JPH01309319A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01309319A
JPH01309319A JP14104288A JP14104288A JPH01309319A JP H01309319 A JPH01309319 A JP H01309319A JP 14104288 A JP14104288 A JP 14104288A JP 14104288 A JP14104288 A JP 14104288A JP H01309319 A JPH01309319 A JP H01309319A
Authority
JP
Japan
Prior art keywords
film
oxide film
semiconductor substrate
boron
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14104288A
Other languages
Japanese (ja)
Other versions
JPH0821616B2 (en
Inventor
Yoshinori Tanaka
義典 田中
Muraji Kawai
河合 邑司
Wataru Wakamiya
若宮 瓦
Natsuo Ajika
夏夫 味香
Yoshio Kono
河野 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63141042A priority Critical patent/JPH0821616B2/en
Publication of JPH01309319A publication Critical patent/JPH01309319A/en
Publication of JPH0821616B2 publication Critical patent/JPH0821616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To enhance element isolation and to reduce heat treatment process after impurity implantation by diffusing impurities having the same conductivity as that of a semiconductor substrate into the semiconductor substrate from a semiconductor film formed on the side wall of an insulating film after an insulating film forming step. CONSTITUTION:With a patterned resist film 4 as a mask, a separating oxide film 7 is etched. The resist film 4 is removed, and polysilicon 10 in which boron having a specified concentration is doped is laminated on the entire surface. Anisotropic etching is performed in the silicon 10, and boron doped polysilicon side walls 11 are formed on both sides of the oxide film 7. The surfaces of the walls 11 are thermally oxidized, and an oxide film 12 is formed. At the same time, boron is diffused in a substrate 1 by a self-aligning method, and a P<+> inversion preventing layer 6 is formed. In this way, accuracy in element isolation is enhanced, and heat treatment process after impurity implantation is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関するものであり、
特にLSIの高集積化、微細化に必要な素子分離方法に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for manufacturing a semiconductor device,
In particular, it relates to element isolation methods necessary for higher integration and miniaturization of LSIs.

〔従来の技術〕[Conventional technology]

第2図は、従来の素子分離法の一例であるL 0CO8
(local oxidation of 5ilic
onの略称)分離法の工程断面図である。
Figure 2 shows an example of the conventional element isolation method.
(local oxidation of 5ilic
(abbreviation for on) is a process cross-sectional view of the separation method.

第2図(a)において、P型のシリコン基板1に酸化膜
2および窒化膜3を積層1−る。第2図(b)において
、素子が形成される領域にあたる部分に、バクーニング
によりフォトレジスト1をイオン)主入マスク材料とし
て残り−0またその他の領域をフィールド領域とづる。
In FIG. 2(a), an oxide film 2 and a nitride film 3 are laminated on a P-type silicon substrate 1. In FIG. 2(b), a photoresist 1 (ion) is used as a main mask material by vacuuming in a region corresponding to a region where an element is to be formed, and the remaining region -0 and other regions are referred to as field regions.

