JPH01200680A - 超電導電界効果トランジスタ - Google Patents
超電導電界効果トランジスタInfo
- Publication number
- JPH01200680A JPH01200680A JP63023670A JP2367088A JPH01200680A JP H01200680 A JPH01200680 A JP H01200680A JP 63023670 A JP63023670 A JP 63023670A JP 2367088 A JP2367088 A JP 2367088A JP H01200680 A JPH01200680 A JP H01200680A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- effect transistor
- field effect
- thin film
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 21
- 239000010408 film Substances 0.000 claims abstract description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 21
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000013078 crystal Substances 0.000 claims abstract description 4
- 239000004065 semiconductor Substances 0.000 claims description 15
- 239000002887 superconductor Substances 0.000 claims description 7
- 229910000978 Pb alloy Inorganic materials 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 claims 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 3
- 150000003377 silicon compounds Chemical class 0.000 claims 3
- 230000005684 electric field Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 239000000758 substrate Substances 0.000 abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 6
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 239000001301 oxygen Substances 0.000 abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 abstract description 6
- 238000001020 plasma etching Methods 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 6
- 229910052682 stishovite Inorganic materials 0.000 abstract description 6
- 229910052905 tridymite Inorganic materials 0.000 abstract description 6
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 5
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 5
- 238000003486 chemical etching Methods 0.000 abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- 150000004767 nitrides Chemical class 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- -1 NbN Chemical class 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は電界効果型のトランジスタに係り、特に超電導
体を合わせて用いた微細な電界効果型トランジスタに関
する。
体を合わせて用いた微細な電界効果型トランジスタに関
する。
[従来の技術]
従来、電界効果型の超電導トランジスタに関しては、ク
ラーク(C1ark )によってジャーナル・オブ・ア
プライド・フィジックス51巻、1980年2736頁
(Journal of Applied Physi
