JP2928409B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2928409B2
JP2928409B2 JP20670291A JP20670291A JP2928409B2 JP 2928409 B2 JP2928409 B2 JP 2928409B2 JP 20670291 A JP20670291 A JP 20670291A JP 20670291 A JP20670291 A JP 20670291A JP 2928409 B2 JP2928409 B2 JP 2928409B2
Authority
JP
Japan
Prior art keywords
condensation reaction
temperature
heat treatment
dehydration
sog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20670291A
Other languages
Japanese (ja)
Other versions
JPH0547759A (en
Inventor
琢正 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20670291A priority Critical patent/JP2928409B2/en
Publication of JPH0547759A publication Critical patent/JPH0547759A/en
Application granted granted Critical
Publication of JP2928409B2 publication Critical patent/JP2928409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方
法、特に多層金属配線の形成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a multilayer metal wiring.

【0002】[0002]

【従来の技術】近年半導体装置の微細化、高速化の要求
から半導体装置に於て、トランジスタ等の素子間を接続
する金属配線は、2層以上のアルミニウム配線が多用さ
れるようになった。
2. Description of the Related Art In recent years, in a semiconductor device, two or more layers of aluminum wiring have been frequently used in a semiconductor device due to a demand for miniaturization and high speed of the semiconductor device.

【0003】多層アルミニウム配線では下層のアルミニ
ウム配線の段差により、上層のアルミニウム配線の段切
れが生じないよう各種平坦化技術が用いられる。
[0003] In a multilayer aluminum wiring, various flattening techniques are used so that a step in an upper aluminum wiring is not caused by a step in a lower aluminum wiring.

【0004】平坦化法のうち、スピンオングラス等の塗
布膜を用いて平坦化を行なうものとして、図1の方法が
広く用いられている。しかしながら、上記従来の方法で
は工程中にシラノールを主成分とするスピンオングラス
(以下SOGと略す)から発生する水分もしくはSOG
に吸着した水分が原因で各金属配線層間を接続するスル
ーホールにおいて接続不良、断線等の不良を引き起こし
易い。以下図1を用いて従来の平坦化技術で、どの様に
してスルーホールの接続不良が発生するかを説明する。
[0004] Among the flattening methods, the method shown in Fig. 1 is widely used for flattening using a coating film such as spin-on glass. However, in the above-described conventional method, water or SOG generated from spin-on-glass (hereinafter abbreviated as SOG) containing silanol as a main component during the process.
Due to the moisture adsorbed on the metal wiring layers, defects such as connection failure and disconnection are likely to occur in through holes connecting the respective metal wiring layers. Hereinafter, how a connection failure of a through-hole occurs in a conventional planarization technique will be described with reference to FIG.

【0005】シリコン基板1.にトランジスタ等の素子
を作りこんだ後、絶縁膜2.を介して800nmの膜厚
を有する第1のアルミニウム配線3.を形成する、その
上に公知のプラズマCVD法を用い390℃の堆積温度
で第1のプラズマ酸化膜4.を500nmの厚さで堆積
する。
[0005] Silicon substrate 1. After forming an element such as a transistor on the insulating film, 2. a first aluminum wiring having a thickness of 800 nm through 3. A first plasma oxide film is formed thereon at a deposition temperature of 390 ° C. using a known plasma CVD method. Is deposited to a thickness of 500 nm.

【0006】次にシラノールを主成分とするスピンオン
グラス5.を平坦部で200nm厚に回転塗布し、凹部
を埋め段差を緩和する、次に450℃窒素雰囲気中で3
0分間焼き締める、この焼き締めによりSOG5.中の
SiーOHの脱水縮合反応により水が生成し、SOG
5.にSiーOの結合が形成される。ただし450℃の
熱処理では脱水縮合反応は完結せずSi−OHも膜中に
同時に存在する。
Next, a spin-on glass containing silanol as a main component. Is spin-coated on the flat portion to a thickness of 200 nm to fill the recesses and reduce the level difference.
Bake for 0 minutes. Water is generated by the dehydration condensation reaction of Si-OH in
5. To form a Si—O bond. However, the heat treatment at 450 ° C. does not complete the dehydration / condensation reaction, and Si—OH also exists in the film at the same time.

【0007】この焼き締め工程で発生した水の大部分は
外部に放出されるが、一部は第1のプラズマ酸化膜4.
の中に取り込まれ、又一部はSOG5.自身に取り込ま
れ、後の工程でスルーホールの接続不良を引き起こす。
この段階は図1(a)に示す。
Most of the water generated in this baking step is released to the outside, but part of the first plasma oxide film 4.
And some of them are SOG5. It is taken in by itself and causes poor connection of through holes in a later process.
This stage is shown in FIG.

【0008】次に、390℃の堆積温度で第2のプラズ
マ酸化膜6.を500nm堆積したものが図1(b)で
ある。プラズマ酸化膜6.堆積直前には390℃の温度
でSOG5.中のSiーOHの脱水縮合反応により再び
水が生成し、直後のプラズマ酸化膜6.堆積により、S
OG〜第2のプラズマ酸化膜の間に水分が閉じ込められ
この水分もまた、後の工程でスルーホールの接続不良を
引き起こす。
Next, at a deposition temperature of 390 ° C., a second plasma oxide film 6. Is deposited to a thickness of 500 nm, as shown in FIG. 5. Plasma oxide film Immediately before deposition, SOG5. 5. Water is generated again by the dehydration condensation reaction of Si-OH in the plasma oxide film immediately after. By deposition, S
Moisture is confined between the OG and the second plasma oxide film, and this moisture also causes poor connection of the through hole in a later step.

【0009】次に図1(c)で第1のアルミニウム配線
に到達するスルーホール7.を開孔し、図1(d)でス
パッタリング装置中によりアルミニウムを蒸着した後、
公知のフォトエッチング技術により第2のアルミニウム
配線8.を形成するのである。前述の各工程においてS
OG5.中またはプラズマ酸化膜4.6.中に取り込ま
れた水分は、第2のアルミニウム配線8.を蒸着する際
の温度上昇によりスルーホール側壁から水分が吹き出し
スルーホール7.側壁にアルミニウムが付かない事によ
るスルーホール7.の接続不良を引き起こす。この例を
図2に示す。
Next, in FIG. 1 (c), a through hole reaching the first aluminum wiring 7. And aluminum was deposited in a sputtering apparatus in FIG.
7. Second aluminum wiring by known photo-etching technology Is formed. In each of the aforementioned steps, S
OG5. Medium or plasma oxide film 4.6. The moisture taken in the second aluminum wiring 8. 6. Moisture blows out from the side wall of the through-hole due to a rise in temperature during vapor deposition of the through-hole. 6. Through holes due to the absence of aluminum on the side wall Cause poor connection. This example is shown in FIG.

【0010】上記問題点を解決するためにSOGの一部
をエッチングしてスルーホール側壁にSOGが露出しな
い用にする方法が提案されているが、工程が増加するこ
と、SOGをエッチングすることで平坦度が悪くなるこ
と、等の問題点があり必ずしも有効な方法ではない。
In order to solve the above problem, a method has been proposed in which a part of the SOG is etched so that the SOG is not exposed on the side wall of the through hole. However, the number of steps is increased, and the SOG is etched. This method is not always effective because it has problems such as poor flatness.

【0011】[0011]

【発明が解決しようとする課題】上記したように従来の
半導体装置の製造方法ではSOGに起因する水分のため
スルーホールの接続不良が発生しやすい問題点があっ
た。
As described above, the conventional method for manufacturing a semiconductor device has a problem in that poor connection of through holes is likely to occur due to moisture caused by SOG.

【0012】本発明は上記問題点を解決し、接続不良の
無いスルーホールを提供するためのものである。
An object of the present invention is to solve the above-mentioned problems and to provide a through-hole free from poor connection.

【0013】[0013]

【課題を解決するための手段】本発明では、上記課題を
解決し、接続不良の無いスルーホールを提供するためス
ピンオングラスを塗布した後、高い温度でSi−OHの
脱水縮合反応を起こしSOGを焼き締める工程と、引き
続く低い温度でSi−OHの脱水縮合反応を起こさずに
発生した水分を除去する工程と、その上に、SOGから
SiーOHの脱水縮合反応で水分が発生しないよう、低
温かつ堆積までの予備加熱を短時間で絶縁膜を堆積する
工程とからなる。
According to the present invention, to solve the above-mentioned problems, a spin-on glass is applied to provide a through-hole free from poor connection, and then a dehydration-condensation reaction of Si-OH is caused at a high temperature to produce SOG. A step of baking and a step of removing water generated without causing a dehydration / condensation reaction of Si-OH at a subsequent low temperature. And a step of preliminarily heating up the deposition to deposit the insulating film in a short time.

【0014】[0014]

【作用】図3はSOGを基板上に150nmの厚さで塗
布した後窒素雰囲気中で450℃30分の熱処理を施し
た試料を真空中で昇温したときの水分放出量を四重極分
析計で測定したものである。横軸が温度で、縦軸が水分
放出量である。スペクトルは2つのピークからなり25
0℃にピークをもつものがSOGに吸着した水分が脱離
したもので、400℃にピークを持つものがSiーOH
の脱水縮合反応で発生した水分である。250℃のピー
クはいったん温度を室温まで戻し再び昇温すると消滅す
るが、400℃にピークを持つものは消滅しない。
FIG. 3 shows a quadrupole analysis of the amount of water released when a sample obtained by applying SOG to a substrate to a thickness of 150 nm and then performing a heat treatment at 450 ° C. for 30 minutes in a nitrogen atmosphere is heated in vacuum. It was measured with a meter. The horizontal axis is temperature and the vertical axis is water release. The spectrum consists of two peaks, 25
Those having a peak at 0 ° C. are those from which moisture adsorbed on SOG has been desorbed, and those having a peak at 400 ° C. are Si-OH
Is the water generated by the dehydration condensation reaction of The peak at 250 ° C. disappears when the temperature is returned to room temperature once and the temperature is raised again, but those having a peak at 400 ° C. do not disappear.

【0015】接続不良の無いスルーホールを提供するた
めにはそれぞれの熱処理工程においてSOG中もしくは
絶縁膜中に残存する水分を徹底的に排除する必要があ
る。SOGに加える熱処理においてSiーOHの脱水縮
合反応で水分が発生する温度領域と、SOG中に取り込
まれた水分のみが脱離していく温度領域の2種類がある
ので、SOG塗布後の熱処理の温度範囲を適当に選ぶこ
とで、SOGもしくは絶縁膜中に残存する水分を最小に
することができる。
In order to provide a through hole free from poor connection, it is necessary to thoroughly remove moisture remaining in the SOG or the insulating film in each heat treatment step. In the heat treatment applied to SOG, there are two types of temperature regions, namely, a temperature region in which moisture is generated by the dehydration condensation reaction of Si-OH and a temperature region in which only moisture taken in SOG is desorbed. By appropriately selecting the range, moisture remaining in the SOG or the insulating film can be minimized.

【0016】[0016]

【実施例】本発明を用いた半導体装置の製造方法を図1
を用いて説明する。
1 shows a method of manufacturing a semiconductor device according to the present invention.
This will be described with reference to FIG.

【0017】シリコン基板1.にトランジスタ等の素子
を作りこんだ後、絶縁膜2.を介して800nmの膜厚
を有する第1のアルミニウム配線3.を形成する、その
上に公知のプラズマCVD法を用い390℃の堆積温度
で第1のプラズマ酸化膜4.を500nmの厚さで堆積
する。
Silicon substrate 1. After forming an element such as a transistor on the insulating film, 2. a first aluminum wiring having a thickness of 800 nm through 3. A first plasma oxide film is formed thereon at a deposition temperature of 390 ° C. using a known plasma CVD method. Is deposited to a thickness of 500 nm.

【0018】次にスピンオングラス5.を平坦部で20
0nm厚に回転塗布し、凹部を埋め段差を緩和する、次
に450℃窒素雰囲気中で30分間焼き締める、この焼
き締めによりSOG5.中のSiーOHの脱水縮合反応
により水が生成し、SOG5.にSiーOの結合が形成
される。ただし450℃の熱処理では脱水縮合反応は完
結せずSi−OHも膜中に同時に存在する。この焼き締
め工程で発生した水の大部分は外部に放出されるが、一
部は第1のプラズマ酸化膜4.の中に取り込まれ、又一
部はSOG5.自身に取り込まれている。引続き0.6
Torrの減圧下において窒素ガス500sccmを流
しながら250℃120分の熱処理を行う。この熱処理
でSOG5.またはプラズマ酸化膜中に残存する水分の
大部分が除去される。
Next, spin-on-glass 5. 20 in flat area
Spin coating to a thickness of 0 nm to fill the recesses and reduce the level difference, then bake in a nitrogen atmosphere at 450 ° C. for 30 minutes. Water is generated by the dehydration condensation reaction of Si-OH in the SOG5. To form a Si—O bond. However, the heat treatment at 450 ° C. does not complete the dehydration / condensation reaction, and Si—OH also exists in the film at the same time. Most of the water generated in this baking step is released to the outside, but part of the first plasma oxide film 4. And some of them are SOG5. It has been captured by itself. Continue 0.6
Heat treatment is performed at 250 ° C. for 120 minutes while flowing nitrogen gas at 500 sccm under a reduced pressure of Torr. In this heat treatment, SOG5. Alternatively, most of the moisture remaining in the plasma oxide film is removed.

【0019】250℃ではSiーOHの脱水縮合反応は
ほとんど進まないので新たに水分が生成し、SOG5.
中もしくはプラズマ酸化膜4.中に取り込まれることは
ない。この段階を図1(a)に示す。
At 250 ° C., the dehydration condensation reaction of Si—OH hardly proceeds, so that water is newly generated, and SOG5.
3. Medium or plasma oxide film It is not taken in. This stage is shown in FIG.

【0020】次に、250℃の堆積温度で第2のプラズ
マ酸化膜6.を500nm堆積したものが図1(b)で
ある。プラズマ酸化膜6.堆積までの予備加熱を30秒
とすることでSOG5.中のSiーOHの脱水縮合反応
により再び水が生成することもない。
Next, at a deposition temperature of 250 ° C., a second plasma oxide film 6. Is deposited to a thickness of 500 nm, as shown in FIG. 5. Plasma oxide film By setting the preheating up to the deposition to 30 seconds, SOG5. Water is not generated again by the dehydration-condensation reaction of the Si—OH therein.

【0021】次に図1(c)で第1のアルミニウム配線
に到達するスルーホール7.を開孔したのち、引続き
0.6Torrの減圧下において窒素ガス500scc
mを流しながら250℃120分の熱処理を行う。この
熱処理でSOG5.またはプラズマ酸化膜4.6.中に
残存するまたは途中工程で吸着した水分及の大部分が除
去される。しかも250℃ではSiーOHの脱水縮合反
応はほとんど進まないので新たに水分が生成し、SOG
5.中もしくはプラズマ酸化膜4.6.中に取り込まれ
ることはない。
Next, in FIG. 1 (c), a through hole reaching the first aluminum wiring7. And then nitrogen gas 500 scc under a reduced pressure of 0.6 Torr.
Heat treatment is performed at 250 ° C. for 120 minutes while flowing m. In this heat treatment, SOG5. Or, a plasma oxide film 4.6. Most of the water remaining in or adsorbed during the intermediate process is removed. Moreover, at 250 ° C., the dehydration condensation reaction of Si—OH hardly proceeds, so that water is newly generated, and SOG
5. Medium or plasma oxide film 4.6. It is not taken in.

【0022】図1(d)でスパッタリング装置中により
アルミニウムを蒸着した後、公知のフォトエッチング技
術により第2のアルミニウム配線8.を形成するのであ
る。前述の各工程においてSOG5.中またはプラズマ
酸化膜4.6.中に取り込まれた水分を充分除去してい
るので、第2のアルミニウム配線8.を蒸着する際の温
度上昇によりスルーホール7.側壁から水分が吹き出し
スルーホール側壁7.にアルミニウムが付かない等のス
ルーホール7.の接続不良を引き起こす事が無い。
After aluminum is deposited in a sputtering apparatus in FIG. 1D, a second aluminum wiring is formed by a known photo-etching technique. Is formed. In each of the above steps, SOG5. Medium or plasma oxide film 4.6. 7. Since the moisture taken in is sufficiently removed, the second aluminum wiring 6. Through-hole due to temperature rise during vapor deposition. 6. Water is blown out from the side wall, and the side wall of the through hole. 6. Through-holes such as aluminum not attached No connection failure is caused.

【0023】この様にして得られた多層配線構造では、
スルーホールの口径が1μm程度の微細なものでも歩
留、信頼性に優れた物となる。
In the multilayer wiring structure thus obtained,
Even a fine through-hole having a diameter of about 1 μm is excellent in yield and reliability.

【0024】なお上記実施例では、シラノールを主成分
とするSOGの場合について述べたが、シラノールの一
部をメチル基で置換したSOG等についても応用できる
ことは言うまでもない。また上記実施例では2層金属配
線について述べたが、3層以上の多層配線に適用しても
同様の効果が得られる。
In the above embodiment, the case of SOG containing silanol as a main component has been described. However, it is needless to say that the present invention can be applied to SOG in which a part of silanol is substituted by a methyl group. In the above embodiment, a two-layer metal wiring is described, but the same effect can be obtained by applying the present invention to a multilayer wiring of three or more layers.

【0025】[0025]

【発明の効果】本発明によれば、第2のアルミニウム配
線を蒸着する際の温度上昇によりスルーホール側壁から
水分が吹き出しスルーホール側壁にアルミニウムが付か
ない等のスルーホールの接続不良を引き起こす事が無
い。また この様にして得られた多層配線構造では、ス
ルーホールの口径が1μm程度の微細なものでも歩留、
信頼性に優れた物となる。
According to the present invention, due to a rise in temperature during the deposition of the second aluminum wiring, moisture is blown out from the side wall of the through hole, which may cause poor connection of the through hole such that aluminum does not adhere to the side wall of the through hole. There is no. Further, in the multilayer wiring structure obtained in this way, even if the through-hole diameter is as small as about 1 μm, the yield can be improved.
It will be highly reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の工程順及び従来例の工程順
を示す断面図
FIG. 1 is a cross-sectional view showing a process sequence of one embodiment of the present invention and a process sequence of a conventional example.

【図2】従来例の課題を説明する断面図FIG. 2 is a cross-sectional view illustrating a problem of a conventional example.

【図3】SOGからの水分放出量を説明する図FIG. 3 is a diagram for explaining the amount of water release from SOG.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 絶縁膜 3 第1のアルミニウム配線 4 第1のプラズマ酸化膜 5 SOG 6 第2のプラズマ酸化膜 7 スルーホール 8 第2のアルミニウム配線 Reference Signs List 1 silicon substrate 2 insulating film 3 first aluminum wiring 4 first plasma oxide film 5 SOG 6 second plasma oxide film 7 through hole 8 second aluminum wiring

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に形成された第1の金属配線
上に、第1の絶縁膜を形成する工程と、前記第1の絶縁
膜上にスピンオングラスを塗布する工程と、前記スピン
オングラス中のSi−OHが脱水縮合反応を起こす温度
で焼き締める第1の熱処理工程と、引続きSi−OHの
脱水縮合反応を起こさない、前記焼き締め温度より低い
温度の第2の熱処理工程と、第2の絶縁膜を形成する工
程と、第1の金属配線に到達する接続孔を形成する工程
と、引続きSi−OHの脱水縮合反応を起こさない温度
範囲の第3の熱処理工程と、第2の金属配線を蒸着、パ
ターニング形成する工程を含むことを特徴とする半導体
装置の製造方法。
A step of forming a first insulating film on a first metal wiring formed on a semiconductor substrate; a step of applying a spin-on-glass on the first insulating film; A first heat treatment step of baking at a temperature at which Si-OH therein causes a dehydration-condensation reaction, a second heat treatment step at a temperature lower than the baking temperature, which does not cause the dehydration-condensation reaction of Si-OH. Forming a second insulating film, forming a connection hole reaching the first metal wiring, continuously performing a third heat treatment in a temperature range that does not cause a dehydration-condensation reaction of Si—OH, and a second heat treatment step. A method for manufacturing a semiconductor device, comprising a step of depositing and patterning a metal wiring.
【請求項2】スピンオングラスを焼き締めた後基板をS
i−OHの脱水縮合反応が起こらない温度範囲及び予備
加熱時間で絶縁膜を堆積することを特徴とする半導体装
置の製造方法。
2. After baking the spin-on glass, the substrate is
A method for manufacturing a semiconductor device, comprising: depositing an insulating film in a temperature range in which a dehydration condensation reaction of i-OH does not occur and a preheating time.
JP20670291A 1991-08-19 1991-08-19 Method for manufacturing semiconductor device Expired - Fee Related JP2928409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20670291A JP2928409B2 (en) 1991-08-19 1991-08-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20670291A JP2928409B2 (en) 1991-08-19 1991-08-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0547759A JPH0547759A (en) 1993-02-26
JP2928409B2 true JP2928409B2 (en) 1999-08-03

Family

ID=16527706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20670291A Expired - Fee Related JP2928409B2 (en) 1991-08-19 1991-08-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2928409B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226021B2 (en) * 1997-09-02 2001-11-05 日本電気株式会社 Method for manufacturing semiconductor device
JP3329290B2 (en) * 1998-11-27 2002-09-30 日本電気株式会社 Method for manufacturing semiconductor device
JP4525534B2 (en) * 2005-09-02 2010-08-18 ソニー株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH0547759A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US5747381A (en) Technique for the removal of residual spin-on-glass (SOG) after full SOG etchback
JP2518435B2 (en) Multilayer wiring formation method
JPH0669354A (en) Manufacture of semiconductor device
JPH05235184A (en) Manufacturing method of multilayer wiring structural body of semiconducot rdevice
JPH06208993A (en) Manufacture of semiconductor device
US5393709A (en) Method of making stress released VLSI structure by the formation of porous intermetal layer
JPH10242139A (en) Manufacture of semiconductor device
JPH10173052A (en) Semiconductor device and its manufacture
JPH07335748A (en) Manufacture of semiconductor element
JP2928409B2 (en) Method for manufacturing semiconductor device
JP2808401B2 (en) Method for manufacturing semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JPH10214892A (en) Manufacture of semiconductor device
JPS6046036A (en) Manufacture of semiconductor device
JPH0629400A (en) Semiconductor device and manufacture thereof
JPH0653134A (en) Manufacture of semiconductor device
JPH0536839A (en) Manufacture of semiconductor device
JPH08264535A (en) Fabrication of semiconductor device
JPH06349951A (en) Manufacture of semiconductor device
JP3624823B2 (en) Semiconductor device and manufacturing method thereof
JPH09167761A (en) Deposition of sog film
JP2001189310A (en) Method of manufacturing semiconductor device
JPH11251312A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees