JPH03295239A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03295239A
JPH03295239A JP9738190A JP9738190A JPH03295239A JP H03295239 A JPH03295239 A JP H03295239A JP 9738190 A JP9738190 A JP 9738190A JP 9738190 A JP9738190 A JP 9738190A JP H03295239 A JPH03295239 A JP H03295239A
Authority
JP
Japan
Prior art keywords
layer
insulating film
interlayer insulating
glass layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9738190A
Other languages
Japanese (ja)
Other versions
JP3077990B2 (en
Inventor
Motomori Miyajima
基守 宮嶋
Kazuyuki Kurita
栗田 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP02097381A priority Critical patent/JP3077990B2/en
Publication of JPH03295239A publication Critical patent/JPH03295239A/en
Application granted granted Critical
Publication of JP3077990B2 publication Critical patent/JP3077990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To contrive to form almost uniformly the thickness of a first glass layer on the dense parts and coarse parts of a wiring layer by a method wherein the first glass layer of a slow polishing rate and a second glass layer of a fast polishing rate are respectively formed as an interlayer insulating film and the second glass layer is polished and flattened. CONSTITUTION:Wiring layers 20 to 23 consisting of Al or the like are formed on a semiconductor substrate 1 and an interlayer insulating film (a first glass layer) 3 consisting of PSG or the like is deposited. Then, an SOG buried layer (a second glass layer) 4 is formed in the surface by a spin coating method and heat treatment is performed to harden the layer 4. Subsequently, the surface of the layer 4 is polished using a hydrofluoric acid to flatten. At this time, the polishing rate of the buried layer (an SOG layer) 4 is set so as to be faster than that of the interlayer insulating film (a PSG layer) 3. Thereby, the film 3 results in working as a mask (a stopper) at the time of the polishing and the thickness of the film 3 can be formed almost evenly.

Description

【発明の詳細な説明】 〔概要) 多層配線構造をとる半導体装置の製造方法に関し、 均一な厚さの層間絶縁製を形成して配a層のカバレッジ
を良好にすることを目的とし、配線層をパターニング形
成された半導体基板上に層間絶縁製とするための第1の
ガラス層を形成し、更にその上に第1のガラス層よりも
研磨速度を速く設定された、層間絶縁膜とするための第
2のガラス層を形成する工程と、第2のガラス層を研磨
して表面を平坦化する工程とを含む。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a semiconductor device having a multilayer wiring structure, the present invention relates to a method for manufacturing a semiconductor device having a multilayer wiring structure, with the purpose of forming an interlayer insulator with a uniform thickness to improve the coverage of the wiring layer. A first glass layer for interlayer insulation is formed on a patterned semiconductor substrate, and further thereon is an interlayer insulation film whose polishing rate is set higher than that of the first glass layer. and a step of polishing the second glass layer to planarize its surface.

(産業上の利用分野〕 本発明は、多層配線構造をとる半導体装置の製造方法に
関する。
(Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device having a multilayer wiring structure.

近年はLSIの集積化が要求されており、これに伴って
配線層としては多層配線構造が用いられている。この場
合、上層配線層になる楔下地層の凹凸の影響でそのカバ
レッジが悪くなり、これを防止するために、通常、配線
層をパターニング形成して層間絶縁製を堆積した後にそ
の表面を平坦化する必要がある。
In recent years, there has been a demand for greater integration of LSIs, and as a result, multilayer wiring structures have been used as wiring layers. In this case, the coverage deteriorates due to the unevenness of the wedge base layer, which becomes the upper wiring layer, and to prevent this, the surface is usually flattened after patterning the wiring layer and depositing interlayer insulation. There is a need to.

〔従来の技術〕[Conventional technology]

第3図は従来方法の一例の製造工程図を示す。 FIG. 3 shows a manufacturing process diagram of an example of a conventional method.