cs。
ラーク(C1ark )によってジャーナル・オブ・ア
プライド・フィジックス51巻、1980年2736頁
(Journal of Applied Physi
cs。
Vol、51 pp、2736 1980)において論
じられている。
じられている。
[発明が解決しようとする問題点]
上記従来技術においては、制御電極の微細化に伴う超電
導トランジスタの特性ばらつきによって回路の動作が不
安定になることが考慮されていなかった。
導トランジスタの特性ばらつきによって回路の動作が不
安定になることが考慮されていなかった。
本発明の目的は、従来技術の持つ問題点を解決して、ト
ランジスタの微細化が可能で、特性ばらつきの低減、回
路動作の安定を実現することのできる超電導トランジス
タの構造と材料とを提供することにある。
ランジスタの微細化が可能で、特性ばらつきの低減、回
路動作の安定を実現することのできる超電導トランジス
タの構造と材料とを提供することにある。
[問題点を解決するための手段]
上記目的は、制御電極の材料に多結晶のシリコンとシリ
コンの窒化物との2層膜を用い、かつその両側に超電導
電極を設けることによって実現できる。
コンの窒化物との2層膜を用い、かつその両側に超電導
電極を設けることによって実現できる。
[作用]
超電導体を用いた電界効果型トランジスタにおいては、
制御電極に隣接させて超電導電極を形成する必要がある
。この制御電極に不純物を導入した多結晶シリコンと窒
化シリコンとの2層膜を用いれば、窒化シリコン下の多
結晶シリコンの側壁制御性良く後退させることができる
。これは、反応性のイオン・エツチングによって容易に
実現することができ、また多結晶シリコンの側壁を配化
したのち、この酸化膜を除去することによっても実現で
きる。どちらの方法においても、多結晶Siの側壁の後
退量を制御することができるので、制御電極の構造にお
いては、上層の窒化シリコン膜に比べて幅の小さい多結
晶シリコン膜を得ることができる。このような形状を有
する制御電極を用いて、この上部から超電導材料を堆積
させれば、制御電極の両側に、制御電極を構成する窒化
シリコン膜の幅に相当する間隔で分離された超電導電極
を形成することができ、かつ制御電極と超電導電極との
間の絶縁を得ることができる。また半導体基板側にイオ
ン注入によって不純物を導入する際には、制御電極その
ものをマスクとして使用することができる6本発明の多
結晶シリコンと窒化シリコンを重ねた制御電極は、イオ
ン注入後の熱処理によっても形状の変化や抵抗率の増大
が無く、従って微細な制御電極と、これに整合して設け
た超電導電極とを形成することが可能になる。このため
超電導トランジスタの寸法精度が向上し、このために超
電導トランジスタの特性ばらつきが小さくなる。従って
本発明の超電導トランジスタを用いた回路は、電源電圧
や温度のわずかな変動による回路の誤動作が少なくなり
1回路動作を安定にすることができる。
制御電極に隣接させて超電導電極を形成する必要がある
。この制御電極に不純物を導入した多結晶シリコンと窒
化シリコンとの2層膜を用いれば、窒化シリコン下の多
結晶シリコンの側壁制御性良く後退させることができる
。これは、反応性のイオン・エツチングによって容易に
実現することができ、また多結晶シリコンの側壁を配化
したのち、この酸化膜を除去することによっても実現で
きる。どちらの方法においても、多結晶Siの側壁の後
退量を制御することができるので、制御電極の構造にお
いては、上層の窒化シリコン膜に比べて幅の小さい多結
晶シリコン膜を得ることができる。このような形状を有
する制御電極を用いて、この上部から超電導材料を堆積
させれば、制御電極の両側に、制御電極を構成する窒化
シリコン膜の幅に相当する間隔で分離された超電導電極
を形成することができ、かつ制御電極と超電導電極との
間の絶縁を得ることができる。また半導体基板側にイオ
ン注入によって不純物を導入する際には、制御電極その
ものをマスクとして使用することができる6本発明の多
結晶シリコンと窒化シリコンを重ねた制御電極は、イオ
ン注入後の熱処理によっても形状の変化や抵抗率の増大
が無く、従って微細な制御電極と、これに整合して設け
た超電導電極とを形成することが可能になる。このため
超電導トランジスタの寸法精度が向上し、このために超
電導トランジスタの特性ばらつきが小さくなる。従って
本発明の超電導トランジスタを用いた回路は、電源電圧
や温度のわずかな変動による回路の誤動作が少なくなり
1回路動作を安定にすることができる。
超電導電界効果トランジスタが動作するためには、超電
導電極の間の距離は、この超電導体間に半導体を介して
超電導の弱結合が形成されるごとくに、半導体中のコヒ
ーレンス−長さの3〜10倍の範囲に選んでおくことが
良好な超電導電流を得るためには望ましいが、これより
大きな値であっても本発明の目的を十分に達することが
できる。
導電極の間の距離は、この超電導体間に半導体を介して
超電導の弱結合が形成されるごとくに、半導体中のコヒ
ーレンス−長さの3〜10倍の範囲に選んでおくことが
良好な超電導電流を得るためには望ましいが、これより
大きな値であっても本発明の目的を十分に達することが
できる。
このため、半導体としてSiを用いた場合にあっては、
制御電極の長さ、すなわち上記の制御電極が前記の超電
導電極が向い合う方向に対して直交する方向における長
さは、0.3μm以下であることが必要であって、さら
にデバイスとして動作するためには、0.15μm以下
であることが望ましい。
制御電極の長さ、すなわち上記の制御電極が前記の超電
導電極が向い合う方向に対して直交する方向における長
さは、0.3μm以下であることが必要であって、さら
にデバイスとして動作するためには、0.15μm以下
であることが望ましい。
[実施例]
以下、本発明を実施例を用いて詳細に説明する。
第1図を用いて本発明の第1の実施例を説明する。
第1図は、本発明の第1の実施例による超電導トランジ
スタの断面図を示す。不純物としてホウ素を1×101
8C11−3の濃度に含んだ(100)方位のSi単結
晶基板1の表面を、約1000℃の酸素中で酸化して厚
さ約200nmのSiO2よりなる絶縁膜2を形成する
。続いてホトレジストのパターンをマスクとして化学エ
ツチング法により絶縁膜2を加工する。約950℃の酸
素中における熱酸化によって厚さ約10nmのSiO2
より成る酸化膜3を形成し、引き続いて化学的気相成長
法(CVD法)により多結晶シリコン4を約1100n
の厚さに堆積させこれに高濃度のリンを拡散したのち1
次に窒化シリコン5を約50nmの厚さに堆積させる。
スタの断面図を示す。不純物としてホウ素を1×101
8C11−3の濃度に含んだ(100)方位のSi単結
晶基板1の表面を、約1000℃の酸素中で酸化して厚
さ約200nmのSiO2よりなる絶縁膜2を形成する
。続いてホトレジストのパターンをマスクとして化学エ
ツチング法により絶縁膜2を加工する。約950℃の酸
素中における熱酸化によって厚さ約10nmのSiO2
より成る酸化膜3を形成し、引き続いて化学的気相成長
法(CVD法)により多結晶シリコン4を約1100n
の厚さに堆積させこれに高濃度のリンを拡散したのち1
次に窒化シリコン5を約50nmの厚さに堆積させる。
続いてネガ型の電子線レジストのパターンを電子線描画
法によって形成し、これをマスクとしてCF、ガスによ
る反応性イオンエツチング法によって窒化シリコン5と
多結晶シリコン4とを加工する。次に再び950℃の酸
素中で酸化を行う、これによって加工後の多結晶シリコ
ンの側面を約15nmの厚さだけ酸化する。この酸化膜
厚の制御は、酸化時間の制御によって容易に実現できる
。さらにヒ素を加速電圧25keV、注入量5 X I
O14cm−2の条件でイオン注入したのち、850
’Cの温度で純窒素中のア二−分 ルを10−行い、不純物導入部10を形成した。
法によって形成し、これをマスクとしてCF、ガスによ
る反応性イオンエツチング法によって窒化シリコン5と
多結晶シリコン4とを加工する。次に再び950℃の酸
素中で酸化を行う、これによって加工後の多結晶シリコ
ンの側面を約15nmの厚さだけ酸化する。この酸化膜
厚の制御は、酸化時間の制御によって容易に実現できる
。さらにヒ素を加速電圧25keV、注入量5 X I
O14cm−2の条件でイオン注入したのち、850
’Cの温度で純窒素中のア二−分 ルを10−行い、不純物導入部10を形成した。
続いて化学エツチングによって表面のSiO2を約15
nmだけ除去すれば、第1図に示したごとくに、多結晶
シリコンと窒化シリコンとが積層され、なおかつ上層に
ある窒化シリコンの幅が多結晶シリコンの幅よりも大き
いような本発明の制御電極を得ることができる。さらに
この上に電子ビーム蒸着法によってI X 10””p
aの高真空中でNbを堆積させ、厚さ約1100nの超
電導電極6を形成する。最後に、ホトレジストのパター
ンマスクとした反応性イオンエツチング法により、前記
Nb薄膜の不要部分を除去すれば、本発明の超電1; 導トランジスタを得ることができる。第1図AI±示さ
れていないが、基板l上には複数の超電導トランジスタ
が形成されており、これらが厚さ約1100nのNb薄
膜より成り超電導電極6につなかって延在する配線によ
って結ばれ、回路を構成している。本実施例においては
超電導電極6の材料としてNbを用いたが、これに限ら
れるものではない。Nbにかえて、NbNなどのNbの
化合物、Pb合金AQ、In、Snやこれの合金を用い
ても良い。さらには酸化物超電導体や有機物超電温体を
用いても良いことは言うまでもない6例えば、(Lao
、5Sro、t)2cu○4やYBa2Cu307−δ
などの組成で表わされる物質や、これと類似の物質を用
いることは、デバイスの高温動作の点からも望ましく、
これらの場合においても、本発明の目的を十分に達する
ことができることは言うまでもない。
nmだけ除去すれば、第1図に示したごとくに、多結晶
シリコンと窒化シリコンとが積層され、なおかつ上層に
ある窒化シリコンの幅が多結晶シリコンの幅よりも大き
いような本発明の制御電極を得ることができる。さらに
この上に電子ビーム蒸着法によってI X 10””p
aの高真空中でNbを堆積させ、厚さ約1100nの超
電導電極6を形成する。最後に、ホトレジストのパター
ンマスクとした反応性イオンエツチング法により、前記
Nb薄膜の不要部分を除去すれば、本発明の超電1; 導トランジスタを得ることができる。第1図AI±示さ
れていないが、基板l上には複数の超電導トランジスタ
が形成されており、これらが厚さ約1100nのNb薄
膜より成り超電導電極6につなかって延在する配線によ
って結ばれ、回路を構成している。本実施例においては
超電導電極6の材料としてNbを用いたが、これに限ら
れるものではない。Nbにかえて、NbNなどのNbの
化合物、Pb合金AQ、In、Snやこれの合金を用い
ても良い。さらには酸化物超電導体や有機物超電温体を
用いても良いことは言うまでもない6例えば、(Lao
、5Sro、t)2cu○4やYBa2Cu307−δ
などの組成で表わされる物質や、これと類似の物質を用
いることは、デバイスの高温動作の点からも望ましく、
これらの場合においても、本発明の目的を十分に達する
ことができることは言うまでもない。
次に第2図を用いて、本発明の第2の実施例を説明する
。第2図は本発明の第2の実施例による超電導ランジス
タの断面図を示す。不純物としてホウ素をI X I
0−15c+a3の濃度に含んだ(100)面方位のδ
1単結晶基板lの表面を、約1000℃の酸素中で酸化
して厚さ約200nmのSiO2よりなる絶縁膜2を形
成する。続いてホトレジストのパターンをマスクとして
化学エツチング法により絶縁膜2を加工する。約950
℃の純酸素中における熱酸化によって厚さ約10nmの
SiO2より成る酸化3を形成し、引い続いて化学的気
相成長法(CVD法)により多結晶シリコン4を約11
00nの厚さに堆積させ、次に窒化シリコン5を約50
nmの厚さに堆積させる。続いてネガ型の電子線レジス
トのパターンを電子線描画法によって形成し、これをマ
スクとしてCF4ガスによる反応性イオンエツチング法
によって窒化シリコン5と多結晶シリコン4、酸化膜3
を加工したのち、基板1を構成するシリコンを約110
0nの深さにエツチングした。次に純酸素中における熱
酸化によって露出している基板1及び多結晶シリコン4
の表面を酸化して厚さ約10nmの酸化膜を形成したの
ち、ヒ素イオンを、加速電圧25keV、注入量5 X
10 ”cm−2の条件でイオン注入し、引き続いて
850℃の温度で純窒素中において10分間の熱処理を
行い、注入したヒ素の活性化を行って不純物導入部10
を形成した。続いて水で100倍に希釈したフッ酸中で
表面のSiO2を溶かして除去する。さらに、電子ビー
ム蒸着法によってNbを堆積させて厚さ約1100nの
超電導膜を形成し、ホトレジストのパターンをマスクと
してCF4ガスを用いてNbを反応性イオンエツチング
法により超電導電極6に加工すると、第2図に示した構
造を有する、本発明の超電導電界効果トランジスタを得
ることができる。
。第2図は本発明の第2の実施例による超電導ランジス
タの断面図を示す。不純物としてホウ素をI X I
0−15c+a3の濃度に含んだ(100)面方位のδ
1単結晶基板lの表面を、約1000℃の酸素中で酸化
して厚さ約200nmのSiO2よりなる絶縁膜2を形
成する。続いてホトレジストのパターンをマスクとして
化学エツチング法により絶縁膜2を加工する。約950
℃の純酸素中における熱酸化によって厚さ約10nmの
SiO2より成る酸化3を形成し、引い続いて化学的気
相成長法(CVD法)により多結晶シリコン4を約11
00nの厚さに堆積させ、次に窒化シリコン5を約50
nmの厚さに堆積させる。続いてネガ型の電子線レジス
トのパターンを電子線描画法によって形成し、これをマ
スクとしてCF4ガスによる反応性イオンエツチング法
によって窒化シリコン5と多結晶シリコン4、酸化膜3
を加工したのち、基板1を構成するシリコンを約110
0nの深さにエツチングした。次に純酸素中における熱
酸化によって露出している基板1及び多結晶シリコン4
の表面を酸化して厚さ約10nmの酸化膜を形成したの
ち、ヒ素イオンを、加速電圧25keV、注入量5 X
10 ”cm−2の条件でイオン注入し、引き続いて
850℃の温度で純窒素中において10分間の熱処理を
行い、注入したヒ素の活性化を行って不純物導入部10
を形成した。続いて水で100倍に希釈したフッ酸中で
表面のSiO2を溶かして除去する。さらに、電子ビー
ム蒸着法によってNbを堆積させて厚さ約1100nの
超電導膜を形成し、ホトレジストのパターンをマスクと
してCF4ガスを用いてNbを反応性イオンエツチング
法により超電導電極6に加工すると、第2図に示した構
造を有する、本発明の超電導電界効果トランジスタを得
ることができる。
[発明の効果]
超電導トランジスタの寸法精度が向上し、さらに寸法精
度を高く保ったまま半導体表面の清浄化が可能であるた
めに超電導体と半導体の間の界面の電気特性再現性良く
形成しこのための超電導トランジスタの特性ばらつきが
小さくなる。従って本発明の超電導トランジスタを用い
た回路は、電源電圧や温度のわずかな変動による回路の
誤動作が少なくなり、回路動作を安定にすることができ
る。
度を高く保ったまま半導体表面の清浄化が可能であるた
めに超電導体と半導体の間の界面の電気特性再現性良く
形成しこのための超電導トランジスタの特性ばらつきが
小さくなる。従って本発明の超電導トランジスタを用い
た回路は、電源電圧や温度のわずかな変動による回路の
誤動作が少なくなり、回路動作を安定にすることができ
る。
第1図は本発明の第1の実施例による超電導電界効果ト
ランジスタの一部分を示す断面図、第2図は本発明の第
2の実施例による超電導電界効果トランジスタの一部分
を示す断面図である。 1・・・基板、2・・・絶縁膜、3・・・酸化膜、4・
・・多結晶シリコン、5・・・窒化シリコン、6・・・
超電導電極。 17国 第2反 //、t 76 3 ノ0
ランジスタの一部分を示す断面図、第2図は本発明の第
2の実施例による超電導電界効果トランジスタの一部分
を示す断面図である。 1・・・基板、2・・・絶縁膜、3・・・酸化膜、4・
・・多結晶シリコン、5・・・窒化シリコン、6・・・
超電導電極。 17国 第2反 //、t 76 3 ノ0
Claims (1)
- 【特許請求の範囲】 1、半導体とこの上に設けた少なくとも2つの超電導電
極と、上記半導体上の上記超電導電極の間に絶縁膜を介
して設けられた制御電極とを少なくとも含んで構成され
る超電導電界効果トランジスタにおいて、上記制御電極
は不純物を含んだ単結晶、多結晶、もしくはアモルファ
ス状のシリコン、又はシリコンの化合物から成り、しか
もその上部に窒化シリコンの層を設けて構成されている
ことを特徴とする超電導電界効果トランジスタ。 2、特許請求の範囲第1項の超電導電界効果トランジス
タにおいて、前記超電導電極の間の距離は、前記超電導
体間に半導体を介して超電導弱結合が形成されるごとく
、半導体中のコヒーレンス長さの3〜10倍の範囲に選
ばれたことを特徴とする超電導電界効果トランジスタ。 3、特許請求の範囲第1項又は第2項の超電導電界効果
トランジスタにおいて、前記超電導電極の材料は、Nb
、Nbの化合物、Pb合金、酸化物超電導体の、単結晶
、多結晶、もしくはアモルファス状の薄膜を用いて成る
ことを特徴とする超電導電界効果トランジスタ。 4、特許請求の範囲第1項、第2項又は第3項に記載の
超電導電界効果トランジスタにおいて、前記の制御電極
の、前記の超電導電極が向い合う方向に対し直交する方
向における幅は0.15μm以下であることを特徴とす
る超電導デバイス。 5、半導体とこの上に設けた少なくとも2つの超電導電
極と、上記半導体の上記超電導電極の間に絶縁膜を介し
て設けられた制御電極とを少なくとも含んで構成される
超電導電界トランジスタにおいて、上記制御電極は不純
物を含んだ単結晶、多結晶、もしくはアモルファス状の
シリコン、又はシリコンの化合物から成り、しかもその
上群にSiO_2に比べてSiO_2の除去の際に除去
され難い材料より成る薄膜を設けて構成されたることを
特徴とする超電導電界効果トランジスタ。 6、半導体とこの上に設けた少なくとも2つの超電導電
極と、上記半導体上記超電導電極の間に絶縁膜を介して
設けられた制御電極とを少なくとも含んで構成される超
電導電界効果トランジスタにおいて、制御電極の一部分
となる導電性を有する第1の薄膜を形成する工程と、そ
の上部に第1の薄膜に比べてエッチングにおいて除去さ
れ難い第2の薄膜を形成する工程と、第2の薄膜を加工
する工程と、加工された第2の薄膜の形状を転写するご
とくに第1の薄膜を加工する工程とを含むことを特徴と
する超電導電界効果トランジスタの製造方法。 7、特許請求の範囲第6項の超電導電界効果トランジス
タにおいて、前記第1の薄膜を構成する材料には、不純
物を含んだ単結晶、多結晶、もしくはアモルファス状の
シリコン、又はシリコンの化合物より成り、前記第2の
薄膜は窒化シリコンより成ることを特徴とする超電導電
界効果トランジスタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023670A JPH01200680A (ja) | 1988-02-05 | 1988-02-05 | 超電導電界効果トランジスタ |
EP89101951A EP0327121A3 (en) | 1988-02-05 | 1989-02-03 | Superconducting field effect transistor |
US07/978,454 US5317168A (en) | 1988-02-05 | 1992-11-19 | Superconducting field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023670A JPH01200680A (ja) | 1988-02-05 | 1988-02-05 | 超電導電界効果トランジスタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01200680A true JPH01200680A (ja) | 1989-08-11 |
Family
ID=12116922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63023670A Pending JPH01200680A (ja) | 1988-02-05 | 1988-02-05 | 超電導電界効果トランジスタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01200680A (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315081A (en) * | 1976-07-27 | 1978-02-10 | Nec Corp | Junction type field effect transistor and its production |
JPS60142580A (ja) * | 1983-12-28 | 1985-07-27 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | トランジスタ装置 |
JPS61206277A (ja) * | 1985-03-11 | 1986-09-12 | Hitachi Ltd | 超電導トランジスタ |
JPS61216484A (ja) * | 1985-03-22 | 1986-09-26 | Mitsubishi Electric Corp | 電界効果トランジスタの製造方法 |
-
1988
- 1988-02-05 JP JP63023670A patent/JPH01200680A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315081A (en) * | 1976-07-27 | 1978-02-10 | Nec Corp | Junction type field effect transistor and its production |
JPS60142580A (ja) * | 1983-12-28 | 1985-07-27 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | トランジスタ装置 |
JPS61206277A (ja) * | 1985-03-11 | 1986-09-12 | Hitachi Ltd | 超電導トランジスタ |
JPS61216484A (ja) * | 1985-03-22 | 1986-09-26 | Mitsubishi Electric Corp | 電界効果トランジスタの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2670563B2 (ja) | 半導体装置の製造方法 | |
JPS6133253B2 (ja) | ||
US5637524A (en) | Method for forming wells of semiconductor device | |
US4170500A (en) | Process for forming field dielectric regions in semiconductor structures without encroaching on device regions | |
JPH01200680A (ja) | 超電導電界効果トランジスタ | |
JPH0147016B2 (ja) | ||
JPS62131588A (ja) | 超伝導トランジスタの製法 | |
US5317168A (en) | Superconducting field effect transistor | |
JPH05243510A (ja) | 半導体集積回路装置及びその製造方法 | |
JPS6259467B2 (ja) | ||
JPH0313745B2 (ja) | ||
JP2680046B2 (ja) | 超電導トランジスタおよびその製造方法 | |
JPS6229168A (ja) | 半導体装置の製造方法 | |
JPH02100382A (ja) | 電界郊果型超電導トランジスタ及びその製造方法 | |
JPS6154661A (ja) | 半導体装置の製造方法 | |
JPS62206873A (ja) | 半導体装置の製造方法 | |
JPH0629543A (ja) | 半導体装置の製造方法 | |
JPH0629541A (ja) | 半導体装置の製造方法 | |
JPS61110479A (ja) | 超電導トランジスタの構造 | |
JPH0415617B2 (ja) | ||
JPH04348519A (ja) | 半導体装置の製造方法 | |
JPS59152667A (ja) | 半導体装置の製造方法 | |
JPS61129869A (ja) | 半導体装置の製造方法 | |
JPH0298173A (ja) | 半導体記憶装置の製造方法 | |
JPH0629548A (ja) | 半導体装置の製造方法 |