このフAl−レジスL−/Iをマスクとして、素了間奇
佳ヂpネル防車用のボ1]ンなどP型のイオン5の注入
を行う。第2図(C)において、このフォトレジス1〜
4をマスクとじて窒化膜3をエツチングして素子を形成
するダIViのみに窒化膜3を残り。第2図(d)にお
いて、フォトレジスl〜4を除去し、例えば0/H20
雰囲気中で1000℃程爪の酸化を行う。窒化膜3は耐
酸化性が強いため、その下部の素子が形成される領域は
ほと/Vど酸化されずフィールド領域のみが酸化され、
分離酸化膜7が形成される。分離酸化膜7は比較的厚い
ため、分離酸化膜7と酸化膜2の間にバーズビーク8が
生じる。また注入イオン5は拡散され、P 反転防止層
6が形成される。第2図(0)に43いて、窒化膜3を
除去しさらにその下部の酸化膜2をエツチングすればシ
リコン基板1が露出し、素子形成領域9どなる。その領
域に必要な素子を形成することが一〇きる。素子形成領
域9は、両側に形成された分離酸化膜7とP゛反転防止
層6によって図示されない隣接づる素子形成領域と分離
されている。
Using this Al-resist L-/I as a mask, P-type ions 5, such as a bone for a p-flannel car protection, are implanted. In FIG. 2(C), this photoresist 1~
The nitride film 3 is etched using the mask 4 as a mask, leaving the nitride film 3 only on the die IVi where the device is to be formed. In FIG. 2(d), photoresists 1 to 4 are removed and, for example, 0/H20
Nails are oxidized at about 1000°C in an atmosphere. Since the nitride film 3 has strong oxidation resistance, the region under it where elements are formed is hardly oxidized, and only the field region is oxidized.
Isolation oxide film 7 is formed. Since the isolation oxide film 7 is relatively thick, a bird's beak 8 is generated between the isolation oxide film 7 and the oxide film 2. Further, the implanted ions 5 are diffused, and a P 2 inversion prevention layer 6 is formed. At 43 in FIG. 2(0), the nitride film 3 is removed and the oxide film 2 underneath is etched to expose the silicon substrate 1 and form the element forming region 9. It is possible to form the necessary elements in that area. The element formation region 9 is separated from an adjacent element formation region (not shown) by an isolation oxide film 7 and a P inversion prevention layer 6 formed on both sides.

分離酸化膜7.P1反転防111層6および図示されな
い分離酸化膜7中の配線はそれぞれ寄生MOSトランジ
スタのゲート酸化膜、ブt7ネル領域およびグー1〜電
極を構成する。分離酸化膜7が充分に厚く、P+反転防
止層6内のシリコン基板1と同じ導電型の不純物濃度が
充分に高ければ寄生MOSトランジスタは能動化されに
くく良い分離特性が得られる。
Isolation oxide film7. The wiring in the P1 inversion prevention 111 layer 6 and the isolation oxide film 7 (not shown) respectively constitute the gate oxide film of the parasitic MOS transistor, the But7 channel region, and the electrode. If the isolation oxide film 7 is sufficiently thick and the concentration of impurities of the same conductivity type as the silicon substrate 1 in the P+ inversion prevention layer 6 is sufficiently high, the parasitic MOS transistor is unlikely to be activated and good isolation characteristics can be obtained.

〔発明が解決しようどする課題〕[Problems that the invention attempts to solve]

従来の半導体装置の製造方法であるLOCO8分離法で
は、以上のように窒化膜3をマスクとしたフィールド領
域の酸化によって分離酸化膜7を形成するので、分離酸
化膜7を厚くすればするほどより大きなバーズビーク8
を生じ素子形成領域9のセル面積を縮小させるという問
題点があった。
In the LOCO8 isolation method, which is a conventional semiconductor device manufacturing method, the isolation oxide film 7 is formed by oxidizing the field region using the nitride film 3 as a mask as described above, so the thicker the isolation oxide film 7 is, the more big bird's beak 8
There is a problem in that the cell area of the element forming region 9 is reduced.

また、フィールド領域酸化時あるいはその後の長時間の
熱処理により、P+反転防止層6中のボロンが分離酸化
膜7中へ吸い上げられて、P+反転防止層6中のボロン
表面濃度が非常に薄くなるなど、所望のボロン濃度の制
御が困難で良い分離特性が得られないという問題点もあ
った。
In addition, during oxidation of the field region or after long-term heat treatment, boron in the P+ inversion prevention layer 6 is sucked up into the isolation oxide film 7, and the surface concentration of boron in the P+ inversion prevention layer 6 becomes extremely low. However, there were also problems in that it was difficult to control the desired boron concentration and good separation characteristics could not be obtained.

