JPH0147739B2 - - Google Patents
Info
- Publication number
- JPH0147739B2 JPH0147739B2 JP56029347A JP2934781A JPH0147739B2 JP H0147739 B2 JPH0147739 B2 JP H0147739B2 JP 56029347 A JP56029347 A JP 56029347A JP 2934781 A JP2934781 A JP 2934781A JP H0147739 B2 JPH0147739 B2 JP H0147739B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen concentration
- concentration detection
- substrate
- detection element
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000001301 oxygen Substances 0.000 claims description 80
- 229910052760 oxygen Inorganic materials 0.000 claims description 80
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 72
- 238000001514 detection method Methods 0.000 claims description 60
- 239000000758 substrate Substances 0.000 claims description 53
- 239000007784 solid electrolyte Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 11
- 230000003746 surface roughness Effects 0.000 description 9
- 239000000446 fuel Substances 0.000 description 8
- -1 oxygen ion Chemical class 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 239000011241 protective layer Substances 0.000 description 7
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000011029 spinel Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- DJOYTAUERRJRAT-UHFFFAOYSA-N 2-(n-methyl-4-nitroanilino)acetonitrile Chemical compound N#CCN(C)C1=CC=C([N+]([O-])=O)C=C1 DJOYTAUERRJRAT-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4071—Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
【発明の詳細な説明】
本発明は、被測定雰囲気中の酸素濃度を検出す
るのに使用される膜構造型の酸素濃度検出素子の
製造方法に関する。
るのに使用される膜構造型の酸素濃度検出素子の
製造方法に関する。
従来の膜構造型の酸素濃度検出素子としては、
例えば第1図および第2図に示す構造のものがあ
る。(例えば特開昭55−154451号公報)第1図は
上記酸素濃度検出素子の模式的断面図であり、第
2図はその製造工程説明図である。図に従つて説
明すると、アルミナグリーンシートなどを適当な
大きさに(例えば10×5×0.7tmm)に切断した二
枚の基板素材1a,1bの間に発熱体5を図示の
形状で埋設すると共に、前記発熱体5の両端およ
びそれらの中間部分に合計3本の導電用リード線
7a,7b,7cの先端部分をはさみ込んで形成
した第2図aに示す基板1の上に、第2図bに示
す形状で白金等の導電性ペーストを用いて基準電
極2を形成し、次に第2図cに示す形状で固体電
解質ペーストを用いて酸素イオン伝導性固体電解
質3を形成し、さらに第2図dに示す形状で前記
導電性ペーストを用いて測定電極4を形成し、各
スルーホール8a,8b,8c内に導電性ペース
トを落し込んで発熱体5および両電極2,4とリ
ード線7a,7b,7cとの間の電気的な接続を
確保し、得られた未焼成の積層体を同時焼成する
ことにより酸素濃度検出素子を製造していた。ま
た、他の製造工程では上記基準電極2、固体電解
質3および測定電極4を積層する毎に焼成するよ
うにしていた。そして、最後に第2図eに示す如
く保護層6を被覆していた。
例えば第1図および第2図に示す構造のものがあ
る。(例えば特開昭55−154451号公報)第1図は
上記酸素濃度検出素子の模式的断面図であり、第
2図はその製造工程説明図である。図に従つて説
明すると、アルミナグリーンシートなどを適当な
大きさに(例えば10×5×0.7tmm)に切断した二
枚の基板素材1a,1bの間に発熱体5を図示の
形状で埋設すると共に、前記発熱体5の両端およ
びそれらの中間部分に合計3本の導電用リード線
7a,7b,7cの先端部分をはさみ込んで形成
した第2図aに示す基板1の上に、第2図bに示
す形状で白金等の導電性ペーストを用いて基準電
極2を形成し、次に第2図cに示す形状で固体電
解質ペーストを用いて酸素イオン伝導性固体電解
質3を形成し、さらに第2図dに示す形状で前記
導電性ペーストを用いて測定電極4を形成し、各
スルーホール8a,8b,8c内に導電性ペース
トを落し込んで発熱体5および両電極2,4とリ
ード線7a,7b,7cとの間の電気的な接続を
確保し、得られた未焼成の積層体を同時焼成する
ことにより酸素濃度検出素子を製造していた。ま
た、他の製造工程では上記基準電極2、固体電解
質3および測定電極4を積層する毎に焼成するよ
うにしていた。そして、最後に第2図eに示す如
く保護層6を被覆していた。
しかしながら、このような従来の酸素濃度検出
素子の製造方法においては、基板1に発熱体5と
リード線7a,7b,7cとを取付ける必要があ
るため、あらかじめ取付けたリード線がじやまを
することとなつて、大きな基板上に基準電極2、
固体電解質3、測定電極4からなる酸素濃度検出
部を多数同時に積層することができなかつた。し
たがつて、各個に基板を作り、その上に酸素濃度
検出部を構成する各層を積層するので、生産性が
極めて悪いという問題を有していた。また、酸素
濃度検出素子の各個毎に基板を作るので、その表
面の粗らさにもばらつきを生じ、このばらつきが
酸素濃度検出部に影響を及ぼしやすいという問題
も有していた。さらに、基板1に発熱体5を内蔵
させかつ複数のリード線7a,7b,7cの先端
部分を埋設するようにしているため、二枚の基板
素材1a,1bを加圧積層した際にこれらに変形
を生じ、基板1の表面が平滑面として形成され難
く、しかもその変形は個々の基板によつて異なる
ため、とくに固体電解質3の膜厚を1μm以下と
薄くする構造の酸素濃度検出部を形成する場合に
は、基板1の粗表面に原因して基準電極2と測定
電極4との間で電気抵抗の減少ないしは短絡を生
ずるおそれがあるという問題を有していた。
素子の製造方法においては、基板1に発熱体5と
リード線7a,7b,7cとを取付ける必要があ
るため、あらかじめ取付けたリード線がじやまを
することとなつて、大きな基板上に基準電極2、
固体電解質3、測定電極4からなる酸素濃度検出
部を多数同時に積層することができなかつた。し
たがつて、各個に基板を作り、その上に酸素濃度
検出部を構成する各層を積層するので、生産性が
極めて悪いという問題を有していた。また、酸素
濃度検出素子の各個毎に基板を作るので、その表
面の粗らさにもばらつきを生じ、このばらつきが
酸素濃度検出部に影響を及ぼしやすいという問題
も有していた。さらに、基板1に発熱体5を内蔵
させかつ複数のリード線7a,7b,7cの先端
部分を埋設するようにしているため、二枚の基板
素材1a,1bを加圧積層した際にこれらに変形
を生じ、基板1の表面が平滑面として形成され難
く、しかもその変形は個々の基板によつて異なる
ため、とくに固体電解質3の膜厚を1μm以下と
薄くする構造の酸素濃度検出部を形成する場合に
は、基板1の粗表面に原因して基準電極2と測定
電極4との間で電気抵抗の減少ないしは短絡を生
ずるおそれがあるという問題を有していた。
そこで、上記した固体電解質3の膜厚を薄くす
る酸素濃度検出部を備える酸素濃度検出素子の場
合には、第2図aの基板1上に比較的平滑な中間
層を形成するか、あるいは第2図aに示す基板1
を焼成した後にダイヤモンド研磨等により研磨し
て平滑な表面を形成し、その上に第2図bに示す
形状で基準電極2を形成することも考えられてい
る。しかしながら、いずれにしても生産性が著し
く低下するなどの問題を有していた。
る酸素濃度検出部を備える酸素濃度検出素子の場
合には、第2図aの基板1上に比較的平滑な中間
層を形成するか、あるいは第2図aに示す基板1
を焼成した後にダイヤモンド研磨等により研磨し
て平滑な表面を形成し、その上に第2図bに示す
形状で基準電極2を形成することも考えられてい
る。しかしながら、いずれにしても生産性が著し
く低下するなどの問題を有していた。
本発明は、上述した従来の問題点に着目してな
されたもので、生産性を向上させると共に品質の
ばらつきのない良好な特性を有する酸素濃度検出
素子を製造する方法を提供することを目的として
いる。
されたもので、生産性を向上させると共に品質の
ばらつきのない良好な特性を有する酸素濃度検出
素子を製造する方法を提供することを目的として
いる。
本発明は、被測定雰囲気中の酸素濃度を検出す
るのに使用される酸素濃度検出素子を製造するに
際し、一方において、構造体としての強度を保持
する平板状でかつ発熱体を埋込んだ構造基板を製
造すると共に、他方において、大きな積層基板上
に基準電極と酸素イオン伝導性固体電解質と測定
電極とを備える酸素濃度検出部を複数製造し、次
いで各個の酸素濃度検出部を切り出したのち、前
記構造基板上に前記切り出した酸素濃度検出部を
積層するようにしたことを特徴とする。
るのに使用される酸素濃度検出素子を製造するに
際し、一方において、構造体としての強度を保持
する平板状でかつ発熱体を埋込んだ構造基板を製
造すると共に、他方において、大きな積層基板上
に基準電極と酸素イオン伝導性固体電解質と測定
電極とを備える酸素濃度検出部を複数製造し、次
いで各個の酸素濃度検出部を切り出したのち、前
記構造基板上に前記切り出した酸素濃度検出部を
積層するようにしたことを特徴とする。
以下、本発明の実施例を図面に基いて詳細に説
明するが、ここでは、特に基板の表面粗さの影響
を受けやすい薄膜状の電極および酸素イオン伝導
性固体電解質を積層する酸素濃度検出部を備えた
構造の酸素濃度検出素子を例にとつて説明する。
明するが、ここでは、特に基板の表面粗さの影響
を受けやすい薄膜状の電極および酸素イオン伝導
性固体電解質を積層する酸素濃度検出部を備えた
構造の酸素濃度検出素子を例にとつて説明する。
第3図は本発明の一実施例において製造した酸
素濃度検出素子10の模型的な断面図であつて、
構造体としての強度を保持しかつ内部に発熱体1
5を埋設した構造基体11と、積層基板17上に
基準電極12と酸素イオン伝導性固体電解質13
と測定電極14とを備えかつ表面に保護層16を
被覆した酸素濃度検出部23とをそれぞれ準備
し、構造基体11上に耐熱性の接着剤18を用い
て酸素濃度検出部23を積層固着した構造をなし
ている。
素濃度検出素子10の模型的な断面図であつて、
構造体としての強度を保持しかつ内部に発熱体1
5を埋設した構造基体11と、積層基板17上に
基準電極12と酸素イオン伝導性固体電解質13
と測定電極14とを備えかつ表面に保護層16を
被覆した酸素濃度検出部23とをそれぞれ準備
し、構造基体11上に耐熱性の接着剤18を用い
て酸素濃度検出部23を積層固着した構造をなし
ている。
第4図は第3図に示す酸素濃度検出素子10の
製造工程の一例を示すもので、ここでは、積層基
板17上に複数の酸素濃度検出部23を並べて形
成したのち各酸素濃度検出部23毎に積層基板1
7を分断するいわゆる複数個取りの製造工程の例
を示している。
製造工程の一例を示すもので、ここでは、積層基
板17上に複数の酸素濃度検出部23を並べて形
成したのち各酸素濃度検出部23毎に積層基板1
7を分断するいわゆる複数個取りの製造工程の例
を示している。
まず、構造体としての強度を保持する構造基板
11を製造するに際しては、第4図gに示すよう
に、適当な大きさ(例えば7.5×7.5×0.7tmm)に
切断した二枚の基板素材11a,11bを用意
し、一方の基板素材11a上に図に示す形状の発
熱体15を印刷積層し、発熱体15の両端に2本
の白金リード線(直径0.2mm、長さ7mm)21,
22を並べ、この上に他方の基板素材11bを加
圧積層して第4図hに示す未焼成基板を作製し、
これを1500℃の大気雰囲気中で2時間の条件で焼
成して構造体としての強度を保持する平板状の構
造基板11を得る。ここで、構造基板11の素材
としてはアルミナグリーンシートを適当な大きさ
に切出したものを使用するのが一般的であるが、
そのほか、フオルステライト、ステアタイト、ム
ライト、スピネル等の耐熱性がありかつ電気絶縁
性を有する材料を使用することができる。また、
構造基板11内に発熱体15を内蔵させるのは、
酸素濃度検出素子10の作動温度を一定に制御し
てその特性を安定化させたり、低温の被測定雰囲
気に対しても酸素濃度検出素子として良好に機能
させるためである。この発熱体15を内蔵させる
に際しては、一方の基板素材11a上に白金粉末
とラツカーとを混練した白金ペーストを用いて印
刷により積層するのが容易であるが、そのほか、
白金線等の導電性線状材を埋設することもでき、
必らずしも白金に限定されない。また、導電用の
リード線21,22として白金を用いるのが耐食
性の点で良好であるが、その他の導電性を有する
材料も使用できる。
11を製造するに際しては、第4図gに示すよう
に、適当な大きさ(例えば7.5×7.5×0.7tmm)に
切断した二枚の基板素材11a,11bを用意
し、一方の基板素材11a上に図に示す形状の発
熱体15を印刷積層し、発熱体15の両端に2本
の白金リード線(直径0.2mm、長さ7mm)21,
22を並べ、この上に他方の基板素材11bを加
圧積層して第4図hに示す未焼成基板を作製し、
これを1500℃の大気雰囲気中で2時間の条件で焼
成して構造体としての強度を保持する平板状の構
造基板11を得る。ここで、構造基板11の素材
としてはアルミナグリーンシートを適当な大きさ
に切出したものを使用するのが一般的であるが、
そのほか、フオルステライト、ステアタイト、ム
ライト、スピネル等の耐熱性がありかつ電気絶縁
性を有する材料を使用することができる。また、
構造基板11内に発熱体15を内蔵させるのは、
酸素濃度検出素子10の作動温度を一定に制御し
てその特性を安定化させたり、低温の被測定雰囲
気に対しても酸素濃度検出素子として良好に機能
させるためである。この発熱体15を内蔵させる
に際しては、一方の基板素材11a上に白金粉末
とラツカーとを混練した白金ペーストを用いて印
刷により積層するのが容易であるが、そのほか、
白金線等の導電性線状材を埋設することもでき、
必らずしも白金に限定されない。また、導電用の
リード線21,22として白金を用いるのが耐食
性の点で良好であるが、その他の導電性を有する
材料も使用できる。
他方、酸素濃度検出部23を製造するに際し、
積層基板17として例えば単結晶Siウエハを用い
る場合には、この表面を酸化してSiO2とするこ
とによつて電気絶縁性を確保する必要がある。こ
のほか、積層基板17として単結晶サフアイアウ
エハやアルミナグレーズド基板などを用いること
もできる。そこで、本実施例においては20×20×
0.8tmmのアルミナグレーズド基板を用い、まず、
この積層基板17をエチルアルコールやアセトン
等の有機溶剤中で超音波洗浄し、その後十分に乾
操する。なお、このときの積層基板17の表面粗
さは、とくに本実施例における薄膜化した酸素濃
度検出部23を形成する場合に、その表面粗さ
Rnax≦0.15μmのものを使用することが望ましく、
この表面粗さを満足するものであれば上記のほか
硬質のガラス類なども使用できる。次に、前記積
層基板17上に、第4図aに示すように、真空蒸
着やスパツタリング等のPVD法によつて複数
(図示例の場合は9個)の基準電極12を形成す
る、なお、図のようにパターン形成に際してはこ
れに対応する形状の金属マスクを用いておこなう
のが良く、この金属マスクの形状および積層基板
17の大きさを適宜選択することによつて、一枚
の積層基板17から分断しうる酸素濃度検出部2
3の数をさらに増やすこともできる。上記基準電
極12の形成に際しては、その厚さが0.1μmとな
るようにし、その材料として白金を用いたが、必
ずしもこれに限定されない。次いで、前記各基準
電極12の上に、第4図bに示すように、それぞ
れ所定形状の金属マスクを用いてPVD法により
酸素イオン伝導性固体電解質13を0.5μmの厚さ
で形成する。このとき、固体電解質13として
Y2O3で安定化したZrO2を使用している。ここ
で、薄膜形成後の固体電解質13を分析した結
果、5モル%Y2O3−95モル%ZrO2であつた。次
に、前記各固体電解質13の上に、第4図cに示
すように、それぞれ所定形状の金属マスクを用い
てPVD法により測定電極14を0.1μmの厚さで
形成した。このとき、測定電極14として白金を
用いた。なお、両電極12,14の材料として白
金を用いるのが一般的であるが、触媒作用があり
かつ電子伝導性を有する材料であれば白金以外の
ものも使用でき、例えば白金を含む合金、白金族
元素の単位あるいは合金なども使用できる。ま
た、固体電解質13としては、上記したY2O3−
ZrO2のほか、CaOやMgO等で安定化したZrO2等
の従来既知のものを使用できる。さらに、基準電
極12、固体電解質13、測定電極14をいずれ
もPVD法によつて形成しているが、その他の方
法によつて形成することももちろん可能であり、
たとえば、めつき法やスプレー法などによつて形
成することもできる。
積層基板17として例えば単結晶Siウエハを用い
る場合には、この表面を酸化してSiO2とするこ
とによつて電気絶縁性を確保する必要がある。こ
のほか、積層基板17として単結晶サフアイアウ
エハやアルミナグレーズド基板などを用いること
もできる。そこで、本実施例においては20×20×
0.8tmmのアルミナグレーズド基板を用い、まず、
この積層基板17をエチルアルコールやアセトン
等の有機溶剤中で超音波洗浄し、その後十分に乾
操する。なお、このときの積層基板17の表面粗
さは、とくに本実施例における薄膜化した酸素濃
度検出部23を形成する場合に、その表面粗さ
Rnax≦0.15μmのものを使用することが望ましく、
この表面粗さを満足するものであれば上記のほか
硬質のガラス類なども使用できる。次に、前記積
層基板17上に、第4図aに示すように、真空蒸
着やスパツタリング等のPVD法によつて複数
(図示例の場合は9個)の基準電極12を形成す
る、なお、図のようにパターン形成に際してはこ
れに対応する形状の金属マスクを用いておこなう
のが良く、この金属マスクの形状および積層基板
17の大きさを適宜選択することによつて、一枚
の積層基板17から分断しうる酸素濃度検出部2
3の数をさらに増やすこともできる。上記基準電
極12の形成に際しては、その厚さが0.1μmとな
るようにし、その材料として白金を用いたが、必
ずしもこれに限定されない。次いで、前記各基準
電極12の上に、第4図bに示すように、それぞ
れ所定形状の金属マスクを用いてPVD法により
酸素イオン伝導性固体電解質13を0.5μmの厚さ
で形成する。このとき、固体電解質13として
Y2O3で安定化したZrO2を使用している。ここ
で、薄膜形成後の固体電解質13を分析した結
果、5モル%Y2O3−95モル%ZrO2であつた。次
に、前記各固体電解質13の上に、第4図cに示
すように、それぞれ所定形状の金属マスクを用い
てPVD法により測定電極14を0.1μmの厚さで
形成した。このとき、測定電極14として白金を
用いた。なお、両電極12,14の材料として白
金を用いるのが一般的であるが、触媒作用があり
かつ電子伝導性を有する材料であれば白金以外の
ものも使用でき、例えば白金を含む合金、白金族
元素の単位あるいは合金なども使用できる。ま
た、固体電解質13としては、上記したY2O3−
ZrO2のほか、CaOやMgO等で安定化したZrO2等
の従来既知のものを使用できる。さらに、基準電
極12、固体電解質13、測定電極14をいずれ
もPVD法によつて形成しているが、その他の方
法によつて形成することももちろん可能であり、
たとえば、めつき法やスプレー法などによつて形
成することもできる。
本実施例においては、基準電極12、固体電解
質13および測定電極14を薄膜化した酸素濃度
検出素子を例にとつているが、このように各層を
薄膜化するのは、この種の膜構造型酸素濃度検
出素子を例えば自動車用内燃機関の燃焼制御用の
排ガス酸素センサとして使用し、被測定ガスの雰
囲気変化に対して理論空燃比以外の空燃比におい
て起電力が変化しなくなるような臨界電流値より
も小さい値の直流電流を基準電極12と測定電極
14の間に流すことによつて生ずる傾斜特性を利
用して理論空燃比以外の空燃比を検出しようとす
る場合において、固体電解質13の微細孔を通し
ておこなわれるガス交換を迅速なものにして酸素
濃度検出素子の雰囲気変化に対する応答速度を高
めるようにするため、各層を薄膜化することに
よつて酸素濃度検出素子の作動温度を低くするた
め、各層を薄膜化することによつて酸素濃度検
出素子を小型化しかつ軽量化し、特性の安定化と
原価の低減をはかるようにするため、などの理由
による。
質13および測定電極14を薄膜化した酸素濃度
検出素子を例にとつているが、このように各層を
薄膜化するのは、この種の膜構造型酸素濃度検
出素子を例えば自動車用内燃機関の燃焼制御用の
排ガス酸素センサとして使用し、被測定ガスの雰
囲気変化に対して理論空燃比以外の空燃比におい
て起電力が変化しなくなるような臨界電流値より
も小さい値の直流電流を基準電極12と測定電極
14の間に流すことによつて生ずる傾斜特性を利
用して理論空燃比以外の空燃比を検出しようとす
る場合において、固体電解質13の微細孔を通し
ておこなわれるガス交換を迅速なものにして酸素
濃度検出素子の雰囲気変化に対する応答速度を高
めるようにするため、各層を薄膜化することに
よつて酸素濃度検出素子の作動温度を低くするた
め、各層を薄膜化することによつて酸素濃度検
出素子を小型化しかつ軽量化し、特性の安定化と
原価の低減をはかるようにするため、などの理由
による。
次に、第4図cに示す測定電極14を中心にし
て、第4図dに示す如く所定形状の金属マスクを
使用してPVD法により保護層16を形成し、積
層基板17上に9個の酸素濃度検出部23を形成
する。このとき、保護層16にはMgO−Al2O3ス
ピネルを用い、厚さが0.5μmとなるようにした。
なお、保護層16としては、上記スピネルのほ
か、カルシウムジルコネートやムライトなどが適
している。また、保護層16の形成に際しては、
上記PVD法ほか、プラズマ溶射、ペースト塗布、
デイツピング等の方法を採用することができる。
て、第4図dに示す如く所定形状の金属マスクを
使用してPVD法により保護層16を形成し、積
層基板17上に9個の酸素濃度検出部23を形成
する。このとき、保護層16にはMgO−Al2O3ス
ピネルを用い、厚さが0.5μmとなるようにした。
なお、保護層16としては、上記スピネルのほ
か、カルシウムジルコネートやムライトなどが適
している。また、保護層16の形成に際しては、
上記PVD法ほか、プラズマ溶射、ペースト塗布、
デイツピング等の方法を採用することができる。
このように積層基板17上に複数の酸素濃度検
出部23を形成したのち、各酸素濃度検出部23
毎に積層基板17をダイヤモンドカツタ等により
分割切断して第4図eに示す如く個々の酸素濃度
検出部23を形成する。そして、同じく第4図e
に示すように、基準電極12および測定電極14
の端子部にそれぞれ導電用リード線19,20の
先端部分を載置し、導電性ペーストで仮固定した
のち、第4図fに示すように、耐熱性のある絶縁
接着剤24で上記リード線19,20部分を覆う
ことによつてリード線19,20と積層基板17
とを固定する。
出部23を形成したのち、各酸素濃度検出部23
毎に積層基板17をダイヤモンドカツタ等により
分割切断して第4図eに示す如く個々の酸素濃度
検出部23を形成する。そして、同じく第4図e
に示すように、基準電極12および測定電極14
の端子部にそれぞれ導電用リード線19,20の
先端部分を載置し、導電性ペーストで仮固定した
のち、第4図fに示すように、耐熱性のある絶縁
接着剤24で上記リード線19,20部分を覆う
ことによつてリード線19,20と積層基板17
とを固定する。
次に、前記発熱体15を内蔵した構造基板11
上に、第4図iおよび第3図に示す如く、耐熱性
のある絶縁接着剤18を用いて前記酸素濃度検出
部23を接着して固定することにより酸素濃度検
出素子10を得る。
上に、第4図iおよび第3図に示す如く、耐熱性
のある絶縁接着剤18を用いて前記酸素濃度検出
部23を接着して固定することにより酸素濃度検
出素子10を得る。
上述した実施例において、積層基板17の表面
粗さをRnax≦0.15μmとするのが望ましいとした
のは、積層基板17上に薄膜状の基板電極12、
薄膜状の固体電解質13、薄膜状の測定電極14
を積層した場合に、これらの薄膜が積層基板17
の表面粗さの影響を受け、表面粗さが大きい場合
に基準電極12と測定電極14との間で導通が生
じて酸素濃度検出素子として機能しなくなるのを
防止するためであり、酸素濃度検出素子の歩留り
が低下するのを防ぐためである。そこで、酸素濃
度検出素子の歩留りと積層基板17の表面粗さ
Rnaxとの関係を調べたところ、第5図に示す結
果を得た。なお、第5図においては、基準電極1
2と測定電極14との間の電気抵抗が1KΩ以下
となつたものを不良として歩留りを調べた結果を
示している。第5図から明らかなように、表面粗
さRnax>0.15μmの場合に酸素濃度検出素子10
の歩留りが極めて悪くなり、ほとんどの酸素濃度
検出素子10において基準電極12と測定電極1
4との間の電気抵抗が数百Ω以下となり、酸素濃
度検出素子として機能しなくなることが確認され
た。このように、各層を薄膜化して上述した如く
理論空燃比以外の空燃比を検出するようにした酸
素濃度検出素子の場合には、積層基板17の表面
粗さRnax≦0.15μmとすることが望ましいといえ
る。
粗さをRnax≦0.15μmとするのが望ましいとした
のは、積層基板17上に薄膜状の基板電極12、
薄膜状の固体電解質13、薄膜状の測定電極14
を積層した場合に、これらの薄膜が積層基板17
の表面粗さの影響を受け、表面粗さが大きい場合
に基準電極12と測定電極14との間で導通が生
じて酸素濃度検出素子として機能しなくなるのを
防止するためであり、酸素濃度検出素子の歩留り
が低下するのを防ぐためである。そこで、酸素濃
度検出素子の歩留りと積層基板17の表面粗さ
Rnaxとの関係を調べたところ、第5図に示す結
果を得た。なお、第5図においては、基準電極1
2と測定電極14との間の電気抵抗が1KΩ以下
となつたものを不良として歩留りを調べた結果を
示している。第5図から明らかなように、表面粗
さRnax>0.15μmの場合に酸素濃度検出素子10
の歩留りが極めて悪くなり、ほとんどの酸素濃度
検出素子10において基準電極12と測定電極1
4との間の電気抵抗が数百Ω以下となり、酸素濃
度検出素子として機能しなくなることが確認され
た。このように、各層を薄膜化して上述した如く
理論空燃比以外の空燃比を検出するようにした酸
素濃度検出素子の場合には、積層基板17の表面
粗さRnax≦0.15μmとすることが望ましいといえ
る。
次に、上記実施例により製造した本発明に係る
酸素濃度検出素子と、第1図に示す従来の酸素濃
度検出素子とを多数準備し、これを自動車用内燃
機関の燃焼制御用排ガス酸素センサとして被測定
ガス中の雰囲気変化に対して理論空燃比以外の空
燃比において起電力が変化しなくなるような臨界
電流値を測定し、多数準備した素子間の特性のば
らつきとして評価した結果を第6図に示す。すな
わち、第6図の評価試験においては、本発明によ
る酸素濃度検出素子と従来の酸素濃度検出素子を
それぞれ100個ずつ準備し、これを排ガス温度600
℃、発熱体温度800℃の条件で10μA毎に電流値を
段階的に変化させて臨界電流値を測定した結果を
示すものである。第6図の結果から明らかなよう
に、従来の素子では臨界電流値のばらつきがかな
り大きくなつているのに対して、第4図に示す実
施例の如く、一枚の績層基板17上に複数の酸素
濃度検出部23を形成していわゆる多数個取りを
するようにした素子では、特性のばらつきが極め
て小さくなつている。
酸素濃度検出素子と、第1図に示す従来の酸素濃
度検出素子とを多数準備し、これを自動車用内燃
機関の燃焼制御用排ガス酸素センサとして被測定
ガス中の雰囲気変化に対して理論空燃比以外の空
燃比において起電力が変化しなくなるような臨界
電流値を測定し、多数準備した素子間の特性のば
らつきとして評価した結果を第6図に示す。すな
わち、第6図の評価試験においては、本発明によ
る酸素濃度検出素子と従来の酸素濃度検出素子を
それぞれ100個ずつ準備し、これを排ガス温度600
℃、発熱体温度800℃の条件で10μA毎に電流値を
段階的に変化させて臨界電流値を測定した結果を
示すものである。第6図の結果から明らかなよう
に、従来の素子では臨界電流値のばらつきがかな
り大きくなつているのに対して、第4図に示す実
施例の如く、一枚の績層基板17上に複数の酸素
濃度検出部23を形成していわゆる多数個取りを
するようにした素子では、特性のばらつきが極め
て小さくなつている。
このように、本発明によれば一枚の績層基板1
7上に複数の酸素濃度検出部23を並べて形成し
たのち各酸素濃度検出部23毎に績層基板17を
分断し、前記各酸素濃度検出部23を個別に各構
造基板11上に積層することによつて、酸素濃度
検出素子10の特性のばらつきを小さくすること
ができ、品質の安定した酸素濃度検出素子10を
製造することができ、加えて酸素濃度検出素子1
0の量産が可能になり、生産性をかなり向上させ
ることができるため、原価の低減を実現すること
ができる。さらに、上記実施例に示すように薄膜
形成技術により酸素濃度検出部23を形成するこ
とによつて、再現性の良い酸素濃度検出素子を製
造することができ、酸素濃度検出素子自体の小型
化ならびに軽量化を容易に実現できるというすぐ
れた効果を有している。
7上に複数の酸素濃度検出部23を並べて形成し
たのち各酸素濃度検出部23毎に績層基板17を
分断し、前記各酸素濃度検出部23を個別に各構
造基板11上に積層することによつて、酸素濃度
検出素子10の特性のばらつきを小さくすること
ができ、品質の安定した酸素濃度検出素子10を
製造することができ、加えて酸素濃度検出素子1
0の量産が可能になり、生産性をかなり向上させ
ることができるため、原価の低減を実現すること
ができる。さらに、上記実施例に示すように薄膜
形成技術により酸素濃度検出部23を形成するこ
とによつて、再現性の良い酸素濃度検出素子を製
造することができ、酸素濃度検出素子自体の小型
化ならびに軽量化を容易に実現できるというすぐ
れた効果を有している。
第1図は従来の酸素濃度検出素子の一構造例を
示す模式的断面図、第2図a〜eは第1図の酸素
濃度検出素子の製造工程を示す説明図、第3図は
本発明の一実施例において製造した酸素濃度検出
素子の模式的断面図、第4図a〜iは第3図の酸
素濃度検出素子の製造工程を示す説明図、第5図
は本発明の実施例において調べた酸素濃度検出素
子の歩留りと積層基板の表面粗さとの関係を示す
グラフ、第6図は本発明の実施例において試験し
た臨界電流値のばらつきを示すグラフである。 10……酸素濃度検出素子、11……構造基
板、12……基準電極、13……酸素イオン伝導
性固体電解質、14……測定電極、15……発熱
体、16……保護層、17……積層基板、18…
…絶縁接着剤、19,20,21,22……リー
ド線、23……酸素濃度検出部、24……絶縁接
着剤。
示す模式的断面図、第2図a〜eは第1図の酸素
濃度検出素子の製造工程を示す説明図、第3図は
本発明の一実施例において製造した酸素濃度検出
素子の模式的断面図、第4図a〜iは第3図の酸
素濃度検出素子の製造工程を示す説明図、第5図
は本発明の実施例において調べた酸素濃度検出素
子の歩留りと積層基板の表面粗さとの関係を示す
グラフ、第6図は本発明の実施例において試験し
た臨界電流値のばらつきを示すグラフである。 10……酸素濃度検出素子、11……構造基
板、12……基準電極、13……酸素イオン伝導
性固体電解質、14……測定電極、15……発熱
体、16……保護層、17……積層基板、18…
…絶縁接着剤、19,20,21,22……リー
ド線、23……酸素濃度検出部、24……絶縁接
着剤。
Claims (1)
- 1 構造体としての強度を保持すると共に発熱体
を埋込んだ平板状の構造基板を製造すると共に、
積層基板上に基準電極と酸素イオン伝導性固体電
解質と測定電極とを備える酸素濃度検出部を複数
製造し、次いで積層基板を切断して各個の酸素濃
度検出部を切り出し、前記構造基板上に前記切り
出した酸素濃度検出部を積層するようにしたこと
を特徴とする酸素濃度検出素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56029347A JPS57144454A (en) | 1981-03-03 | 1981-03-03 | Production of oxygen concentration detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56029347A JPS57144454A (en) | 1981-03-03 | 1981-03-03 | Production of oxygen concentration detecting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57144454A JPS57144454A (en) | 1982-09-07 |
JPH0147739B2 true JPH0147739B2 (ja) | 1989-10-16 |
Family
ID=12273687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56029347A Granted JPS57144454A (en) | 1981-03-03 | 1981-03-03 | Production of oxygen concentration detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57144454A (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59166854A (ja) * | 1983-03-14 | 1984-09-20 | Toyota Central Res & Dev Lab Inc | 限界電流式酸素センサ |
JPH0617891B2 (ja) * | 1984-07-06 | 1994-03-09 | 日本電装株式会社 | 酸素濃度検出素子 |
JP3326899B2 (ja) * | 1993-08-12 | 2002-09-24 | 株式会社豊田中央研究所 | 薄膜積層空燃比センサ |
JP4480738B2 (ja) * | 2007-04-27 | 2010-06-16 | 株式会社アタゴ | 濃度測定装置 |
-
1981
- 1981-03-03 JP JP56029347A patent/JPS57144454A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57144454A (en) | 1982-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7329844B2 (en) | Prismatic ceramic heater for heating gas sensor element, prismatic gas sensor element in multilayered structure including the prismatic ceramic heater, and method for manufacturing the prismatic ceramic heater and prismatic gas sensor element | |
JP4014513B2 (ja) | セラミックヒータ、積層型ガスセンサ素子及びその製造方法、並びに積層型ガスセンサ素子を備えるガスセンサ | |
JP5173042B2 (ja) | ガスセンサの製造方法 | |
US4407057A (en) | Method of producing a flat thin film type oxygen sensor | |
JPS6321862B2 (ja) | ||
EP0017359A1 (en) | Ceramic type sensor device | |
JP4034900B2 (ja) | ヒータ付き酸素センサ及びその製造方法 | |
JP2000268944A (ja) | セラミックヒータおよびその製造方法,並びにガスセンサ | |
JP2006171013A (ja) | セラミックヒータ、積層型ガスセンサ素子及び積層型ガスセンサ素子を備えるガスセンサ | |
JPS6126022B2 (ja) | ||
JPH1151899A (ja) | 酸素センサ素子 | |
JP4168035B2 (ja) | 白金抵抗体式温度センサ | |
JPH06273375A (ja) | 酸素濃度検出装置 | |
JPH0147739B2 (ja) | ||
JPS6017060B2 (ja) | 膜構造酸素センサ素子の製造方法 | |
JP2514664B2 (ja) | 酸素センサ | |
JP2001242129A (ja) | 積層型ガスセンサ素子及びその製造方法並びにそれを備えるガスセンサ | |
JP3106971B2 (ja) | 酸素センサ | |
JPH09304337A (ja) | 酸素濃度検出器 | |
EP0360159B1 (en) | Method of producing thick-film gas sensor element having improved stability | |
JP3145599B2 (ja) | 固体電解質型燃料電池 | |
JPH09218178A (ja) | ガスセンサとその製造方法 | |
JPS58198754A (ja) | ガスセンサ素子用ヒ−タ付基板の製造方法 | |
JP4698041B2 (ja) | 空燃比センサ素子 | |
JPS5842965A (ja) | 酸素センサ素子 |