JPH10294361A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH10294361A
JPH10294361A JP10057497A JP10057497A JPH10294361A JP H10294361 A JPH10294361 A JP H10294361A JP 10057497 A JP10057497 A JP 10057497A JP 10057497 A JP10057497 A JP 10057497A JP H10294361 A JPH10294361 A JP H10294361A
Authority
JP
Japan
Prior art keywords
film
substrate
semiconductor substrate
oxide film
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10057497A
Other languages
Japanese (ja)
Inventor
Akio Ito
昭男 伊藤
Masahiko Imai
雅彦 今井
Hiroshi Horie
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10057497A priority Critical patent/JPH10294361A/en
Publication of JPH10294361A publication Critical patent/JPH10294361A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the surface of a semiconductor substrate to be stably flattened even if an isolated fine pattern is present on it by a method wherein the recesses of the rugged surface of the semiconductor substrate are filled up with thermosetting resin, the resin filled in the recessed parts is hardened, and then the cured resin and the projections of the rugged surface of the substrate are polished together at the same time. SOLUTION: A resist pattern is formed on the surface of a silicon substrate 1 and then removed off after the silicon substrate 1 is subjected to etching. When a buried oxide film 7 is deposited on the surface of the substrate 1, the surface of the substrate 1 becomes nearly flat, but a recess 8 is formed corresponding to the pattern of a shallow trench. After a resist film 9 is formed on the buried oxide film 7 by spin coating, the silicon substrate 1 is thermally treated. The resist film 9 is chemically, mechanically polished. By this polishing operation, projections located on the surface of the resist film 9 are removed, and a buried material 9a is left in the recess 8 which is formed on the surface of the buried oxide film 7. The buried material 9a is hardened through a thermal treatment. The buried oxide film 7 and the buried material 9a are polished at the same time, whereby a substrate with a flat surface can be abstained independent of a pattern of ruggedness on its surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に基板表面を平坦化するのに適した半導
体装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device suitable for flattening a substrate surface.

【0002】[0002]

【従来の技術】シャロートレンチにより素子分離を行う
技術が注目されている。図6(A)及び6(B)は、共
に、従来のシャロートレンチ素子分離構造の作製方法を
示す基板断面図である。
2. Description of the Related Art Attention has been paid to a technique for isolating elements by using shallow trenches. 6A and 6B are cross-sectional views of a substrate showing a method for manufacturing a conventional shallow trench element isolation structure.

【0003】図6(A)に示すように、シリコン基板5
0の表面にシャロートレンチ50aが形成されている。
シャロートレンチ50aの形成されていない凸部の頂上
には、SiN膜51が形成されている。この基板表面上
に、TEOS膜等のSiO2膜52を堆積する。SiO
2 膜52の表面上に、レジスト膜を塗布し、シャロート
レンチ50aを形成したときのマスクと逆パターンのマ
スクを用いて露光する。レジスト膜を現像し、シャロー
トレンチ50aに対応する領域にレジストパターン53
を残す。
[0003] As shown in FIG.
The shallow trench 50a is formed on the surface of the "0".
An SiN film 51 is formed on the top of the projection where the shallow trench 50a is not formed. An SiO 2 film 52 such as a TEOS film is deposited on the surface of the substrate. SiO
A resist film is applied on the surface of the second film 52, and exposure is performed using a mask having a pattern opposite to the mask used when the shallow trench 50a is formed. The resist film is developed, and a resist pattern 53 is formed in a region corresponding to the shallow trench 50a.
Leave.

【0004】レジストパターン53をマスクとしてSi
2 膜52をエッチングし、その後レジストパターン5
3を剥離する。SiO2 膜52を化学機械研磨し、表面
を平坦化する。
[0004] Si using the resist pattern 53 as a mask
The O 2 film 52 is etched, and then the resist pattern 5
3 is peeled off. The SiO 2 film 52 is subjected to chemical mechanical polishing to planarize the surface.

【0005】図6(B)に示す従来例の場合には、Si
2 膜52を堆積した後、その表面上にポリシリコン膜
55を堆積する。ポリシリコン膜55を化学機械研磨
し、凸部上のポリシリコン膜55aを除去する。残った
ポリシリコン膜55をマスクとして凸部のSiO2 膜5
2をエッチングする。SiO2 膜52のエッチング後、
ポリシリコン膜55をエッチング除去する。その後の工
程は、図6(A)の場合と同様である。
[0005] In the case of the conventional example shown in FIG.
After depositing the O 2 film 52, a polysilicon film 55 is deposited on its surface. The polysilicon film 55 is subjected to chemical mechanical polishing to remove the polysilicon film 55a on the projection. Using the remaining polysilicon film 55 as a mask, the projected SiO 2 film 5
2 is etched. After the etching of the SiO 2 film 52,
The polysilicon film 55 is removed by etching. Subsequent steps are the same as those in the case of FIG.

【0006】[0006]

【発明が解決しようとする課題】図6(A)に示す従来
例の場合、図の左側の凸部のように孤立した微細パター
ンの上に堆積するSiO2 膜52の厚さは、右側の凸部
のように比較的大きなパターンの上に堆積する厚さより
も薄い。このため、SiO2 膜52をエッチングする
と、孤立した微細パターンの凸部上面が露出してしまう
場合がある。
In the case of the conventional example shown in FIG. 6A, the thickness of the SiO 2 film 52 deposited on the isolated fine pattern like the convex part on the left side of the figure is the same as that on the right side. It is thinner than the thickness deposited on a relatively large pattern such as a protrusion. Therefore, when the SiO 2 film 52 is etched, the upper surface of the convex portion of the isolated fine pattern may be exposed.

【0007】図6(B)に示す従来例の場合には、ポリ
シリコン膜55を研磨除去するとき、図の左側の孤立し
た微細な凸部に大きな圧力が加わり、この領域のポリシ
リコン膜55及びSiO2 膜52が余分に研磨される場
合がある。
In the case of the conventional example shown in FIG. 6B, when the polysilicon film 55 is polished and removed, a large pressure is applied to the isolated fine protrusion on the left side of the figure, and the polysilicon film 55 in this region is removed. In some cases, the SiO 2 film 52 may be excessively polished.

【0008】本発明の目的は、半導体基板表面に孤立し
た微細なパターンがある場合にも、安定して表面を平坦
化することができる方法を提供することである。
An object of the present invention is to provide a method capable of stably flattening the surface even when there is an isolated fine pattern on the surface of the semiconductor substrate.

【0009】[0009]

【課題を解決するための手段】本発明の一観点による
と、表面に凹凸を有する半導体基板を準備する工程と、
前記半導体基板の表面の凹部内に熱硬化性樹脂からなる
埋込材を配置する工程と、前記埋込材を加熱して硬化さ
せる工程と、前記硬化した埋込材と前記半導体基板の表
面の凸部とを同時に研磨し、表面を平坦化する工程とを
有する半導体装置の製造方法が提供される。
According to one aspect of the present invention, there is provided a step of preparing a semiconductor substrate having an uneven surface.
Arranging an embedding material made of a thermosetting resin in a concave portion on the surface of the semiconductor substrate, heating and curing the embedding material, and curing the embedding material and the surface of the semiconductor substrate; Simultaneously polishing the projections and flattening the surface.

【0010】埋込材を硬化させることにより、半導体基
板の凸部とほぼ同程度の研磨速度にすることができる。
埋込材と基板の凸部の研磨速度がほぼ同程度になると、
基板の表面の全領域においてほぼ研磨速度が同程度にな
り、基板表面の凹凸模様に依らず容易に平坦化すること
が可能になる。
[0010] By hardening the embedding material, the polishing rate can be made substantially the same as that of the convex portion of the semiconductor substrate.
When the polishing rate of the embedding material and the convex part of the substrate become almost the same,
The polishing rate is almost the same in all regions of the substrate surface, and the substrate can be easily flattened regardless of the unevenness of the substrate surface.

【0011】本明細書において、研磨は、ラッピング、
ポリシング、化学機械研磨を含むものとする。
In this specification, polishing is wrapping,
Polishing and chemical mechanical polishing shall be included.

【0012】[0012]

【発明の実施の形態】図1及び図2を参照して、本発明
の第1の実施例による半導体装置の製造方法を、素子分
離用のシャロートレンチ構造を形成する場合を例にとっ
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2 by taking as an example a case where a shallow trench structure for element isolation is formed.

【0013】図1(A)に示すように、シリコン基板1
の表面上に、温度800℃のドライ酸化により、厚さ約
5nmのパッド酸化膜2を形成する。パッド酸化膜2の
上に、化学気相堆積(CVD)により厚さ約115nm
のSiN膜3を形成する。SiN膜3の上に、シリコン
基板1の表面の活性領域に対応したレジストパターン4
を形成する。
As shown in FIG. 1A, a silicon substrate 1
A pad oxide film 2 having a thickness of about 5 nm is formed by dry oxidation at a temperature of 800.degree. On the pad oxide film 2, a thickness of about 115 nm is formed by chemical vapor deposition (CVD).
Is formed. A resist pattern 4 corresponding to the active region on the surface of the silicon substrate 1 is formed on the SiN film 3.
To form

