JPH04250668A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04250668A
JPH04250668A JP2388191A JP2388191A JPH04250668A JP H04250668 A JPH04250668 A JP H04250668A JP 2388191 A JP2388191 A JP 2388191A JP 2388191 A JP2388191 A JP 2388191A JP H04250668 A JPH04250668 A JP H04250668A
Authority
JP
Japan
Prior art keywords
gate
gate width
gate electrode
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2388191A
Other languages
Japanese (ja)
Inventor
Masatoshi Motohashi
本橋 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2388191A priority Critical patent/JPH04250668A/en
Publication of JPH04250668A publication Critical patent/JPH04250668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly integrate a semiconductor device by substantially increasing a gate width without increasing a planar size of a field effect transistor. CONSTITUTION:A recess 6 is formed on the surface of a semiconductor substrate 1 at least directly under a gate electrode 4 along a gate width direction, a recess region 7 is formed of the recess 6 thereby to increase the opposing size of the substrate 1, a gate silicon oxide film 3 in the gate width direction of the electrode 4, thereby substantially increasing the gate width. The manufacture of this semiconductor device includes a step of selectively etching the surface of a region to be formed with a field effect transistor of the substrate to form a recess region arranged with a plurality of recesses in the gate width direction, and a step of forming the gate electrode on the recess region.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電界効果型トランジスタ
を備える半導体装置に関し、特に電界効果トランジスタ
のゲート幅を拡大した半導体装置及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device including a field effect transistor, and more particularly to a semiconductor device having an enlarged gate width of a field effect transistor and a method for manufacturing the same.

【0002】0002

【従来の技術】従来の電界効果トランジスタ、特にMO
S型電界効果トランジスタ(以下、MOSFETと称す
る)の一例を図5に示す。同図(a)は平面図、同図(
b)は(a)のB−B線拡大断面図である。図示のよう
に、半導体基板1上を素子分離シリコン酸化膜2によっ
て各トランジスタに分離した上で、全面にゲートシリコ
ン酸化膜3を形成し、この上にゲート電極4を形成する
。又、ゲート電極4の両側にはソース・ドレイン領域5
を形成する。このようなMOSFETでは、ゲート幅W
は素子分離シリコン酸化膜2で挟まれたゲート電極4の
下面に沿った部分となる。
[Prior Art] Conventional field effect transistors, especially MO
An example of an S-type field effect transistor (hereinafter referred to as MOSFET) is shown in FIG. The same figure (a) is a plan view, the same figure (
b) is an enlarged sectional view taken along the line B-B of (a). As shown in the figure, a semiconductor substrate 1 is separated into transistors by an element isolation silicon oxide film 2, a gate silicon oxide film 3 is formed on the entire surface, and a gate electrode 4 is formed on this. Further, source/drain regions 5 are provided on both sides of the gate electrode 4.
form. In such a MOSFET, the gate width W
is a portion along the lower surface of the gate electrode 4 sandwiched between the element isolation silicon oxide films 2.

【0003】0003

【発明が解決しようとする課題】この従来のMOSFE
Tでは、ゲート幅Wの長さが直接トランジスタの縦方向
の寸法と結びつく。一般にMOSFETのドレイン電流
はゲート幅Wとゲート長Lとの比であるW/Lに比例す
る。このため、大きなドレイン電流を得るにはゲート幅
Wを大きく取る必要があり、これによりトランジスタサ
イズの増大、更には集積度の低下をもたらしている。本
発明の目的は集積度を低下することなくゲート幅の増大
を図った半導体装置及びその製造方法を提供することに
ある。
[Problem to be solved by the invention] This conventional MOSFE
At T, the length of the gate width W is directly tied to the vertical dimension of the transistor. Generally, the drain current of a MOSFET is proportional to W/L, which is the ratio of gate width W to gate length L. Therefore, in order to obtain a large drain current, it is necessary to increase the gate width W, which results in an increase in the transistor size and further a decrease in the degree of integration. An object of the present invention is to provide a semiconductor device in which the gate width can be increased without reducing the degree of integration, and a method for manufacturing the same.

【0004】0004

【課題を解決するための手段】本発明の半導体装置は、
少なくとも電界効果トランジスタのゲート電極直下に、
半導体基板の表面を凹凸に形成した凹領域を形成した構
成とする。又、本発明の半導体装置の製造方法は、半導
体基板の電界効果トランジスタを形成する領域の表面を
選択的にエッチングして複数個の凹部を配列した凹領域
を形成する工程と、この凹領域上にゲート電極を形成す
る工程とを含んでいる。
[Means for Solving the Problems] A semiconductor device of the present invention includes:
At least directly under the gate electrode of the field effect transistor,
The semiconductor substrate has a structure in which a concave region is formed in an uneven manner on the surface. The method for manufacturing a semiconductor device of the present invention also includes a step of selectively etching the surface of a region of a semiconductor substrate in which a field effect transistor is to be formed to form a recessed region in which a plurality of recesses are arranged; The method includes a step of forming a gate electrode.

【0005】[0005]

【作用】本発明の半導体装置によれば、ゲート電極直下
に形成した凹領域によって半導体基板とゲート電極との
ゲート幅方向の対向寸法が長くなり、ゲート幅を実質的
に増大させる。
According to the semiconductor device of the present invention, the recessed region formed directly under the gate electrode increases the opposing dimension in the gate width direction between the semiconductor substrate and the gate electrode, thereby substantially increasing the gate width.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例を示し、(a)は平面図、
(b)は(a)のA−A線拡大断面図である。図示のよ
うに、半導体基板1上を素子分離シリコン酸化膜2によ
って各トランジスタに分離した上で、全面にゲートシリ
コン酸化膜3を形成し、この上にゲート電極4を形成す
る。又、ゲート電極4の両側にはソース・ドレイン領域
5を形成する。そして、前記ゲート電極4の直下及びこ
れに沿って多少両側にはみ出した領域では、半導体基板
1の表面にゲート幅方向に並んだ複数個の半円形の凹部
6を形成した凹領域7を形成している。そして、この凹
領域7上に前記ゲートシリコン酸化膜3を形成し、かつ
その上に前記ゲート電極4を形成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which (a) is a plan view;
(b) is an enlarged sectional view taken along line A-A in (a). As shown in the figure, a semiconductor substrate 1 is separated into transistors by an element isolation silicon oxide film 2, a gate silicon oxide film 3 is formed on the entire surface, and a gate electrode 4 is formed on this. Further, source/drain regions 5 are formed on both sides of the gate electrode 4. Directly below the gate electrode 4 and in a region protruding to both sides along the gate electrode 4, a recessed region 7 having a plurality of semicircular recesses 6 arranged in the gate width direction is formed on the surface of the semiconductor substrate 1. ing. Then, the gate silicon oxide film 3 is formed on this concave region 7, and the gate electrode 4 is formed thereon.

【0007】この構成によれば、凹領域7における凹部
6によって半導体基板1、ゲートシリコン酸化膜3、及
びゲート電極4のゲート幅方向の接触面積が大きくなり
、この結果MOSFETの平面寸法を大きくすることな
く実効的なゲート幅Wが増大される。この点については
後に詳細に説明する。尚、凹領域7はゲート電極4に対
してゲート長方向にはみ出しているが、このはみ出し寸
法は製造上のゲート電極4対凹領域7との重ね合わせ精
度で決定される。この重ね合わせ精度が高い場合にはは
み出し寸法は零であってもよい。
According to this configuration, the contact area of the semiconductor substrate 1, the gate silicon oxide film 3, and the gate electrode 4 in the gate width direction is increased by the recessed portion 6 in the recessed region 7, and as a result, the planar dimensions of the MOSFET are increased. The effective gate width W can be increased without any problems. This point will be explained in detail later. Note that the concave region 7 protrudes from the gate electrode 4 in the gate length direction, but the dimension of this protrusion is determined by the overlapping accuracy of the gate electrode 4 and the concave region 7 during manufacturing. If this overlay accuracy is high, the protrusion dimension may be zero.

【0008】次に、図1に示したMOSFETの製造方
法を図2を用いて説明する。尚、この実施例はNチャネ
ルMOSFETに適用した例である。先ず、同図(a)
のように、P型不純物をドープした半導体基板1上に選
択酸化法により素子分離シリコン酸化膜2を形成する。 次いで、同図(b)のようにフォトリソグラフィ技術に
よりゲート幅方向に沿って複数個の開口を配列したフォ
トレジストマスク8を形成する。しかる後、HF+HN
O3 等を用いたウェットエッチングによって半導体基
板1の表面を等方性エッチングし、ゲート幅方向に並ん
だ複数個の凹部6を形成し、凹領域7を形成する。この
エッチングに際しては、プラズマを用いた異方性エッチ
ングではないので、反応性イオン等による半導体基板1
へのダメージはない。
Next, a method for manufacturing the MOSFET shown in FIG. 1 will be explained using FIG. 2. Note that this embodiment is an example applied to an N-channel MOSFET. First, the same figure (a)
An element isolation silicon oxide film 2 is formed by selective oxidation on a semiconductor substrate 1 doped with P-type impurities, as shown in FIG. Next, as shown in FIG. 3B, a photoresist mask 8 having a plurality of openings arranged along the gate width direction is formed by photolithography. After that, HF+HN
The surface of the semiconductor substrate 1 is isotropically etched by wet etching using O3 or the like to form a plurality of recesses 6 arranged in the gate width direction, thereby forming a recessed region 7. Since this etching is not anisotropic etching using plasma, the semiconductor substrate 1 is etched using reactive ions, etc.
No damage to.

【0009】次に、同図(c)のようにフォトレジスト
8を除去し、半導体基板1の全面にゲートシリコン酸化
膜3を形成する。続いて、スレッシュホールド電圧(V
t)制御用のチャネルドープとしてボロンを半導体基板
1に垂直にイオン注入する。尚、イオン注入後にゲート
シリコン酸化膜3を一度剥離し、再び酸化して形成し直
すことで、イオン注入時のダメージも除去することも出
来る。しかる後、同図(d)のように、凹領域7上にゲ
ートシリコン酸化膜3を介してゲート電極4を形成する
。その後、ゲート電極4を利用した自己整合法により半
導体基板1にN型不純物(例えば、砒素)を導入してN
型ソース・ドレイン領域5を形成し、図1の構造が形成
される。尚、図示は省略するが、その後更に層間絶縁膜
を堆積し、アルミニウム等の金属配線等で各トランジス
タを接続し、所望の集積回路が完成される。
Next, as shown in FIG. 2C, the photoresist 8 is removed and a gate silicon oxide film 3 is formed on the entire surface of the semiconductor substrate 1. Next, the threshold voltage (V
t) Boron ions are implanted vertically into the semiconductor substrate 1 as channel doping for control. Note that damage caused during ion implantation can also be removed by peeling off the gate silicon oxide film 3 once after ion implantation, and oxidizing it again to form it again. Thereafter, as shown in FIG. 4(d), a gate electrode 4 is formed on the recessed region 7 with the gate silicon oxide film 3 interposed therebetween. Thereafter, an N-type impurity (for example, arsenic) is introduced into the semiconductor substrate 1 by a self-alignment method using the gate electrode 4.
Type source/drain regions 5 are formed, and the structure shown in FIG. 1 is formed. Although not shown, an interlayer insulating film is then further deposited, and the transistors are connected with metal wiring such as aluminum, to complete the desired integrated circuit.

【0010】このように構成されたMOSFETでは、
凹領域7の各凹部6においては、その表面のゲート幅方
向の長さ、つまり図3(a)にLで示す直線寸法が、同
図(b)のように半径Lの1/4円の円弧寸法1.57
Lとなり、0.57Lだけ長さが長くなることが判る。 したがって、図4のように、凹領域7の凹部6を円弧状
の凹部とし、これを幅1μm、ピッチ2.5 μmで4
個並べ、かつその深さを0.5 μmとすると、0.5
7×0.2×8=0.91μmだけ長さが長くなる。こ
れにより、例えば従来のゲート幅10μmのMOSFE
Tを形成する場合には、この分ゲート幅の平面寸法を小
さく設計してゲート幅の平面寸法を9.09μmに縮小
でき、MOSFETの集積度を高めることができる。
[0010] In the MOSFET configured in this way,
In each concave portion 6 of the concave region 7, the length of the surface in the gate width direction, that is, the linear dimension indicated by L in FIG. Arc dimension 1.57
It turns out that the length becomes longer by 0.57L. Therefore, as shown in FIG. 4, the concave portion 6 of the concave region 7 is made into an arc-shaped concave portion with a width of 1 μm and a pitch of 2.5 μm.
If the pieces are lined up and the depth is 0.5 μm, then 0.5
The length becomes longer by 7×0.2×8=0.91 μm. As a result, for example, a conventional MOSFE with a gate width of 10 μm
When forming T, the planar dimension of the gate width can be designed to be smaller by this amount, and the planar dimension of the gate width can be reduced to 9.09 μm, and the degree of integration of the MOSFET can be increased.

【0011】尚、前記実施例はNチャネルMOSFET
に適用した例であるが、PチャネルMOSFETにも同
様に適用することができる。又、GaAs等のIII 
−V族半導体を用いる接合ゲート型電界効果トランジス
タでも、ゲート電極下の酸化膜形成工程を省略すること
で容易に適用できる。更に、前記実施例では凹領域の形
成に際してウェットエッチング法を用いているが、エッ
チング工程の後に半導体基板のダメージ回復の為の熱処
理による半導体基板の活性化を行うようにすれば、加工
寸法の制御性のよいドライエッチングによる異方性エッ
チングも適用可能である。この場合には、凹部を矩形状
に形成でき、ゲート幅を更に増大することが可能となる
[0011] The above embodiment is an N-channel MOSFET.
Although this is an example applied to a P-channel MOSFET, it can be similarly applied to a P-channel MOSFET. Also, III such as GaAs
A junction gate field effect transistor using a -V group semiconductor can also be easily applied by omitting the step of forming an oxide film under the gate electrode. Furthermore, although the wet etching method is used to form the concave region in the above embodiment, if the semiconductor substrate is activated by heat treatment to recover damage to the semiconductor substrate after the etching process, the processing dimensions can be controlled. Anisotropic etching using dry etching with good properties is also applicable. In this case, the recess can be formed into a rectangular shape, making it possible to further increase the gate width.

【0012】0012

【発明の効果】以上説明したように本発明は、ゲート電
極直下に凹領域を形成してゲート幅方向の半導体基板と
ゲート電極との対向寸法を拡大しているので、同一のゲ
ート幅を得るためのゲート幅平面寸法をその分縮小でき
、電界効果トランジスタの集積度を高めることができる
。又、凹領域の形成に際しては、半導体基板の電界効果
トランジスタを形成する領域の表面を選択的にエッチン
グすればよいため、従来の電界効果トランジスタの製造
工程に一度のエッチング工程を付加するだけでよく、高
集積度の電界効果トランジスタを簡単に製造することが
可能となる。
[Effects of the Invention] As explained above, the present invention forms a concave region directly under the gate electrode to enlarge the facing dimension between the semiconductor substrate and the gate electrode in the gate width direction, so that the same gate width can be obtained. The plane dimension of the gate width can be reduced accordingly, and the degree of integration of the field effect transistor can be increased. Furthermore, when forming the recessed region, it is only necessary to selectively etch the surface of the region of the semiconductor substrate where the field effect transistor is to be formed, so it is only necessary to add one etching step to the conventional manufacturing process of the field effect transistor. , it becomes possible to easily manufacture highly integrated field effect transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示し、(a)は平面図、(
b)はそのA−A線に沿う拡大断面図である。
FIG. 1 shows an embodiment of the present invention, (a) is a plan view, (a) is a plan view;
b) is an enlarged sectional view taken along line A-A.

【図2】(a)乃至(d)は図1の半導体装置の製造方
法を工程順に示す断面図である。
2A to 2D are cross-sectional views showing the method for manufacturing the semiconductor device of FIG. 1 in order of steps;

【図3】本発明の効果を説明するための図で、(a)は
平坦部分の断面図、(b)は凹部の断面図である。
FIG. 3 is a diagram for explaining the effects of the present invention, in which (a) is a cross-sectional view of a flat portion, and (b) is a cross-sectional view of a recessed portion.

【図4】本発明の効果を説明するための模式的な断面図
である。
FIG. 4 is a schematic cross-sectional view for explaining the effects of the present invention.

【図5】従来の半導体装置を示し、(a)は平面図、(
b)はそのB−B線に沿う拡大断面図である。
FIG. 5 shows a conventional semiconductor device, in which (a) is a plan view and (a) is a plan view;
b) is an enlarged sectional view taken along the line BB.

【符号の説明】[Explanation of symbols]

1  半導体基板 3  ゲートシリコン酸化膜 4  ゲート電極 5  ソース・ドレイン領域 6  凹部 7  凹領域 8  フォトレジスト 1 Semiconductor substrate 3 Gate silicon oxide film 4 Gate electrode 5 Source/drain region 6 Recess 7 Concave area 8 Photoresist

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上にゲート電極を形成した
電界効果トランジスタを有する半導体装置において、少
なくとも前記ゲート電極直下の半導体基板の表面をゲー
ト幅方向に沿って凹凸に形成した凹領域を形成したこと
を特徴とする半導体装置。
1. In a semiconductor device having a field effect transistor in which a gate electrode is formed on a semiconductor substrate, at least a surface of the semiconductor substrate immediately below the gate electrode is provided with a concave region having an uneven shape along the gate width direction. A semiconductor device characterized by:
【請求項2】  半導体基板の電界効果トランジスタを
形成する領域の表面を選択的にエッチングして複数個の
凹部をゲート幅方向に配列した凹領域を形成する工程と
、この凹領域上にゲート電極を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。
2. A step of selectively etching the surface of a region of a semiconductor substrate where a field effect transistor is to be formed to form a recessed region in which a plurality of recesses are arranged in the gate width direction, and forming a gate electrode on the recessed region. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP2388191A 1991-01-25 1991-01-25 Semiconductor device and manufacture thereof Pending JPH04250668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2388191A JPH04250668A (en) 1991-01-25 1991-01-25 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2388191A JPH04250668A (en) 1991-01-25 1991-01-25 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04250668A true JPH04250668A (en) 1992-09-07

Family

ID=12122794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2388191A Pending JPH04250668A (en) 1991-01-25 1991-01-25 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04250668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717239A (en) * 1995-11-15 1998-02-10 Nec Corporation MOS transistor with large gate width
JP2007123929A (en) * 2006-12-21 2007-05-17 Semiconductor Energy Lab Co Ltd Method of manufacturing insulating gate semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717239A (en) * 1995-11-15 1998-02-10 Nec Corporation MOS transistor with large gate width
JP2007123929A (en) * 2006-12-21 2007-05-17 Semiconductor Energy Lab Co Ltd Method of manufacturing insulating gate semiconductor device

Similar Documents

Publication Publication Date Title
US5158903A (en) Method for producing a field-effect type semiconductor device
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
KR980012623A (en) Field effect transistor and manufacturing method thereof
JPH07263677A (en) Semiconductor device and its manufacture
JP2510599B2 (en) Field effect transistor
JPH04250668A (en) Semiconductor device and manufacture thereof
JPH08181223A (en) Manufacture of semiconductor device
JPH033274A (en) Manufacture of semiconductor device
EP0817247A1 (en) Process for the fabrication of integrated circuits with contacts self-aligned to active areas
US4409727A (en) Methods of making narrow channel field effect transistors
JPH0227737A (en) Manufacture of semiconductor device
KR19990058453A (en) High voltage semiconductor device and manufacturing method thereof
JPH06244415A (en) Semiconductor device and manufacture thereof
KR0167662B1 (en) Method for fabricating semiconductor device
JPH0536716A (en) Semiconductor device and its manufacture
JP2765142B2 (en) Method for manufacturing semiconductor device
KR0167669B1 (en) Method for fabricating semiconductor device
JPH02262340A (en) Semiconductor device and its manufacture
JPS63150965A (en) Manufacture of semiconductor device
JPH10275912A (en) Semiconductor device and its manufacture
JPH06151453A (en) High-withstand voltage transistor and its manufacture
JPS6314502B2 (en)
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH04233238A (en) Ldd transistor and its manufacture
JPH09181308A (en) Semiconductor device and manufacture thereof