同図(A)において、半導体基板1上にアルミニウム等
の配線層2をパターニング形成し、PSG(phosp
ho  5ilicate glass)等の層間絶縁
膜3を堆積する。次に同図(B)に示す如く、表面にS
 OG (spin on alass)等の埋込み層
4をスピンコード形成し、これを熱処理によって固める
。続いて同図(C)に示す如く、異方性エツチングによ
ってエッチバックして表面を平坦化しくコントロールエ
ツチング)、平坦化した表面に更に2層目の配線層(図
示せず)をパターニング形成する。
In the same figure (A), a wiring layer 2 made of aluminum or the like is formed on a semiconductor substrate 1 by patterning,
Then, an interlayer insulating film 3 such as HO 5 illicate glass is deposited. Next, as shown in the same figure (B), S
A buried layer 4 such as OG (spin on alas) is formed as a spin cord, and this is hardened by heat treatment. Subsequently, as shown in FIG. 5C, the surface is etched back using anisotropic etching (controlled etching) to flatten the surface, and a second wiring layer (not shown) is further patterned on the flattened surface. .

〔発明が解決しようとする課題] ところで、配線層パターンはデバイスの設計に応じて第
4図に示すように密及び粗に形成されることがある。同
図(A)において、密の部分の配線層2+ 、22.2
3及び粗の部分の配線層2゜の表面に層間絶縁膜(PS
G)3を形成し、続いて同図(B)において、その表面
に埋込層(SOG)4をスピンコードする。この場合、
同図(B)に示す如く、特に密の部分における埋込層(
SOG)4は粗の部分よりも薄く形成される傾向にあり
、埋込14の表面において密の部分と粗の部分とでは大
きな段差がついてしまう。
[Problems to be Solved by the Invention] By the way, the wiring layer pattern may be formed densely or sparsely as shown in FIG. 4 depending on the design of the device. In the same figure (A), the wiring layer 2+, 22.2 in the dense part
An interlayer insulating film (PS
G) 3 is formed, and then, in the same figure (B), a buried layer (SOG) 4 is spin-coded on the surface thereof. in this case,
As shown in Figure (B), the buried layer (
The SOG) 4 tends to be formed thinner than the rough portions, and there is a large step difference between the dense portions and the rough portions on the surface of the embedding 14.

このため、異方性エツチングによってエッチバックを行
なった場合、特に、配線層が密で埋込層4が薄い部分に
おける層間配線1lI3の厚さが薄くなり過ぎてしまい
、この状態で2層目の配線層を形成すると下層の配線層
との間で不良を起し易くなる問題点があった。
For this reason, when etching back is performed by anisotropic etching, the thickness of the interlayer wiring 1lI3 becomes too thin, especially in areas where the wiring layer is dense and the buried layer 4 is thin, and in this state, the thickness of the interlayer wiring 1lI3 becomes too thin. When a wiring layer is formed, there is a problem in that defects tend to occur between the wiring layer and the underlying wiring layer.

それを避けるためにエッチバックを少なくすると、粗の
部分の配線層20上の層間絶縁膜3が厚くなるために例
えば第5図に示すようにコンタクトホール6を形成して
2層目の配線層7を形成すると、コンタクトホール6の
部分で配線層7のカバレッジが悪くなる等の問題点があ
った。
In order to avoid this, if the etch back is reduced, the interlayer insulating film 3 on the wiring layer 20 in the rough portion becomes thicker, so a contact hole 6 is formed as shown in FIG. 7, there were problems such as poor coverage of the wiring layer 7 at the contact hole 6 portion.

、このような層間絶縁膜の厚さの差による不良を防ぐた
めに第5図に示すうように層間絶縁膜(PSG)3を厚
く形成することも考えられるが、密の部分における隣り
合う配線層2+ 、22 。
In order to prevent defects due to the difference in the thickness of the interlayer insulating film, it is possible to form the interlayer insulating film (PSG) 3 thickly as shown in FIG. 2+, 22.

23の間に層間絶縁Il!i13が形成されない部分つ
まり空隙5を生じてしまい、後工程で処理液が浸透した
り、又、2層目の配線層7を形成した場合にこの空隙に
2層目配II層が入り込んで下層配線層との間で不良を
起し易くなる。
Interlayer insulation Il between 23! This creates a part where i13 is not formed, that is, a gap 5, and the processing liquid penetrates in the later process, or when the second wiring layer 7 is formed, the second wiring layer II gets into this gap and the lower layer Failures with the wiring layer are likely to occur.

また、空隙を生じさせない絶縁膜の堆積方法として、い
わゆる層間絶縁膜のいわゆる肩の部分をスパッタエツジ
しながらデポジションする方法があるが、これも、粗の
部分の上の絶縁膜は密の部分に比べ厚くなってしまい堆
積のコン[−ロールが難しい。
Another method of depositing an insulating film that does not create voids is to deposit the shoulder part of the interlayer insulating film by sputtering. It is thicker than others, making it difficult to control the deposition.

本発明は、均一な斥さの層間絶縁膜を形成して配線層の
カバレッジを良好にできる半導体装置の製造方法を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can improve the coverage of wiring layers by forming an interlayer insulating film with uniform spacing.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、配線層をパターニング形成された半導体
基板上に層間絶縁膜とする第1のガラス層を形成し、更
にその上に第1のガラス層よりも研磨速度を速く設定さ
れた、層間絶縁膜とするための第2のガラス層を形成す
る工程と、第2のガラス層を研磨して表面を平坦化する
工程とを含むことを特徴とする半導体装置の製造方法に
よって解決される。
The above problem is solved by forming a first glass layer as an interlayer insulating film on a semiconductor substrate on which a wiring layer has been patterned, and further forming an interlayer with a polishing rate set higher than that of the first glass layer. The problem is solved by a method for manufacturing a semiconductor device characterized by including a step of forming a second glass layer to serve as an insulating film, and a step of polishing the second glass layer to flatten the surface.

(作用) 第2のガラス層の研磨速度が第1のガラス層の研磨速度
よりも速くなるように設定しであるので、研摩の際、第
1のガラス層がマスク(ストッパ)として働くことにな
る。この場合、配線層が密に形成された部分において第
2のガラス層が薄く形成されていても第1のガラス層が
マスク(ストッパ)となってその表面で研磨が進まなく
なるので、配線層の密の部分及び粗の部分における第1
のガラス層の厚さを略均−にできる。従って、従来例の
ように密の部分における層間絶縁膜の厚さが薄くなり過
ぎるというようなことはなくなる。
(Function) Since the polishing speed of the second glass layer is set to be faster than the polishing speed of the first glass layer, the first glass layer acts as a mask (stopper) during polishing. Become. In this case, even if the second glass layer is formed thinly in areas where wiring layers are densely formed, the first glass layer acts as a mask (stopper) and polishing does not proceed on its surface. The first in the dense and coarse parts
The thickness of the glass layer can be made approximately equal. Therefore, the thickness of the interlayer insulating film in dense areas does not become too thin as in the conventional example.

〔実施例〕〔Example〕

第1図は本発明の第1実施例の製造工程図を示す。同図
(A)において、半導体基板1上にアルミニウム等の配
線層20〜23を例えば1μmの厚さにバターニング形
成し、PSG等の層間絶縁膜(第1のガラスII)3を
例えば0.8μmの厚さに堆積する。次に同図(B)に
示す如く、表面にSOGの埋込II(第2のガラスl!
り4をスピンコード形成し、例えば400℃〜450℃
の窒素ガス中で30分間熱処理を行なって埋込lI4を
固める。
FIG. 1 shows a manufacturing process diagram of a first embodiment of the present invention. In FIG. 1A, wiring layers 20 to 23 made of aluminum or the like are patterned to a thickness of, for example, 1 μm on a semiconductor substrate 1, and an interlayer insulating film (first glass II) 3 made of PSG or the like is formed by patterning to a thickness of, for example, 1 μm. Deposit to a thickness of 8 μm. Next, as shown in the same figure (B), SOG is embedded on the surface II (second glass l!).
4 is formed into a spin cord, for example at 400°C to 450°C.
The embedded lI4 is hardened by heat treatment for 30 minutes in nitrogen gas.

