B2 (en) Method for manufacturing semiconductor device
JP4236805B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
JP2883333B2 (en) Method for manufacturing semiconductor device
KR100328449B1 (en) Method of forming a metal line using damascene pattern in a semiconductor device
JPH0265256A (en) Manufacture of semiconductor device
JP3328430B2 (en) Method for forming multilayer wiring of semiconductor device
KR100891535B1 (en) Method for manufacturing isolation layer of semiconductor device
JPH11251312A (en) Manufacture of semiconductor device
JPH06349951A (en) Manufacture of semiconductor device