【0014】図1(B)に示すように、レジストパター
ン4をマスクとしてSiN膜3及びパッド酸化膜2をエ
ッチングする。さらに、シリコン基板1をエッチング
し、深さ約0.3μmのシャロートレンチ5を形成す
る。シリコン基板1のエッチングは、HBr系ガスを用
いたドライエッチングにより行う。その後、レジストパ
ターン4を除去する。
As shown in FIG. 1B, the SiN film 3 and the pad oxide film 2 are etched using the resist pattern 4 as a mask. Further, the silicon substrate 1 is etched to form a shallow trench 5 having a depth of about 0.3 μm. The etching of the silicon substrate 1 is performed by dry etching using an HBr-based gas. After that, the resist pattern 4 is removed.

【0015】レジストパターン4の除去後、シャロート
レンチ5の内面に、温度900℃のドライ酸化により厚
さ約10nmのスルー酸化膜6を形成する。スルー酸化
膜6は、シリコン基板1のエッチング時のダメージ除去
及びシャロートレンチ5の側壁保護を目的とする。素子
特性に問題を生じない場合には、スルー酸化膜6の形成
を省略してもよい。
After the removal of the resist pattern 4, a through oxide film 6 having a thickness of about 10 nm is formed on the inner surface of the shallow trench 5 by dry oxidation at a temperature of 900.degree. The through oxide film 6 is intended to remove damage during etching of the silicon substrate 1 and to protect the side wall of the shallow trench 5. If there is no problem in device characteristics, the formation of the through oxide film 6 may be omitted.

【0016】図1(C)に示すように、基板表面上に、
厚さ約600nmの埋込酸化膜7を堆積する。埋込酸化
膜7は、例えば原料ガスとしてO3 とTEOSを用いた
常圧CVDにより形成される。幅の狭いシャロートレン
チが形成された領域では、埋込酸化膜7の表面はほぼ平
坦になるが、比較的広いシャロートレンチが形成された
領域では、埋め込む酸化膜7の表面にシャロートレンチ
のパターンに対応した凹部8が形成される。
As shown in FIG. 1C, on the substrate surface,
A buried oxide film 7 having a thickness of about 600 nm is deposited. The buried oxide film 7 is formed by, for example, normal pressure CVD using O 3 and TEOS as source gases. In the region where the narrow shallow trench is formed, the surface of the buried oxide film 7 is almost flat, but in the region where the relatively wide shallow trench is formed, the surface of the buried oxide film 7 has a pattern of the shallow trench. A corresponding recess 8 is formed.

【0017】埋込酸化膜7の緻密化のため、O2 雰囲気
中で温度を1000℃とし、約30分間の熱処理を行
う。なお、埋込酸化膜7を高密度プラズマCVD(HD
PCVD)等のように十分緻密な膜を形成できる方法で
堆積した場合には、緻密化のための熱処理を省略しても
よい。
In order to densify the buried oxide film 7, a heat treatment is performed in an O 2 atmosphere at a temperature of 1000 ° C. for about 30 minutes. The buried oxide film 7 is formed by high-density plasma CVD (HD
In the case where deposition is performed by a method capable of forming a sufficiently dense film such as PCVD), a heat treatment for densification may be omitted.

【0018】図2(A)に示すように、埋込酸化膜7の
上に、ノボラック系のレジスト膜9を回転塗布する。本
実施例では、レジスト膜9としてシプレイ社製のポジレ
ジストMP−1300を用いた。レジスト膜9は、シャ
ロートレンチ5の深さ、パッド酸化膜2の厚さ、及びS
iN膜3の厚さの合計よりもやや厚くなるように形成す
る。本実施例の場合には、レジスト膜9の厚さを0.5
〜0.6μmとした。レジスト膜9の塗布後、大気中
で、温度150℃の熱処理を約20分間行う。
As shown in FIG. 2A, a novolak-based resist film 9 is spin-coated on the buried oxide film 7. In the present embodiment, a positive resist MP-1300 manufactured by Shipley Co., Ltd. was used as the resist film 9. The resist film 9 has a depth of the shallow trench 5, a thickness of the pad oxide film 2,
The iN film 3 is formed to be slightly thicker than the total thickness. In the case of this embodiment, the thickness of the resist film 9 is set to 0.5
0.60.6 μm. After the application of the resist film 9, a heat treatment at a temperature of 150 ° C. is performed in the air for about 20 minutes.

【0019】図2(B)に示すように、レジスト膜9を
化学機械研磨する。本実施例で用いた研磨材はキャボッ
ト社製のSC−112、研磨布はロデール社製のIC−
1000/SUBA400の2層研磨布である。また、
研磨時の基板回転数を80rpm、定盤回転数を80r
pm、研磨圧力を230g/cm2 とした。
As shown in FIG. 2B, the resist film 9 is subjected to chemical mechanical polishing. The abrasive used in this example was SC-112 manufactured by Cabot Corporation, and the polishing cloth was IC-112 manufactured by Rodale.
It is a two-layer polishing cloth of 1000 / SUBA400. Also,
The substrate rotation speed during polishing is 80 rpm, and the platen rotation speed is 80 r.
pm and a polishing pressure of 230 g / cm 2 .

【0020】この研磨により、レジスト膜9の凸部が除
去され、埋込酸化膜7の表面に形成されている凹部8内
にレジスト膜9からなる埋込材9aが残る。大気中で、
温度220℃の熱処理を20分間行う。この熱処理によ
り、埋込材9aが硬化する。
By this polishing, the convex portions of the resist film 9 are removed, and the burying material 9a made of the resist film 9 remains in the concave portions 8 formed on the surface of the buried oxide film 7. In the atmosphere,
A heat treatment at a temperature of 220 ° C. is performed for 20 minutes. By this heat treatment, the embedding material 9a is hardened.

【0021】図2(C)に示すように、埋込酸化膜7と
埋込材9aとを同時に研磨し、SiN膜3が露出した時
点で研磨を停止する。研磨材、研磨布、研磨圧力は、図
2(B)の工程で行ったレジスト膜9の研磨と同様であ
る。シャロートレンチ5内にのみ、埋込酸化膜7aが残
る。
As shown in FIG. 2C, the buried oxide film 7 and the burying material 9a are simultaneously polished, and the polishing is stopped when the SiN film 3 is exposed. The abrasive, the polishing cloth, and the polishing pressure are the same as in the polishing of the resist film 9 performed in the step of FIG. The buried oxide film 7a remains only in the shallow trench 5.

【0022】SiN膜3とパッド酸化膜2を除去し、活
性領域にシリコン基板1の表面を露出させる。その後、
活性領域内に所望の半導体素子を形成する。活性領域に
露出したシリコン基板1の表面と埋込酸化膜7aの表面
との間に、SiN膜3とパッド酸化膜2の合計の厚さ分
程度の段差が生ずるが、この程度の段差は、その後の処
理において問題にはならない。
The SiN film 3 and the pad oxide film 2 are removed, and the surface of the silicon substrate 1 is exposed in the active region. afterwards,
A desired semiconductor device is formed in the active region. Between the surface of the silicon substrate 1 exposed to the active region and the surface of the buried oxide film 7a, there is a step of about the total thickness of the SiN film 3 and the pad oxide film 2, but this step is It does not matter in subsequent processing.

【0023】図2(B)の工程で、凹部8内に埋込材9
aが埋め込まれ、ほぼ平坦な表面が得られている。ま
た、図2(C)の研磨の前に、埋込材9aを熱処理して
硬化させている。埋込材9aの研磨速度と埋込酸化膜7
の研磨速度とが等しいかまたは近似している場合には、
図2(C)の研磨工程にける研磨速度が、基板の表面の
全域でほぼ等しくなるため、基板表面の凹凸模様に依ら
ず平坦な表面を得ることが可能になる。
In the step of FIG. 2B, the embedding material 9 is
a is buried, and a substantially flat surface is obtained. Before the polishing in FIG. 2C, the embedding material 9a is cured by heat treatment. Polishing rate of embedded material 9a and embedded oxide film 7
If the polishing rate is equal or close to
Since the polishing rate in the polishing step of FIG. 2C is substantially equal over the entire surface of the substrate, a flat surface can be obtained regardless of the unevenness of the substrate surface.

【0024】図4は、レジスト膜の熱処理温度と研磨速
度との関係を示す。図4(A)及び4(B)ともに、横
軸は熱処理温度を単位℃で表し、縦軸は研磨速度を単位
nm/分で表す。図4(B)は図4(A)の縦軸のスケ
ールを拡大したものである。図中の記号○及び●は、そ
れぞれ研磨圧力を70g/cm2 及び230g/cm 2
とした場合を示す。なお、用いたレジスト材料、研磨材
及び研磨布は、上述の実施例の場合と同様である。
FIG. 4 shows the heat treatment temperature and polishing speed of the resist film.
Shows the relationship with degrees. 4 (A) and 4 (B) are both horizontal.
The axis is the heat treatment temperature in units of ° C, and the vertical axis is the polishing rate.
Expressed in nm / min. FIG. 4B is a scale of the vertical axis of FIG.
It is an expansion of the rules. The symbols ○ and ● in the figure are
Each polishing pressure is 70g / cmTwoAnd 230 g / cm Two
Is shown. In addition, used resist material, abrasive material
The polishing cloth is the same as in the above embodiment.

【0025】図4(A)に示すように、熱処理温度を高
くすると、レジスト膜が硬化して研磨速度が遅くなる。
研磨圧力230g/cm2 の条件で大きな研磨速度を得
たい場合には、熱処理温度を170℃以下にすることが
好ましい。従って、図2(A)におけるレジスト膜9の
熱処理温度を170℃以下とすることが好ましい。熱処
理温度が200℃を超えると、研磨速度が非常に遅くな
る。これは、高温の熱処理により、レジスト膜が変質す
るためと考えられる。
As shown in FIG. 4A, when the heat treatment temperature is increased, the resist film is hardened and the polishing rate is reduced.
To obtain a high polishing rate under the condition of a polishing pressure of 230 g / cm 2 , the heat treatment temperature is preferably set to 170 ° C. or lower. Therefore, it is preferable that the heat treatment temperature of the resist film 9 in FIG. When the heat treatment temperature exceeds 200 ° C., the polishing rate becomes very slow. This is presumably because the high-temperature heat treatment deteriorates the resist film.

【0026】図5は、レジスト膜の光透過特性を示す。
横軸は波数を単位cm-1で表し、縦軸は透過率を任意目
盛りで表す。図中の太線は熱処理温度を260℃とした
場合を示し、細線は120℃とした場合を示す。
FIG. 5 shows the light transmission characteristics of the resist film.
The horizontal axis represents the wave number in cm −1 , and the vertical axis represents the transmittance on an arbitrary scale. The thick line in the figure shows the case where the heat treatment temperature was set to 260 ° C, and the thin line shows the case where the heat treatment temperature was set to 120 ° C.

【0027】熱処理温度を120℃とした場合には、波
数1500cm-1近傍にベンゼン環骨格振動による鋭い
吸収a、1600cm-1近傍にベンゼン環骨格振動もし
くはN−H変角振動による吸収b、波数3000〜23
00cm-1にアミン塩のN−H+ 伸縮振動によるブロー
ドな吸収c、波数3500〜3300cm-1にO−H伸
縮振動及びN−H伸縮振動によるブロードな吸収dが見
られる。
The heat treatment when the set to 120 ° C. temperature, wave number 1500 cm -1 sharp absorption a by a benzene ring skeleton vibration in the vicinity, the absorption by the benzene ring skeleton vibration or N-H deformation vibration near 1600 cm -1 b, wavenumber 3000-23
00cm -1 to amine salts N-H + stretching vibration by broad absorption c, O-H stretching vibration and N-H stretching broad absorption d by the vibration is observed at a wavenumber 3500~3300cm -1.

【0028】これに対し、熱処理温度を260℃とした
場合には、波数1500cm-1近傍のベンゼン環骨格振
動による鋭い吸収が小さくなり、波数3000〜230
0cm-1及び波数3500〜3300cm-1の吸収率が
減少している。このことから、260℃で熱処理するこ
とによりN−H基がアミン塩からアミンに変化し、ベン
ゼン環が消失し緻密なネットワークに変化していると考
えられる。この変質により、レジスト膜の研磨速度が遅
くなるものと考えられる。
On the other hand, when the heat treatment temperature is 260 ° C., the sharp absorption due to the benzene ring skeleton vibration near the wave number of 1500 cm −1 is small, and the wave number is 3000 to 230.
Absorption rate of 0 cm -1 and a wavenumber 3500~3300Cm -1 is reduced. From this, it is considered that the heat treatment at 260 ° C. changes the NH group from an amine salt to an amine, loses the benzene ring, and changes to a dense network. It is considered that the polishing speed of the resist film is decreased due to the alteration.

【0029】図4(B)に、SiO2 の研磨速度約80
nm/分を細い破線で示す。レジスト膜の熱処理温度を
約220℃とすると、研磨速度がSiO2 のそれとほぼ
等しくなることがわかる。従って、図2(B)に示す熱
処理工程の温度を220℃とすることにより、埋込材9
aとその周囲の埋込酸化膜7との研磨速度がほぼ等しく
なり、平坦化し易くなる。
FIG. 4B shows that the polishing rate of SiO 2 is about 80.
nm / min is indicated by a thin dashed line. When the heat treatment temperature of the resist film is set to about 220 ° C., the polishing rate becomes almost equal to that of SiO 2 . Therefore, by setting the temperature of the heat treatment step shown in FIG.
The polishing rate of a and the buried oxide film 7 therearound are substantially equal to each other, and it is easy to flatten.

【0030】次に、図3を参照して、第2の実施例によ
る半導体装置の製造方法を説明する。上述の第1の実施
例と同様の工程により、図2(A)に示すレジスト膜9
の塗布及び熱処理までを実行する。
Next, a method of manufacturing a semiconductor device according to the second embodiment will be described with reference to FIG. By the same process as in the first embodiment, the resist film 9 shown in FIG.
Until the application and heat treatment.

【0031】図3に示すように、レジスト膜9を露光、
現像することによりパターニングし、埋込酸化膜7の表
面に形成された凹部8内にレジスト膜9からなる埋込材
9bを残す。大気中で、温度220℃の熱処理を約20
分間行い、埋込材9bを硬化させる。
As shown in FIG. 3, the resist film 9 is exposed,
By patterning by development, an embedding material 9b made of a resist film 9 is left in a concave portion 8 formed on the surface of the embedding oxide film 7. In air, heat treatment at a temperature of 220 ° C for about 20
This is performed for minutes, and the embedding material 9b is cured.

【0032】埋込材9bと埋込酸化膜7とを、SiN膜
3が露出するまで研磨する。この研磨により、第1の実
施例の場合と同様に、図2(C)に示すように表面を平
坦化することができる。この場合も、埋込材9bがその
周囲の埋込酸化膜7と同程度の研磨速度になっているた
め、第1の実施例の場合と同様に、容易に平坦な面を得
ることができる。
The burying material 9b and the buried oxide film 7 are polished until the SiN film 3 is exposed. By this polishing, the surface can be flattened as shown in FIG. 2C, as in the case of the first embodiment. Also in this case, since the embedding material 9b has the same polishing rate as that of the surrounding embedding oxide film 7, a flat surface can be easily obtained as in the case of the first embodiment. .

【0033】図3の状態で、埋込材9bの上面と埋込酸
化膜7の上面との高さを揃えるために、図2(A)に示
すレジスト膜9の厚さを凹部8の深さと同程度にするこ
とが好ましい。すなわち、シャロートレンチ5の深さ、
パッド酸化膜2の厚さ、及びSiN膜3の厚さの合計と
ほぼ等しい厚さとすることが好ましい。
In the state of FIG. 3, in order to make the upper surface of the burying material 9b and the upper surface of the buried oxide film 7 uniform, the thickness of the resist film 9 shown in FIG. It is preferable to make the same. That is, the depth of the shallow trench 5,
It is preferable that the thickness be substantially equal to the sum of the thickness of the pad oxide film 2 and the thickness of the SiN film 3.

【0034】上記実施例では、シャロートレンチ構造を
形成する場合を例に説明したが、上記実施例は、一般に
表面に凹凸を有する半導体基板の平坦化に適用可能であ
る。
In the above embodiment, the case where the shallow trench structure is formed has been described as an example. However, the above embodiment can be generally applied to flattening of a semiconductor substrate having an uneven surface.

【0035】上記第1の実施例では、凹部を埋め込む埋
込材としてノボラック系のレジストを用いたが、レジス
ト以外の熱硬化性樹脂を用いてもよい。また、第2の実
施例の場合には、熱硬化性のその他のフォトレジスト、
例えば水銀のi線用レジスト、化学増幅型レジスト等を
用いてもよい。
In the first embodiment, a novolak-based resist is used as an embedding material for embedding the recess, but a thermosetting resin other than the resist may be used. Further, in the case of the second embodiment, other thermosetting photoresists,
For example, a resist for i-line of mercury, a chemically amplified resist, or the like may be used.

【0036】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
自明であろう。
The present invention has been described in connection with the preferred embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
表面に凹凸を有する半導体基板の凹部を熱硬化性樹脂で
埋込み、この樹脂を硬化させて基板表面材料とほぼ同程
度の研磨速度にする。硬化した樹脂と半導体表面とを同
時に研磨することにより、表面を平坦化することができ
る。
As described above, according to the present invention,
A concave portion of a semiconductor substrate having irregularities on its surface is embedded with a thermosetting resin, and the resin is cured to a polishing rate substantially equal to that of the substrate surface material. By polishing the cured resin and the semiconductor surface simultaneously, the surface can be flattened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による半導体装置の製造
方法を説明するための基板断面図である。
FIG. 1 is a sectional view of a substrate for describing a method of manufacturing a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による半導体装置の製造
方法を説明するための基板断面図である。
FIG. 2 is a sectional view of a substrate for explaining a method of manufacturing the semiconductor device according to the first embodiment of the present invention.

【図3】本発明の第2の実施例による半導体装置の製造
方法を説明するための基板断面図である。
FIG. 3 is a sectional view of a substrate for explaining a method of manufacturing a semiconductor device according to a second embodiment of the present invention.

【図4】レジスト膜の熱処理温度と研磨速度との関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between a heat treatment temperature of a resist film and a polishing rate.

【図5】レジスト膜を、120℃と260℃の2つの温
度で熱処理した後の光透過特性を比較して示すグラフで
ある。
FIG. 5 is a graph showing a comparison of light transmission characteristics after heat treatment of a resist film at two temperatures of 120 ° C. and 260 ° C.

【図6】従来例によるシャロートレンチ構造の形成方法
を説明するための基板断面図である。
FIG. 6 is a sectional view of a substrate for explaining a method of forming a shallow trench structure according to a conventional example.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 パッド酸化膜 3 SiN膜 4 レジストパターン 5 シャロートレンチ 6 スルー酸化膜 7、7a 埋込酸化膜 8 凹部 9 レジスト膜 9a、9b 埋込材 Reference Signs List 1 silicon substrate 2 pad oxide film 3 SiN film 4 resist pattern 5 shallow trench 6 through oxide film 7, 7a buried oxide film 8 concave portion 9 resist film 9a, 9b burying material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に凹凸を有する半導体基板を準備す
る工程と、 前記半導体基板の表面の凹部内に熱硬化性樹脂からなる
埋込材を配置する工程と、 前記埋込材を加熱して硬化させる工程と、 前記硬化した埋込材と前記半導体基板の表面の凸部とを
同時に研磨し、表面を平坦化する工程とを有する半導体
装置の製造方法。
A step of preparing a semiconductor substrate having irregularities on the surface; a step of arranging an embedding material made of a thermosetting resin in a concave portion of the surface of the semiconductor substrate; and heating the embedding material. A method of manufacturing a semiconductor device, comprising: a step of curing; and a step of polishing the cured embedding material and a convex portion on a surface of the semiconductor substrate at the same time to flatten the surface.
【請求項2】 前記埋込材を配置する工程が、 前記半導体基板の表面上に熱硬化性樹脂膜を塗布する工
程と、 前記熱硬化性樹脂膜を研磨して、前記半導体基板の表面
の凸部上の熱硬化性樹脂膜の少なくとも一部を除去し、
凹部内に熱硬化性樹脂からなる前記埋込材を残す工程と
を含む請求項1に記載の半導体装置の製造方法。
2. The step of arranging the embedding material, the step of applying a thermosetting resin film on the surface of the semiconductor substrate; and the step of polishing the thermosetting resin film to form a surface of the semiconductor substrate. Remove at least a part of the thermosetting resin film on the convex portion,
Leaving the embedding material made of a thermosetting resin in the concave portion.
【請求項3】 前記熱硬化性樹脂膜を塗布する工程の
後、前記凸部上の熱硬化性樹脂膜を除去する工程の前
に、さらに、前記熱硬化性樹脂膜を、前記硬化させる工
程における加熱温度よりも低い温度で熱処理する工程を
含む請求項2に記載の半導体装置の製造方法。
3. The step of curing the thermosetting resin film after the step of applying the thermosetting resin film and before the step of removing the thermosetting resin film on the projections. 3. The method of manufacturing a semiconductor device according to claim 2, further comprising a step of performing a heat treatment at a temperature lower than a heating temperature in the step (a).
【請求項4】 前記熱硬化性樹脂がフォトレジストであ
り、 前記埋込材を配置する工程が、 前記半導体基板の表面上にフォトレジスト膜を塗布する
工程と、 前記フォトレジスト膜を部分的に露光して前記半導体基
板の表面の凸部上のフォトレジスト膜を現像除去し、凹
部内にフォトレジストからなる前記埋込材を残す工程と
を有する請求項1に記載の半導体装置の製造方法。
4. The method according to claim 1, wherein the thermosetting resin is a photoresist, the step of disposing the embedding material includes a step of applying a photoresist film on a surface of the semiconductor substrate, and a step of partially applying the photoresist film. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of exposing and developing the photoresist film on the convex portion on the surface of the semiconductor substrate to leave the embedded material of the photoresist in the concave portion.
【請求項5】 前記半導体基板を準備する工程が、 半導体基板の表面に、素子分離用のシャロートレンチを
形成する工程と、 表面にシャロートレンチを形成した半導体基板の該表面
上に、絶縁膜を堆積する工程とを含む請求項1〜4のい
ずれかに記載の半導体装置の製造方法。
5. The step of preparing the semiconductor substrate, comprising the steps of: forming a shallow trench for element isolation on the surface of the semiconductor substrate; and forming an insulating film on the surface of the semiconductor substrate having the shallow trench formed on the surface. The method for manufacturing a semiconductor device according to claim 1, further comprising: depositing.
JP10057497A 1997-04-17 1997-04-17 Manufacture of semiconductor device Withdrawn JPH10294361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10057497A JPH10294361A (en) 1997-04-17 1997-04-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10057497A JPH10294361A (en) 1997-04-17 1997-04-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH10294361A true JPH10294361A (en) 1998-11-04

Family

ID=14277679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10057497A Withdrawn JPH10294361A (en) 1997-04-17 1997-04-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH10294361A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071121A1 (en) * 1999-07-19 2001-01-24 International Business Machines Corporation Process for the formation of a collar oxide in a trench in a semiconductor substrate
KR20010058498A (en) * 1999-12-30 2001-07-06 박종섭 Method of forming trench type isolation layer in semiconductor device
JP2003059874A (en) * 2001-08-10 2003-02-28 Hitachi Chem Co Ltd Method of polishing board
KR20040038145A (en) * 2002-10-31 2004-05-08 주식회사 하이닉스반도체 Method for forming isolation layer of semiconductor device
JP2010058196A (en) * 2008-09-02 2010-03-18 Nikon Corp Method and apparatus for polishing
JP2010192919A (en) * 2001-05-24 2010-09-02 Internatl Business Mach Corp <Ibm> Method for protecting semiconductor shallow trench isolation (sti) oxide from etching
JP2013062544A (en) * 2004-10-06 2013-04-04 Commissariat A L'energie Atomique & Aux Energies Alternatives Method for manufacturing mixed stacked structures having various insulating zones and/or electrically conductive zones vertically localized

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071121A1 (en) * 1999-07-19 2001-01-24 International Business Machines Corporation Process for the formation of a collar oxide in a trench in a semiconductor substrate
KR20010058498A (en) * 1999-12-30 2001-07-06 박종섭 Method of forming trench type isolation layer in semiconductor device
JP2010192919A (en) * 2001-05-24 2010-09-02 Internatl Business Mach Corp <Ibm> Method for protecting semiconductor shallow trench isolation (sti) oxide from etching
JP2003059874A (en) * 2001-08-10 2003-02-28 Hitachi Chem Co Ltd Method of polishing board
KR20040038145A (en) * 2002-10-31 2004-05-08 주식회사 하이닉스반도체 Method for forming isolation layer of semiconductor device
JP2013062544A (en) * 2004-10-06 2013-04-04 Commissariat A L'energie Atomique & Aux Energies Alternatives Method for manufacturing mixed stacked structures having various insulating zones and/or electrically conductive zones vertically localized
JP2010058196A (en) * 2008-09-02 2010-03-18 Nikon Corp Method and apparatus for polishing

Similar Documents

Publication Publication Date Title
JP3978310B2 (en) Isolation methods in integrated circuit fabrication using antireflective coatings.
EP0893824A2 (en) Method of forming a trench isolation structure utilizing composite oxide films
JPH113936A (en) Manufacture of semiconductor device
JPH09283612A (en) Formation of field oxide film of semiconductor element
JPH10303290A (en) Component isolating method of semiconductor device
US6015757A (en) Method of oxide etching with high selectivity to silicon nitride by using polysilicon layer
US6001704A (en) Method of fabricating a shallow trench isolation by using oxide/oxynitride layers
JPH10294361A (en) Manufacture of semiconductor device
US6509271B1 (en) Manufacturing method of semiconductor device
US6083808A (en) Method for forming a trench isolation in a semiconductor device
JPH03234041A (en) Manufacture of semiconductor device
JP3187375B2 (en) Method of manufacturing a shallow trench isolation structure
KR100609570B1 (en) Method of forming an isolation layer in a semiconductor device
JPH07135247A (en) Manufacture of semiconductor device
JPH0555358A (en) Manufacture of semiconductor device
KR100808377B1 (en) Fabrication method of semiconductor device
JPH07307382A (en) Trench element isolation structure and formation thereof
KR19980030769A (en) Planarization method of semiconductor device
KR100798802B1 (en) Method of forming isolation of semiconductor device
JP3418386B2 (en) Method for manufacturing semiconductor device
JPH0461500B2 (en)
JPH08181134A (en) Flattening and manufacture of semiconductor device
KR100303365B1 (en) Method of manufacturing SOI substrate
JPH11297813A (en) Semiconductor device and manufacture thereof
JPH0481329B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706