続いて同図(C)に示す如く、例えば0.5%〜1.0
%の濃度のフッ酸を用いて表面を研磨して平坦化する。
Subsequently, as shown in the same figure (C), for example, 0.5% to 1.0
% concentration of hydrofluoric acid to polish and flatten the surface.

このとき、埋込層(SOG)4の研磨速度は、一般に、
スピンコードする際にSOGがどれだけ水を含んでいる
かで自由に調整することが可能である。そこで、SOG
の水の含有量を調整して埋込層(SOG)4の研磨速度
が層間絶縁11 (PSG)3の研磨速度よりも速くな
るように設定しておく。これにより、上記研磨の際、層
間絶縁膜(PSG)3がマスク(ストッパ)とじて働く
ことになり、同図(C)に示すように層間絶縁膜3の厚
さを略均−に形成できる。即ち、同図(B)に示す如く
、配線層2+、22.23のように密の部分における埋
込層4が配線層2゜のように粗の部分における埋込14
よりも薄く形成されていても、上記のように層間絶縁w
A3と埋込層4とで研磨速度を異ならしめておけば密の
部分の層間絶縁ll13の表面で研磨が進まなくなり、
従って、密の部分及び粗の部分における層間絶縁膜3の
厚さを略均−にできる。
At this time, the polishing rate of the buried layer (SOG) 4 is generally
When performing spin coding, it is possible to freely adjust the amount of water contained in the SOG. Therefore, SOG
The water content is adjusted so that the polishing rate of the buried layer (SOG) 4 is faster than the polishing rate of the interlayer insulation 11 (PSG) 3. As a result, the interlayer insulating film (PSG) 3 acts as a mask (stopper) during the polishing, and the thickness of the interlayer insulating film 3 can be formed to be approximately uniform as shown in FIG. . That is, as shown in FIG. 2B, the buried layer 4 in the dense portions such as the wiring layers 2+ and 22.23 is buried in the coarse portions such as the wiring layer 2°.
Even if it is formed thinner than the above, the interlayer insulation w
If the polishing speed is set to be different between A3 and the buried layer 4, polishing will not progress on the surface of the interlayer insulation ll13 in the dense area.
Therefore, the thickness of the interlayer insulating film 3 in the dense portion and the coarse portion can be made approximately equal.

従って、異方性エツチングによるエッチバックによって
平坦化していた従来例のように密の部分における層間絶
縁膜3が薄くなり過ぎる、あるいは粗の部分の層間絶縁
I!II3が厚くなり力バレツジ不良を起こすというよ
うなことは起らなくなり、2N目の配線層を形成しても
特に不良を生じるようなことはない。又、特に層間絶縁
膜3を厚く形成する必要もないので、第5図を用いて説
明したような問題点を生じることはない。
Therefore, as in the conventional example where the interlayer insulating film 3 was flattened by etchback using anisotropic etching, the interlayer insulating film 3 in the dense parts becomes too thin, or the interlayer insulating film 3 in the rough parts becomes too thin. Problems such as force imbalance failure due to thickening of II3 no longer occur, and no particular failure occurs even when the 2Nth wiring layer is formed. Furthermore, since there is no need to particularly form the interlayer insulating film 3 thickly, the problem described using FIG. 5 does not occur.

なお、第1図<A)において層間絶縁膜3の表面にプラ
ズマCUD法によって窒化シリコン膜を形成しておけば
、同図(C)の段階における研磨時に層間絶縁膜3に与
えるダメージを少なくすることができる。
In addition, if a silicon nitride film is formed on the surface of the interlayer insulating film 3 by the plasma CUD method in FIG. 1 <A), damage to the interlayer insulating film 3 during polishing at the stage of FIG. be able to.

第2図は本発明の第2実施例の製造工程図を示す。同図
(A)において、半導体基板1上にアルミニウム等の配
線層20〜23を例えば1μmの厚さに形成し、PSG
等の層間絶縁膜10を例えば01μTrL〜0.2μm
の厚さに堆積する。一般に、PSGは薄く成長する場合
には比較的カバレッジ良好に成長でき、第2実施例はこ
の性質を利用している。
FIG. 2 shows a manufacturing process diagram of a second embodiment of the present invention. In the same figure (A), wiring layers 20 to 23 made of aluminum or the like are formed to have a thickness of, for example, 1 μm on a semiconductor substrate 1, and PSG
For example, the interlayer insulating film 10 of
Deposited to a thickness of . Generally, when PSG is grown thinly, it can be grown with relatively good coverage, and the second embodiment utilizes this property.

次に同図(B)に示す如く、表面にSOGの埋込層4を
スピンコード形成し、例えば400℃〜450℃の窒素
ガス中で30分間熱処理を行なって埋込層4を固める。
Next, as shown in FIG. 4B, a buried layer 4 of SOG is spin-corded on the surface, and the buried layer 4 is hardened by heat treatment in nitrogen gas at 400 DEG C. to 450 DEG C. for 30 minutes, for example.

続いて第1実施例と同様に、埋込層4の研磨速度が層間
絶縁sioの研磨速度よりも速くなるように設定してお
き、同図(C)にホすように研磨を行なって層間絶縁膜
1oの厚さが略均−となるようにする。このままでは層
間絶縁膜10の厚さが薄過ぎて層間絶縁をとることがで
きないので、同図(D)に示すように層間絶縁膜10の
表面にPSGの層間絶縁膜11を形成する。この第2実
施例では、第1実施例で説明した効果の他、特に密の部
分の配線層21〜23の間隔が非常に狭い場合に前述の
ような空隙を生じることなく層間絶縁膜10.11の厚
さを略均−にできる効果を有する。
Next, as in the first embodiment, the polishing speed of the buried layer 4 is set to be faster than the polishing speed of the interlayer insulation sio, and polishing is performed as shown in FIG. The thickness of the insulating film 1o is made to be approximately uniform. As it is, the interlayer insulating film 10 is too thin to provide interlayer insulation, so an interlayer insulating film 11 of PSG is formed on the surface of the interlayer insulating film 10, as shown in FIG. In this second embodiment, in addition to the effects described in the first embodiment, the interlayer insulating film 10 can be removed without creating the above-mentioned voids, especially when the spacing between the wiring layers 21 to 23 in the dense portions is very narrow. This has the effect of making the thickness of 11 approximately uniform.

なお、前述の各実施例では層間絶縁R3,10としてP
SG、埋込層4としてSOGを用いたが、本発明はこれ
に限定されるものではなく、層間絶縁膜3.10として
酸化シリコン、埋込層4としてSOGを用いた組合せの
他、層間絶縁膜310として酸化シリコン、埋込!t4
としてPSGを用いた組合せとしてもよい。
In each of the above embodiments, P is used as the interlayer insulation R3 and R10.
Although SOG is used as the SG and the buried layer 4, the present invention is not limited thereto. Silicon oxide is embedded as the film 310! t4
It is also possible to use a combination using PSG.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、研磨速度の遅い第
1のガラス層及び研摩速度が速い第2のガラス層を層間
絶縁膜として形成して第2のガラス層を研磨して平坦化
しているため、特に、配線層が密に形成された部分にお
いて第2のガラス層が薄く形成されていても、第1のガ
ラス層の表面で研磨が進まなくなり、配線層の密の部分
及び粗の部分における第1のガラス層の厚さを略均−に
形成できる。従って、従来例のように2層目配線層との
不良を生じることもなく、又、従来例のように層間絶縁
膜を厚く形成する必要もないので2層目以上の配線層の
カバレッジを良好にできる。
As explained above, according to the present invention, the first glass layer with a slow polishing rate and the second glass layer with a fast polishing rate are formed as interlayer insulating films, and the second glass layer is polished and planarized. Therefore, even if the second glass layer is formed thinly in areas where the wiring layer is densely formed, polishing will not proceed on the surface of the first glass layer, and the area where the wiring layer is densely formed and rough areas will be polished. The thickness of the first glass layer in the portion can be made approximately uniform. Therefore, unlike the conventional example, defects with the second wiring layer do not occur, and unlike the conventional example, there is no need to form a thick interlayer insulating film, so the coverage of the second and higher wiring layers is improved. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の製造工程図、第2図は本
発明の第2実施例の製造工程図、第3図は従来の一例の
製造工程図、 第4図は埋込層表面に生じた段差を説明する図、第5図
は層間絶縁膜を厚く形成した場合に生じる問題点を説明
する図である。 20は粗の部分の配線層、 21〜23は密の部分の配sitm。 3.10.11はPSG等の層間絶縁膜(第1のガラス
層)、 4はSOG等の埋込li(第2のガラス層)を示す。
Fig. 1 is a manufacturing process diagram of the first embodiment of the present invention, Fig. 2 is a manufacturing process diagram of the second embodiment of the invention, Fig. 3 is a manufacturing process diagram of a conventional example, and Fig. 4 is an embedding process diagram. FIG. 5 is a diagram illustrating a level difference generated on a layer surface, and FIG. 5 is a diagram illustrating a problem that occurs when a thick interlayer insulating film is formed. Reference numeral 20 indicates the wiring layer in the coarse portion, and 21 to 23 indicate the wiring layer in the dense portion. 3.10.11 indicates an interlayer insulating film (first glass layer) such as PSG, and 4 indicates a buried li (second glass layer) such as SOG.

Claims (1)

【特許請求の範囲】  配線層(2_0〜2_3)をパターニング形成された
半導体基板(1)上に層間絶縁膜とするための第1のガ
ラス層(3)を形成し、更にその上に該第1のガラス層
(3)よりも研磨速度を速く設定された、層間絶縁膜と
するための第2のガラス層(4)を形成する工程と、 該第2のガラス層(4)を研磨して表面を平坦化する工
程とを含むことを特徴とする半導体装置の製造方法。
[Claims] A first glass layer (3) to serve as an interlayer insulating film is formed on a semiconductor substrate (1) on which wiring layers (2_0 to 2_3) have been patterned, and further thereon, the first glass layer (3) is a step of forming a second glass layer (4) to serve as an interlayer insulating film, the polishing rate of which is set faster than that of the first glass layer (3); and polishing the second glass layer (4). A method of manufacturing a semiconductor device, comprising the step of flattening a surface by using a method of manufacturing a semiconductor device.
JP02097381A 1990-04-12 1990-04-12 Method for manufacturing semiconductor device Expired - Fee Related JP3077990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02097381A JP3077990B2 (en) 1990-04-12 1990-04-12 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02097381A JP3077990B2 (en) 1990-04-12 1990-04-12 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03295239A true JPH03295239A (en) 1991-12-26
JP3077990B2 JP3077990B2 (en) 2000-08-21

Family

ID=14190935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02097381A Expired - Fee Related JP3077990B2 (en) 1990-04-12 1990-04-12 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3077990B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226334A (en) * 1992-02-13 1993-09-03 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH06181209A (en) * 1992-12-15 1994-06-28 Nec Corp Manufacture of semiconductor device
JPH06326065A (en) * 1993-04-22 1994-11-25 Internatl Business Mach Corp <Ibm> Semiconductor device and preparation thereof
JPH0745616A (en) * 1993-07-29 1995-02-14 Nec Corp Manufacture of semiconductor device
US5880003A (en) * 1992-11-27 1999-03-09 Nec Corporation Method of giving a substantially flat surface of a semiconductor device through a polishing operation
US5904558A (en) * 1996-02-16 1999-05-18 Nec Corporation Fabrication process of semiconductor device
JP2001352037A (en) * 2000-06-08 2001-12-21 Sony Corp Manufacturing method for semiconductor device
KR100332123B1 (en) * 1999-12-24 2002-04-10 박종섭 Method of polishing a semiconductor device
KR100400768B1 (en) * 2000-12-18 2003-10-08 주식회사 하이닉스반도체 Method of Forming Metal line in Semiconductor Device
KR100444627B1 (en) * 2001-02-22 2004-08-21 샤프 가부시키가이샤 Process of manufacturing semiconductor device
CN104851838A (en) * 2015-04-17 2015-08-19 上海华虹宏力半导体制造有限公司 Semiconductor device surface thickness uniformization method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226334A (en) * 1992-02-13 1993-09-03 Mitsubishi Electric Corp Semiconductor device and its manufacture
US5880003A (en) * 1992-11-27 1999-03-09 Nec Corporation Method of giving a substantially flat surface of a semiconductor device through a polishing operation
US6180510B1 (en) 1992-11-27 2001-01-30 Nec Corporation Method of manufacturing a substantially flat surface of a semiconductor device through a polishing operation
JPH06181209A (en) * 1992-12-15 1994-06-28 Nec Corp Manufacture of semiconductor device
JPH06326065A (en) * 1993-04-22 1994-11-25 Internatl Business Mach Corp <Ibm> Semiconductor device and preparation thereof
JPH0745616A (en) * 1993-07-29 1995-02-14 Nec Corp Manufacture of semiconductor device
US5904558A (en) * 1996-02-16 1999-05-18 Nec Corporation Fabrication process of semiconductor device
KR100332123B1 (en) * 1999-12-24 2002-04-10 박종섭 Method of polishing a semiconductor device
JP2001352037A (en) * 2000-06-08 2001-12-21 Sony Corp Manufacturing method for semiconductor device
KR100400768B1 (en) * 2000-12-18 2003-10-08 주식회사 하이닉스반도체 Method of Forming Metal line in Semiconductor Device
KR100444627B1 (en) * 2001-02-22 2004-08-21 샤프 가부시키가이샤 Process of manufacturing semiconductor device
CN104851838A (en) * 2015-04-17 2015-08-19 上海华虹宏力半导体制造有限公司 Semiconductor device surface thickness uniformization method

Also Published As

Publication number Publication date
JP3077990B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
US4806504A (en) Planarization method
JP2874486B2 (en) Method for forming trench isolation with polishing step and method for manufacturing semiconductor device
JPH04352323A (en) Metal plug formation method and wiring formation method
US5366850A (en) Submicron planarization process with passivation on metal line
JPH03295239A (en) Manufacture of semiconductor device
US5681425A (en) Teos plasma protection technology
JP4540847B2 (en) Semiconductor device planarization method using high-density plasma system
JP3163719B2 (en) Method for manufacturing semiconductor device having polishing step
JPH07249626A (en) Manufacture of semiconductor device
JPH06124948A (en) Wiring forming method
JP2541214B2 (en) Method for manufacturing semiconductor device
JP2950029B2 (en) Method for manufacturing semiconductor device
CA1308609C (en) Planarization through silylation
JP3311486B2 (en) Integrated circuit planarization method
JP2716156B2 (en) Method for manufacturing semiconductor device
JPS63302537A (en) Manufacture of integrated circuit
US5920791A (en) Method of manufacturing intermetal dielectrics for sub-half-micron semiconductor devices
JPH0430524A (en) Manufacture of semiconductor device
JPS60115234A (en) Preparation of semiconductor device
JPH09153494A (en) Surface flattening method of semiconductor element
JPH0273652A (en) Manufacture of semiconductor device
JPH021921A (en) Formation of organosilanol film in semiconductor device
KR20040055351A (en) Fabrication method of semiconductor
JPS61272951A (en) Forming method of multilayer wiring
JPH01207931A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees