JPH08181134A - Flattening and manufacture of semiconductor device - Google Patents

Flattening and manufacture of semiconductor device

Info

Publication number
JPH08181134A
JPH08181134A JP31850794A JP31850794A JPH08181134A JP H08181134 A JPH08181134 A JP H08181134A JP 31850794 A JP31850794 A JP 31850794A JP 31850794 A JP31850794 A JP 31850794A JP H08181134 A JPH08181134 A JP H08181134A
Authority
JP
Japan
Prior art keywords
film
flattening
bias ecr
cvd method
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31850794A
Other languages
Japanese (ja)
Inventor
Naoki Nagashima
直樹 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31850794A priority Critical patent/JPH08181134A/en
Publication of JPH08181134A publication Critical patent/JPH08181134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To provide a method of flattening, which can achieve a flattening stably and without causing problems, such as a scratch and remaining of abrasive grains, and a method of manufacturing a semiconductor device. CONSTITUTION: A film is formed on a base layer having a step (due to a wiring or the like) by a bias ECR-CVD method and a SOG layer 4 is applied on the film 3 formed by the bias ECR-CVD method in such a film thickness that projected parts 3a of the film 3 are not exposed to perform a flattening.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平坦化方法及び半導体
装置の製造方法に関する。本発明は、各種の平坦化の場
合、及び各種の半導体装置の製造について適用できる
が、特に好適には、微細化・集積化した半導体装置の分
野で利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planarization method and a semiconductor device manufacturing method. INDUSTRIAL APPLICABILITY The present invention can be applied to various planarizations and manufacturing of various semiconductor devices, but can be particularly preferably used in the field of miniaturized and integrated semiconductor devices.

【0002】[0002]

【従来技術及びその問題点】例えば半導体装置の分野で
は、半導体集積回路等の微細化にともない、その製造プ
ロセスにおけるフォトリソグラフィーの焦点深度が低下
している。
2. Description of the Related Art In the field of semiconductor devices, for example, with the miniaturization of semiconductor integrated circuits and the like, the depth of focus of photolithography in the manufacturing process thereof is decreasing.

【0003】このため、基板表面のグローバルな平坦化
がますます重要となっている。このような背景でCMP
(ケミカルメカニカルポリッシュ)を用いた研磨平坦化
が注目を集めてきた。しかしながら、CMPにはディッ
シング(Dishing、「底ずり」などと称されるこ
ともある)という研磨布の弾性により凹部の研磨が進行
する現象があり、このため平坦化に多くの研磨量を必用
とする問題があった。このような問題を解決する方法と
して、バイアスECR−CVDを使用してグローバルな
平坦性を得た後に、CMPを用いて微小な突起を研磨し
平坦化を行う方法が考案されている。この方法を従来例
の説明図に従い説明する。
Therefore, global planarization of the substrate surface is becoming more and more important. CMP with such a background
Polishing and flattening using (chemical mechanical polish) has attracted attention. However, CMP has a phenomenon called dishing (sometimes referred to as “dishing”, which is also referred to as “bottoming”) in which the polishing of recesses progresses due to the elasticity of the polishing cloth, and therefore a large polishing amount is required for planarization. There was a problem to do. As a method for solving such a problem, there has been devised a method in which a bias ECR-CVD is used to obtain global flatness, and then CMP is used to polish and flatten the minute projections. This method will be described with reference to an explanatory view of a conventional example.

【0004】従来例では、図4のように、従来行われて
いる方法により、平坦なSi基板等の半導体基板5表面
上に配線6が形成されて段差をなしている構造につい
て、次のように平坦化を行っている。
In the conventional example, as shown in FIG. 4, the structure in which the wiring 6 is formed on the surface of the semiconductor substrate 5 such as a flat Si substrate to form a step by the conventional method is as follows. Is being flattened.

【0005】まず、バイアスECR−CVD法を用いて
図5のようにSi酸化膜7を堆積する。このとき、図5
のように、凸部の堆積量が少なく、かつ、尖った形状と
なるようにバイアス条件を設定する(図7中、尖った形
状の部分を符号7aで示す)。また、バイアスは、図5
に示すように広い凹部においても微小凸部7a周辺とほ
ぼ同等の表面高さを得ることができるように設定する。
First, the Si oxide film 7 is deposited as shown in FIG. 5 by using the bias ECR-CVD method. At this time,
As described above, the bias condition is set so that the amount of deposition of the convex portion is small and the shape is sharp (in FIG. 7, the portion having the sharp shape is indicated by reference numeral 7a). The bias is shown in FIG.
As shown in (3), the surface height is set to be almost the same as that around the minute convex portion 7a even in the wide concave portion.

【0006】次に、基板表面をCMPにより、配線6の
上部の凸部7aが平坦になるまで研磨する。これにより
図6の平坦化形状を得る。このとき、微小な凸部7aは
垂直方向の強い研磨応力を受けるために急速に研磨され
平坦になる。従って、少ない研磨量で平坦化できるとと
もに、グローバルな平坦性を確保することができる。
Next, the surface of the substrate is polished by CMP until the convex portion 7a above the wiring 6 becomes flat. As a result, the flattened shape shown in FIG. 6 is obtained. At this time, the minute convex portions 7a are rapidly polished and flattened due to the strong vertical polishing stress. Therefore, flattening can be performed with a small amount of polishing, and global flatness can be secured.

【0007】しかしながら、CMPによる平坦化は、研
磨速度の不安定性やスクラッチの発生、研磨砥粒が残存
することによる配線の断線等、いくつかの問題を抱えて
いる。また、CMPによる研磨は例えばSOGによる平
滑化等と比較して、プロセスコストが高くなる問題があ
る。
However, the planarization by CMP has some problems such as instability of the polishing rate, generation of scratches, and disconnection of wiring due to polishing abrasive grains remaining. Further, there is a problem that the process cost of polishing by CMP is higher than that of smoothing by SOG, for example.

【0008】[0008]

【発明の目的】本発明は上記のような問題を解決すべく
創案されたもので、安定に、かつスクラッチや砥粒残存
などの問題なく平坦化を達成できる平坦化方法及び半導
体装置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention was devised to solve the above problems, and it is a planarization method and a semiconductor device manufacturing method that can achieve planarization in a stable manner and without problems such as scratches or residual abrasive grains. The purpose is to provide.

【0009】[0009]

【目的を達成するための手段】本出願の請求項1の発明
は、段差を有する下地上にバイアスECR−CVD法に
より成膜を行い、該バイアスECR−CVD法により成
膜した膜の凸部が露出しない膜厚でSOGを塗布するこ
とを特徴とする平坦化方法であって、これにより上記目
的を達成するものである。
According to the invention of claim 1 of the present application, a film is formed by a bias ECR-CVD method on a base having a step, and a convex portion of the film formed by the bias ECR-CVD method. This is a planarization method characterized in that SOG is applied with a film thickness that does not expose, and thereby achieves the above object.

【0010】本出願の請求項2の発明は、上記バイアス
ECR−CVD法による成膜膜厚を、下地の段差以上に
設定することを特徴とする請求項1に記載の平坦化方法
であって、これにより上記目的を達成するものである。
The invention according to claim 2 of the present application is the flattening method according to claim 1, characterized in that the film thickness formed by the bias ECR-CVD method is set to be not less than the step difference of the underlayer. This achieves the above-mentioned object.

【0011】本出願の請求項3の発明は、段差を有する
下地上にバイアスECR−CVD法により層間絶縁膜を
形成し、該バイアスECR−CVD法により成膜した層
間絶縁膜の凸部が露出しない膜厚でSOGを塗布して平
坦化を行う工程を備えることを特徴とする半導体装置の
製造方法であって、これにより上記目的を達成するもの
である。
According to the invention of claim 3 of the present application, an interlayer insulating film is formed on a base having a step by a bias ECR-CVD method, and a convex portion of the interlayer insulating film formed by the bias ECR-CVD method is exposed. A method of manufacturing a semiconductor device, comprising the step of applying SOG with a film thickness not to perform flattening, thereby achieving the above object.

【0012】本出願の請求項4の発明は、上記バイアス
ECR−CVD法による層間絶縁膜の成膜膜厚を、下地
の段差以上に設定することを特徴とする請求項3に記載
の半導体装置の製造方法であって、これにより上記目的
を達成するものである。
According to a fourth aspect of the present invention, the semiconductor device according to the third aspect is characterized in that the film thickness of the interlayer insulating film formed by the bias ECR-CVD method is set to be equal to or larger than the step of the base. And a method for producing the above-mentioned object.

【0013】本発明の構成について、後記詳述する本発
明の一実施例を示す図1ないし図3を参照して説明する
と、次のとおりである。
The structure of the present invention will be described below with reference to FIGS. 1 to 3 showing an embodiment of the present invention which will be described later in detail.

【0014】本発明は、図1に例示するような段差(こ
こでは配線2により段差が形成されている)を有する下
地上にバイアスECR−CVD法により成膜を行い、こ
れにより図2に例示のような構造を得、次いで図3に例
示するように該バイアスECR−CVD法により成膜し
た膜3の凸部3aが露出しない膜厚でSOG4を塗布し
て、平坦化を行うものである。
In the present invention, a film is formed by a bias ECR-CVD method on a base having a step (here, the step is formed by the wiring 2) as illustrated in FIG. Then, as shown in FIG. 3, SOG4 is applied in such a thickness that the convex portion 3a of the film 3 formed by the bias ECR-CVD method is not exposed, and the surface is planarized. .

【0015】本発明において、SOGとは、塗布可能で
あり、かつ塗布後に必要に応じ焼成等の処理を行うこと
で平坦化した絶縁材(SiO2 等)を得ることのできる
ものを言う。いわゆる有機SOG、無機SOGを任意に
用いることができる。通常、溶剤に溶かすことによって
塗布可能にされている。一般に、シリコンを含み(例え
ばシラノール基の形で含む)、有機溶剤等の溶剤に溶か
して塗布できるものが好ましく用いられる。具体的に
は、シラノールSi(OH)4 をエチルアルコールC2
5 OHに溶解して成るもの、オルガノシラノールRn
Si(OH)4-n(nは1〜3)をブチルセルソルブH
OCH2 CH2 CH2 OC4 9 に溶解して成るもの等
を挙げることができる。
In the present invention, SOG means a material which can be applied and which can be subjected to a treatment such as baking after application to obtain a flattened insulating material (SiO 2 etc.). So-called organic SOG and inorganic SOG can be arbitrarily used. Usually, it can be applied by dissolving it in a solvent. Generally, a material containing silicon (for example, in the form of a silanol group), which can be applied by being dissolved in a solvent such as an organic solvent, is preferably used. Specifically, silanol Si (OH) 4 is replaced with ethyl alcohol C 2
Dissolved in H 5 OH, organosilanol R n
Butyl cellosolve H with Si (OH) 4-n (n is 1 to 3)
Examples thereof include those dissolved in OCH 2 CH 2 CH 2 OC 4 H 9 .

【0016】[0016]

【作用】本発明によれば、SOGを塗布したとき、例え
ば図3に例示したようにSOG4は微小な凸部3aを覆
うように形成することにより被平坦化面の全面でほぼ同
様の厚さを得ることができる。よって本発明によれば、
CMPを用いる必要なしにグローバル平坦化を確保する
ことができ、CMPを使用し平坦化した場合に比較し、
コストダウンとパーティクルの低下を実現することがで
きる。
According to the present invention, when SOG is applied, for example, as shown in FIG. 3, the SOG 4 is formed so as to cover the minute convex portions 3a, so that the entire surface to be flattened has substantially the same thickness. Can be obtained. Therefore, according to the present invention,
Global flattening can be ensured without the need to use CMP, compared to flattening using CMP,
It is possible to realize cost reduction and particle reduction.

【0017】[0017]

【実施例】以下に本発明の具体的な実施例について説明
する。但し、当然のことではあるが、本発明は以下の実
施例により限定されるものではない。
EXAMPLES Specific examples of the present invention will be described below. However, as a matter of course, the present invention is not limited to the following examples.

【0018】実施例1 この実施例は、本発明を、微細化・集積化した半導体集
積回路装置の製造の場合に具体化したものである。図1
ないし図3を参照する。
Embodiment 1 This embodiment embodies the present invention in the case of manufacturing a miniaturized and integrated semiconductor integrated circuit device. FIG.
3 to FIG.

【0019】本実施例においては、図1に示すような段
差(ここでは配線2により段差が形成されている)を有
する下地上にバイアスECR−CVD法により成膜を行
い、これにより図2の構造を得、次いで図3に示すよう
に該バイアスECR−CVD法により堆積した膜3の凸
部3aが露出しない膜厚でSOG4を塗布して、平坦化
を行う。
In this embodiment, a film is formed by a bias ECR-CVD method on a base having steps (here, the steps are formed by the wiring 2) as shown in FIG. A structure is obtained, and then, as shown in FIG. 3, SOG4 is applied in a thickness such that the convex portion 3a of the film 3 deposited by the bias ECR-CVD method is not exposed, and planarization is performed.

【0020】特に本実施例では、上記バイアスECR−
CVD法による成膜膜厚(図示では膜3の厚さ)を、段
差(図示では配線2の高さ)以上に設定する。
Particularly in this embodiment, the bias ECR-
The film thickness formed by the CVD method (the thickness of the film 3 in the figure) is set to be equal to or greater than the step (the height of the wiring 2 in the figure).

【0021】また本実施例は、上記平坦化手段による平
坦化工程を備える構成で、半導体装置を製造するのであ
る。
In this embodiment, a semiconductor device is manufactured with a structure including a flattening step by the flattening means.

【0022】更に詳しくは、本実施例においては、半導
体集積回路の基板表面を平坦化する際、図1に示す如く
配線2を形成することによって基板1表面に段差を形成
した後、バイアスECR−CVD法により層間絶縁膜3
とするシリコン酸化膜3を堆積し、さらにSOG4をバ
イアスECR−CVD法により、堆積した層間絶縁膜3
の凸部が露出しない膜厚だけ塗布することにより平坦化
を行う。
More specifically, in this embodiment, when the surface of the substrate of the semiconductor integrated circuit is flattened, a step is formed on the surface of the substrate 1 by forming wiring 2 as shown in FIG. Interlayer insulating film 3 by CVD method
And the SOG 4 is deposited by the bias ECR-CVD method.
The film is flattened by applying a film having a thickness that does not expose the convex portions.

【0023】この場合、バイアスECR−CVD法によ
る層間膜の堆積膜厚を段差以上に設定することにより基
板表面の平坦度を高めるようにした。
In this case, the flatness of the substrate surface is increased by setting the deposited film thickness of the interlayer film by the bias ECR-CVD method to be not less than the step.

【0024】即ち、本実施例では、まず、従来例と同
様、図1のように平坦な半導体基板1の表面上に配線2
を形成する。配線層の厚さは、例えば600nmであ
る。
That is, in this embodiment, first, as in the conventional example, the wiring 2 is formed on the surface of the flat semiconductor substrate 1 as shown in FIG.
To form. The thickness of the wiring layer is, for example, 600 nm.

【0025】その後、図2のようにバイアスECR−C
VDを用いてSi酸化膜3を堆積する。また、バイアス
は広い凹部においても微小凸部3aの周辺とほぼ同等の
表面高さを得ることができるように設定する。このと
き、Si酸化膜3の膜厚は広い凹部において配線層2の
厚さより厚くなるように、例えば800nm堆積する。
Thereafter, as shown in FIG. 2, the bias ECR-C
The Si oxide film 3 is deposited using VD. Further, the bias is set so that even in a wide concave portion, a surface height almost equal to that of the periphery of the minute convex portion 3a can be obtained. At this time, the Si oxide film 3 is deposited to a thickness of, for example, 800 nm so as to be thicker than the thickness of the wiring layer 2 in the wide recess.

【0026】堆積条件は例えば、次のとおりである。 膜厚 800nm(フラットウエハ上換算) 温度 300℃ RFパワー 2kW ガス流量 SiH4 /O2 =60/120sccm 圧力 7mmtorr バイアス 1.0kWThe deposition conditions are, for example, as follows. Film thickness 800 nm (converted on flat wafer) Temperature 300 ° C. RF power 2 kW Gas flow rate SiH 4 / O 2 = 60/120 sccm Pressure 7 mmtorr Bias 1.0 kW

【0027】次に、図3のようにSOG4を基板表面に
スピンコートし、Si酸化膜3上に、例えば、400n
m堆積させる。
Next, as shown in FIG. 3, SOG4 is spin-coated on the surface of the substrate, and, for example, 400 n is formed on the Si oxide film 3.
m is deposited.

【0028】図3のように、SOGをスピンコートした
とき、SOG4は微小な凸部3aを覆うように堆積する
ことにより、ウエハ全面でほぼ同様の厚さを得ることが
できる。
As shown in FIG. 3, when SOG is spin-coated, the SOG 4 is deposited so as to cover the minute convex portions 3a, so that a substantially similar thickness can be obtained on the entire surface of the wafer.

【0029】このため、CMPを用いずにグローバル平
坦性を確保することができ、CMPを使用し平坦化した
場合に比較し、コストダウンとパーティクルの低下を実
現することができる。
Therefore, global flatness can be ensured without using CMP, and cost reduction and particle reduction can be realized as compared with the case where CMP is used for flattening.

【0030】[0030]

【発明の効果】上述の如く、本発明の平坦化方法及び半
導体装置の製造方法によれば、安定に、かつスクラッチ
や砥粒残存などの問題なく平坦化を達成できる。
As described above, according to the planarization method and semiconductor device manufacturing method of the present invention, it is possible to achieve planarization in a stable manner and without problems such as scratches and residual abrasive grains.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の工程を順に断面図で示すものである
(1)。
1A to 1C are sectional views showing steps of Example 1 in order (1).

【図2】実施例1の工程を順に断面図で示すものである
(2)。
2A to 2C are sectional views showing the steps of Example 1 in order (2).

【図3】実施例1の工程を順に断面図で示すものである
(3)。
FIG. 3 is a sectional view showing the steps of Example 1 in order (3).

【図4】従来例の工程を順に断面図で示すものである
(1)。
FIG. 4 is a sectional view showing the steps of the conventional example in order (1).

【図5】従来例の工程を順に断面図で示すものである
(2)。
FIG. 5 is a sectional view showing the steps of the conventional example in order (2).

【図6】従来例の工程を順に断面図で示すものである
(3)。
FIG. 6 is a sectional view showing the steps of the conventional example in order (3).

【符号の説明】[Explanation of symbols]

1 基板 2 配線(段差) 3 Si酸化膜(バイアスECR−CVDによる平
坦化膜) 3a 凸部 4 SOG
1 substrate 2 wiring (step) 3 Si oxide film (planarization film by bias ECR-CVD) 3a convex portion 4 SOG

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】段差を有する下地上にバイアスECR−C
VD法により成膜を行い、 該バイアスECR−CVD法により成膜した膜の凸部が
露出しない膜厚でSOGを塗布することを特徴とする平
坦化方法。
1. A bias ECR-C on a base having a step.
A flattening method, characterized in that a film is formed by a VD method, and SOG is applied in such a thickness that a convex portion of the film formed by the bias ECR-CVD method is not exposed.
【請求項2】上記バイアスECR−CVD法による成膜
膜厚を、下地の段差以上に設定することを特徴とする請
求項1に記載の平坦化方法。
2. The flattening method according to claim 1, wherein the film thickness of the film formed by the bias ECR-CVD method is set to be equal to or larger than the step of the base.
【請求項3】段差を有する下地上にバイアスECR−C
VD法により層間絶縁膜を形成し、 該バイアスECR−CVD法により成膜した層間絶縁膜
の凸部が露出しない膜厚でSOGを塗布して平坦化を行
う工程を備えることを特徴とする半導体装置の製造方
法。
3. A bias ECR-C on a base having steps.
A semiconductor including a step of forming an interlayer insulating film by a VD method and applying SOG to a thickness such that a convex portion of the interlayer insulating film formed by the bias ECR-CVD method is not exposed to perform planarization. Device manufacturing method.
【請求項4】上記バイアスECR−CVD法による層間
絶縁膜の成膜膜厚を、下地の段差以上に設定することを
特徴とする請求項3に記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the film thickness of the interlayer insulating film formed by the bias ECR-CVD method is set to be equal to or larger than the step of the base.
JP31850794A 1994-12-21 1994-12-21 Flattening and manufacture of semiconductor device Pending JPH08181134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31850794A JPH08181134A (en) 1994-12-21 1994-12-21 Flattening and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31850794A JPH08181134A (en) 1994-12-21 1994-12-21 Flattening and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08181134A true JPH08181134A (en) 1996-07-12

Family

ID=18099896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31850794A Pending JPH08181134A (en) 1994-12-21 1994-12-21 Flattening and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08181134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041505A (en) * 2004-07-22 2006-02-09 Hynix Semiconductor Inc Method of forming passivation layer of semiconductor device
KR100763675B1 (en) * 2006-05-24 2007-10-04 동부일렉트로닉스 주식회사 Method for polishing inter-metal dielectric layer of the semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041505A (en) * 2004-07-22 2006-02-09 Hynix Semiconductor Inc Method of forming passivation layer of semiconductor device
KR100763675B1 (en) * 2006-05-24 2007-10-04 동부일렉트로닉스 주식회사 Method for polishing inter-metal dielectric layer of the semiconductor device

Similar Documents

Publication Publication Date Title
KR100870616B1 (en) Methods of Forming Trench Isolation Regions
US5494857A (en) Chemical mechanical planarization of shallow trenches in semiconductor substrates
JPH09283612A (en) Formation of field oxide film of semiconductor element
US6077784A (en) Chemical-mechanical polishing method
JP3132111B2 (en) Method of manufacturing semiconductor device and polish pad used for the same
US6638866B1 (en) Chemical-mechanical polishing (CMP) process for shallow trench isolation
JP4540847B2 (en) Semiconductor device planarization method using high-density plasma system
US6410403B1 (en) Method for planarizing a shallow trench isolation
JPH05315441A (en) Manufacture of semiconductor device provided with polishing process
US6165869A (en) Method to avoid dishing in forming trenches for shallow trench isolation
JPH0661204A (en) Method of manufacturing electronic device containing flatting step by polishing
JPH08181134A (en) Flattening and manufacture of semiconductor device
Lin et al. A ULSI shallow trench isolation process through the integration of multilayered dielectric process and chemical–mechanical planarization
JP3636887B2 (en) Method for planarizing a semiconductor substrate
TW417236B (en) A global planarization process
JPH10294361A (en) Manufacture of semiconductor device
JP2005064314A (en) Semiconductor device and method for manufacturing the same
JPS59136934A (en) Manufacture of semiconductor device
JPH11284061A (en) Semiconductor device and manufacturing method thereof
US6897121B2 (en) Method of removing HDP oxide deposition
KR100874429B1 (en) Gap filling method in semiconductor device manufacturing
US6780771B1 (en) Forming a substantially planar upper surface at the outer edge of a semiconductor topography
TW200901305A (en) Method of manufacturing a semiconductor structure and method of manufacturing a shallow trench isolation structure
US20010053583A1 (en) Shallow trench isolation formation process using a sacrificial layer
JP2000349148A (en) Manufacture of substrate having semiconductor layer