この発明は上記のような問題点を解消ザるためになされ
たもので、素子分離にJ3いて精度を高め、チップ面積
内に無駄な領域を作らないとともに、半導体基板への不
純物の拡散を制御でき所望の不純物プロファイルを得ら
れる」′導体装置の製造方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and improves the accuracy of element isolation by using J3 to avoid creating wasted areas within the chip area, as well as controlling the diffusion of impurities into the semiconductor substrate. The present invention aims to provide a method for manufacturing a conductor device that can obtain a desired impurity profile.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明に係る半導体装置の製造方法は、半導体基板の
主面上に絶縁膜を形成する工程と、前記絶縁膜をパター
ン化する工程と、前記″142g体基板と同じ導電型の
不純物を導入された半導体膜を仝而に形成する工程と、
前記半導体膜を、前記パターン化された絶縁膜の側壁部
分だIノ残し伯の部分は除去するJ:う異方性エツチン
グを行う工程と、前記半導体膜から前記半導体基板と同
じ導電型の不純物を前記半導体基板に拡散覆る工程とを
含むものである。
The method for manufacturing a semiconductor device according to the present invention includes the steps of forming an insulating film on the main surface of a semiconductor substrate, patterning the insulating film, and introducing impurities of the same conductivity type as the 142g body substrate. a step of actually forming a semiconductor film;
The semiconductor film is removed from the sidewall portion of the patterned insulating film by anisotropic etching, and impurities of the same conductivity type as the semiconductor substrate are removed from the semiconductor film. The method includes a step of diffusing and covering the semiconductor substrate.

(作用) この発明における゛¥導体装置の製造方法は、半導体基
板の主面上に絶縁膜を形成する工程の後に、該絶縁膜の
側壁に形成された半導体膜から半導体基板と同じ導電型
の不純物を半導体基板に拡散する工程を行うので、不純
物注入後の熱処理が少41くイ≧る。
(Function) In the method for manufacturing a conductive device according to the present invention, after the step of forming an insulating film on the main surface of a semiconductor substrate, a semiconductor film formed on the side wall of the insulating film is formed to have the same conductivity type as the semiconductor substrate. Since the step of diffusing impurities into the semiconductor substrate is performed, the heat treatment after implanting the impurities is less.

(実施例) 以下、この発明の一実施例を図について説明する。第1
図(,1この発明の一実施例による素子分離の方法を示
づ■稈断面図rある。第1図(a)にJ3いて、P型の
シリコン基板1上に分離酸化膜7を充分な厚さになるよ
う形成する。第1図(())において、バターニングさ
れたレジスト4をマスクとして分離酸化膜7をエツチン
グする。第1図(C)において、レジスト4を除去し、
所望の濃度のボロンをドーピングしたポリシリコン10
を仝而に積層する。第1図(d)において、ポリシリコ
ン10に異方性エツチングを行い、分[f化膜7の両側
にボロンドープトポリシリコンサイドウオール11を形
成する。第1図(C)にJ3いて、ボロンドープトポリ
シリコンサイドウA−ル11の表面を熱酸化し酸化膜1
2を形成すると同時に、半導体基板1中にセルフアライ
ンメントでボロンを拡散し、P+反転防止層6を形成づ
る。なお、分離酸化膜7の幅、ボ【]ン淵度および熱拡
散の時間などの設定によっては、第1図(d)の後、第
1図mにを示すような2つに分離したP+反転防止層6
を得ることもできる。第1図(e)、 (f)において
は、P+反転防止F3J6の外側が互いに隣接しあう素
子形成領域9となり、図示されないMOSFETのN+
型のンースやドレインが形成される。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
Figure 1 shows a device isolation method according to an embodiment of the present invention. In FIG. 1(()), the isolation oxide film 7 is etched using the patterned resist 4 as a mask.In FIG. 1(C), the resist 4 is removed,
Polysilicon 10 doped with boron at a desired concentration
are actually laminated. In FIG. 1(d), polysilicon 10 is anisotropically etched to form boron-doped polysilicon sidewalls 11 on both sides of fluoride film 7. As shown in FIG. At J3 in FIG. 1(C), the surface of the boron-doped polysilicon sidewall A-11 is thermally oxidized to form an oxide film 1.
At the same time as the P+ inversion prevention layer 6 is formed, boron is diffused into the semiconductor substrate 1 by self-alignment. Depending on the settings such as the width of the isolation oxide film 7, the depth of the bone, and the thermal diffusion time, after FIG. Inversion prevention layer 6
You can also get In FIGS. 1(e) and 1(f), the outside of the P+ inversion prevention F3J6 becomes the element formation region 9 adjacent to each other, and the N+
The source and drain of the mold are formed.

以上のように、この実施例によれば、分離酸化膜7はパ
ターニングにより作られるので、前述した従来のLOG
O8分離法にJ3けるバーズビーク8が生じず、したが
って素子形成領域9のセル面積を縮小させることがない
As described above, according to this embodiment, the isolation oxide film 7 is made by patterning, so
The bird's beak 8 in J3 is not generated in the O8 separation method, and therefore the cell area of the element forming region 9 is not reduced.

また、前述した第2図(d)に示1゛フィールド酸化膜
7の形成に比べて第1図(0)にポリ−酸化膜12の形
成は短い時間の熱処理によって完了する。
Furthermore, compared to the formation of the 1-field oxide film 7 shown in FIG. 2(d), the formation of the poly-oxide film 12 shown in FIG. 1(0) is completed by heat treatment in a shorter time.

そのため分離酸化膜7へのしみ出しによりボロンの表面
濃度が’A? < ’、zり分離特f1が劣化Jること
がなく、またパターニングにより分離酸化膜7の幅を精
度良く制御でき、さらに前述したように例えば第1図(
f)に示すような2つの[)1反転防止層6を得ること
もできる。ざらに第1図(b)に示す分m酸化膜7のパ
ターニングにおいて、等方性エツチングを利用J゛れば
マスク寸法以下の分1i11を酸化膜7を得ることも可
能である。
Therefore, the surface concentration of boron is 'A?' due to seepage into the isolation oxide film 7. <', the isolation characteristic f1 does not deteriorate, and the width of the isolation oxide film 7 can be precisely controlled by patterning.
It is also possible to obtain two [)1 inversion prevention layers 6 as shown in f). In patterning the oxide film 7 roughly shown in FIG. 1(b), if isotropic etching is used, it is possible to obtain the oxide film 7 with a size 1i11 smaller than the mask dimension.

なお上記実施例では、隣接するN f−tzネル1〜ラ
ンジスタのソース、ドレインを形成する素子形成領域9
を分離するための分離酸化膜7およびP4反転防止層6
の形成方法について示したが、反対導電型の場合、ボロ
ンドープトポリシリコンサイドウオール11のかわりに
ヒ素やリンをドーピングしたポリシリコンサイドウ4−
ルを形成すればN+反転防止層を作ることができ、これ
によって隣接するPチセネルトランジスタのソース・ド
レインを形成する領域を特性良く分離することも可能で
ある。
In the above embodiment, the adjacent N f-tz channel 1 to the element forming region 9 forming the source and drain of the transistor
Isolation oxide film 7 and P4 inversion prevention layer 6 for isolating
However, in the case of the opposite conductivity type, instead of the boron-doped polysilicon sidewall 11, a polysilicon sidewall 4- doped with arsenic or phosphorous is used.
By forming a layer, an N+ inversion prevention layer can be created, and thereby it is also possible to separate regions forming the sources and drains of adjacent P-channel transistors with good characteristics.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、半導体基板の主面上に
絶縁膜を形成する工程のあとに、該絶縁膜の側壁に形成
された半導体膜から半導体基板と同じ導電型の不純物を
半導体基板に拡散りる■稈を行うので、素子分離におい
てy?i度を高め、チップ面積内に無駄な領域を作らな
いとともに、半導体基板への不純物の拡散を制御でき所
望の不純物プロファイルを得られる半導体装置の製造方
法を得ることができる。
As described above, according to the present invention, after the step of forming an insulating film on the main surface of the semiconductor substrate, impurities of the same conductivity type as the semiconductor substrate are removed from the semiconductor film formed on the side walls of the insulating film. y? in element isolation because it is diffused into ■ culm. It is possible to obtain a method for manufacturing a semiconductor device that increases the i degree, does not create a wasted area within the chip area, and can control the diffusion of impurities into the semiconductor substrate and obtain a desired impurity profile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体装置の製造方
法である素子分離の方法を示す工程断面図、第2図は従
来の半導体装置の製造方法である素子分離の方法を示す
工程断面図である。 図にJ3いて、1はシリコン基板、6(。IP+反転防
止層、7は分離酸化膜、9は素子形成領域、11はボロ
ンドープトポリシリ:」ンザイドウA−ル、12は酸化
膜である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a process sectional view showing an element isolation method, which is a semiconductor device manufacturing method according to an embodiment of the present invention, and FIG. 2 is a process sectional view showing an element isolation method, which is a conventional semiconductor device manufacturing method. It is. In the figure, at J3, 1 is a silicon substrate, 6 is an IP+inversion prevention layer, 7 is an isolation oxide film, 9 is an element formation region, 11 is a boron-doped polysilicon layer, and 12 is an oxide film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体装置の製造方法であって、 半導体基板の主面上に絶縁膜を形成する工程と、前記絶
縁膜をパターン化する工程と、 前記半導体基板と同じ導電型の不純物を導入された半導
体膜を全面に形成する工程と、 前記半導体膜を、前記パターン化された絶縁膜の側壁部
分だけ残し他の部分は除去するよう異方性エッチングを
行う工程と、 前記半導体膜から前記半導体基板と同じ導電型の不純物
を前記半導体基板に拡散する工程とを含む半導体装置の
製造方法。
(1) A method for manufacturing a semiconductor device, comprising: forming an insulating film on a main surface of a semiconductor substrate; patterning the insulating film; and introducing an impurity of the same conductivity type as the semiconductor substrate. forming a semiconductor film on the entire surface; performing anisotropic etching on the semiconductor film so as to leave only a sidewall portion of the patterned insulating film and remove the other portion; and forming the semiconductor film on the semiconductor substrate. and diffusing impurities of the same conductivity type into the semiconductor substrate.
JP63141042A 1988-06-07 1988-06-07 Method for manufacturing semiconductor device Expired - Lifetime JPH0821616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63141042A JPH0821616B2 (en) 1988-06-07 1988-06-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141042A JPH0821616B2 (en) 1988-06-07 1988-06-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01309319A true JPH01309319A (en) 1989-12-13
JPH0821616B2 JPH0821616B2 (en) 1996-03-04

Family

ID=15282892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141042A Expired - Lifetime JPH0821616B2 (en) 1988-06-07 1988-06-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0821616B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911644A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911644A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0821616B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPH07120795B2 (en) Method of manufacturing semiconductor device
JPH05102480A (en) Semiconductor device and manufacture thereof
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH0738095A (en) Semiconductor device and its manufacturing method
JP2697062B2 (en) Method for manufacturing semiconductor device
JPH01309319A (en) Manufacture of semiconductor device
JP3360970B2 (en) Method for manufacturing semiconductor device
JP3038740B2 (en) Method for manufacturing semiconductor device
JPH06112481A (en) Manufacture of mos transistor
JPS6237543B2 (en)
JPH09139382A (en) Manufacture of semiconductor device
JP2967596B2 (en) Method for manufacturing semiconductor device
KR100211947B1 (en) Poli-crystalline silicon source/drain mos transistors and manufacturing method thereof
JP3223895B2 (en) Method for manufacturing semiconductor device
JPH11274486A (en) Semiconductor device and its manufacturing method
JP3848782B2 (en) Manufacturing method of semiconductor device
JP3123598B2 (en) LSI and manufacturing method thereof
JPH06232394A (en) Manufacture of semiconductor device
JPH06244415A (en) Semiconductor device and manufacture thereof
JPH1174513A (en) Semiconductor of insulating gate type and its manufacture
JPH1126756A (en) Manufacture of semiconductor device
JPH0527995B2 (en)
JPH07335873A (en) Method of manufacturing semiconductor device
JPS5951152B2 (en) Manufacturing method of semiconductor device
JPH04250668A (en) Semiconductor device and manufacture thereof