JPH0112931B2 - - Google Patents

Info

Publication number
JPH0112931B2
JPH0112931B2 JP53108608A JP10860878A JPH0112931B2 JP H0112931 B2 JPH0112931 B2 JP H0112931B2 JP 53108608 A JP53108608 A JP 53108608A JP 10860878 A JP10860878 A JP 10860878A JP H0112931 B2 JPH0112931 B2 JP H0112931B2
Authority
JP
Japan
Prior art keywords
register
signal
output
fuel
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53108608A
Other languages
English (en)
Other versions
JPS5535165A (en
Inventor
Masumi Imai
Kotaro Hirasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10860878A priority Critical patent/JPS5535165A/ja
Priority to DE19792935679 priority patent/DE2935679A1/de
Priority to GB7930717A priority patent/GB2031185B/en
Priority to US06/073,085 priority patent/US4408279A/en
Publication of JPS5535165A publication Critical patent/JPS5535165A/ja
Publication of JPH0112931B2 publication Critical patent/JPH0112931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/02Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors
    • F02P7/03Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors with electrical means
    • F02P7/035Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors with electrical means without mechanical switching means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】
本発明はエンジン制御方法に関し、特にデイジ
タル計算機を使用したエンジンの制御方法に関す
る。 デイジタル計算機を用いたエンジン制御は例え
ば特開昭50−90826号公報、特開昭53−40105号公
報、特開昭53−52883号公報に開示されている。 従来より行なわれていたエンジン制御方法では
エンジンの回転に同期して燃料供給量の演算が行
なわれていた。このため計算機の単位時間当りの
演算回数はエンジンの低速回転状態では少なくな
るが一方高速回転状態では非常に多くなる。つま
り計算機の負荷変動は非常に大きくなる。計算機
のコストを低下させようとすると高速回転時には
演算時間が不足してしまい、結果として制御精度
が著しく低下し、運転性が悪くなる。 例えば、特開昭50−90826号公報に開示された
発明では第3図のフローチヤートに示された演算
はPr中断回路の出力と時間中断回路の出力とに
基づいて実行される。すなわち第3図のフローチ
ヤートの演算はエンジンの中速から高速回転にお
いてはエンジンの回転に同期したPr中断回路の
出力によつて開始される。一方エンジンの低速回
転状態ではPr中断回路の出力間隔が大きくなる
ため上記Pr中断回路の出力に加え時間中断回路
384の出力により一定時間間隔で上記第3図フ
ローチヤートの演算を開始する。 上記制御では計算機の負荷をオンジン回転速度
の上昇に伴なつて急激に増大する問題がある。 本発明の目的はエンジンの回転速度の変化に伴
なう負荷変動を押え、勝れた運転性が得られるエ
ンジンの制御方法を提供することである。 本発明の特徴は、燃料供給量の演算を所定時間
毎のタイマ割込みに応答して行なう。一方制御パ
ルス発生回路への演算出力のセツトをエンジンの
回転に同期した回転割込みにより行なう。この結
果計算機の負荷変動は極めて少なくなる。エンジ
ンの低速回転時には利用されないで無駄となる演
算結果が生じ、一方高速回転時には同一の演算結
果を数回利用することとなるがエンジンの運転性
は高品質に維持できる。さらに計算機の負荷は安
定しており、例えば他のサービスを行なうことも
可能となる。 また本発明によればエンジンの回転に同期して
制御パルス発生回路に演算結果が入力される。こ
のことにより制御パルス発生前に演算結果をパル
ス発生回路に入力し、その後入力された演算結果
により制御パルスが発生されることとなる。この
ことから制御パルス発生中に演算結果が入力され
新しい値に変更されることがなくなり誤動作が生
じにくくなる効果がある。 以下本発明の一実施例を図面を用いて説明す
る。第1図は自動車エンジンの制御システムの全
体構成図である。 エア・クリーナ12を通して取り込まれた空気
はエア・フロー・メータでその流量が計測され、
エア・フロー・メータ14から空気流量を表わす
出力QAが制御回路10へ入力される。エア・フ
ロー・メータ14には吸入空気の温度を検出する
ための吸気温センサ16が設けられ、吸入空気の
温度を表わす出力TAが制御回路10へ入力され
る。 エア・フロー・メータ14を通過した空気はス
ロツトル・チヤンバ18を通過し、インテーク・
マニホールド26から吸入弁32を介してエンジ
ン30の燃焼室34へ吸入される。燃焼室34へ
吸入される空気の量はアクセル・ペダル22と機
械的に連動してスロツトル・チヤンバ内に設けら
れているスロツトル・バルブ20の開度を変化さ
せることにより制御される。スロツトル・バルブ
20の開度はスロツトル位置検出器24によりス
ロツトル・バルブ20の位置が検出されることに
より求められ、このスロツトル・バルブ20の位
置を表わす信号QTHはスロツトル位置検出器2
4から制御回路10へ入力される。 スロツトル・チヤンバ18にはアイドル用のバ
イパス通路42とこのバイパス通路42を通る空
気量を調整するアイドル・アジヤスト・スクリユ
44が設けられている。エンジンがアイドリング
状態で運転されている場合、スロツトル・バルブ
20が全閉状態に位置している。エア・フロー・
メータ14からの吸入空気はバイパス通路42を
通して流れ、燃焼室34へ吸入される。従つてア
イドリング運転状態の吸入空気量はアイドル・ア
ジヤスト・スクリユの調整により変えられる。燃
焼室で発生するエネルギはバイパス通路42から
の空気量によりほぼ定まるので、アイドル・アジ
ヤスト・スクリユ44を調整し、エンジンへの吸
入空気量を変えることにより、アイドリング運転
状態でのエンジン回転速度を適正な値に調整する
ことができる。 スロツトル・チヤンバ18にはさらに別のバイ
パス通路46とエア・レギユレータ48が設けら
れている。エア・レギユレータ48は制御回路1
0の出力信号NIDLに応じて通路46を通る空気
量を制御し、暖気運転時のエンジン回転速度の制
御やスロツトル・バルブ20の急変時のエンジン
への適正な空気量の供給を行う。また必要に応じ
アイドル運転時の空気流量を変えることもでき
る。 次に燃料供給系について説明する。フユーエ
ル・タンク50に蓄わえられている燃料はフユー
エル・ポンプ52に吸入され、フユーエル・ダン
パ54へ圧送される。フユーエル・ダンパ54は
フユーエル・ポンプ52からの燃料の圧力脈動を
吸収し、所定圧力の燃料をフユーエル・フイルタ
56を介して燃圧レギユレータ62に送る。燃圧
レギユレータからの燃料は燃料パイプ60を介し
てフユーエル・インジエクタ66に圧送され、制
御回路10からの出力INJによりフユーエル・イ
ンジエクタ66が開き、燃料を噴射する。 フユーエル・インジエクタ66からの燃料噴射
量はこのインジエクタ66の開弁時間と、インジ
エクタへ圧送されてくる燃料圧力と燃料が噴射さ
れるインテーク・マニホールド26との圧力差で
定まる。しかしフユーエル・インジエクタ66か
らの燃料噴射量が制御回路10からの信号で決ま
る開弁時間にのみ依存することが望ましい。その
ためフユーエル・インジエクタ66への燃料圧力
とインテーク・マニホールド26のマニホールド
圧力の差が常に一定になるように燃圧レギユレー
タ62によりフユーエル・インジエクタ66への
圧送燃料圧力を制御している。燃圧レギユレータ
62には導圧管64を介してインテーク・マニホ
ールド圧が印加され、この圧力に対し燃料パイプ
60内の燃圧が一定以上になると、燃料パイプ6
0とフユーエル・リターン・パイプ58とが導通
し、過剰圧に対応した燃料がフユーエル・リター
ン・パイプ58を介してフユーエル・タンク50
へ戻される。このようにして燃料パイプ60内の
燃圧とインテーク・マニホールド内のマニホール
ド圧との差が常に一定に保たれる。 フユーエル・タンク50にはさらに燃料の気化
したガスを吸収するためのパイプ68とキヤニス
タ70が設けられ、エンジンの運転時大気開口7
4から空気を吸入し、吸収した燃料の気化ガスを
パイプ72により、インテーク・マニホールドへ
導びき、エンジン30へ導びく。 上で説明した如くフユーエル・インジエクタか
ら燃料が噴射され、吸入弁32がピストン74の
運動に同期して開き、空気と燃料の混合気が燃焼
室34へ導びかれる。この混合気が圧縮され、点
火プラグ36からの火花エネルギで燃焼すること
により、混合気の燃焼エネルギはピストンを動か
す運動エネルギに変換される。 燃焼した混合気は排気ガスとして排気弁(図示
せず)より排気管76、触媒コンバータ82、マ
フラ86を介して大気へ排気される。排気管76
には排気還流管78(以下EGRパイプと記す)
があり、この管を介して排気ガスの一部がインテ
ーク・マニホールド26へ導びかれる。すなわち
排気ガスの一部が再びエンジンの吸入側へ還流さ
れる。この還流量は排気ガス還流装置28の開弁
量で決まる。この開弁量は制御回路10の出力
EGRで制御され、さらに排気ガス還流装置28
の弁位置が電気信号に変換され、信号QEとして
制御回路10へ入力される。 排気管76にはλセンサ80が設けられてお
り、燃焼室34へ吸入された混合気の混合割合を
検出する。具体的にはO2センサ(酸素センサ)
が一般に使用され、排気ガス中の酸素濃度を検出
し、酸素濃度に応じた電圧Vλを発生する。λセ
ンサ80の出力Vλは制御回路10へ入力される。
触媒コンバータ82には排気温センサ84が設け
られており、排気温度に応じた出力TEが制御回
路10へ入力される。 制御回路10には負電源端子88と正電源端子
90が設けられている。さらに制御回路10より
上で述べた点火プラグ36の火花発生を制御する
信号IGNが点火コイル40の1次コイルに加え
られ、2次コイルに発生した高電圧が配電器38
を介して点火プラグ36へ印加され、燃焼室34
内で燃焼のための火花を発生する。さらに具体的
に述べると、点火コイル40には正電源端子92
が設けられ、さらに制御回路10には点火コイル
40の1次コイル電流を制御するためのパワート
ランジスタが設けられている。点火コイル40の
正電源端子92と制御回路10の負電源端子88
との間に、点火コイル40の1次コイルと上記パ
ワートランジスタとの直列回路を形成され、該パ
ワートランジスタが導通することにより点火コイ
ル40に電磁エネルギが蓄積され、上記パワート
ランジスタが遮断することにより上記電磁エネル
ギは高電圧を有するエネルギとして点火プラグ3
6へ印加される。 エンジン30には水温センサ96が設けられ、
エンジン冷却水94の温度を検出し、この温度に
応じた信号TWを制御回路10へ入力する。さら
にエンジン30にはエンジンの回転位置を検出す
る角度センサ98が設けられ、このセンサ98に
よりエンジンの回転に同期して例えば120度毎に
リフアレンス信号PRを発生し、またエンジンが
所定角度(例えば0.5度)回転する毎に角度信号
PCを発生する。これらの信号を制御回路10へ
入力する。 第1図においてエア・フロー・メータ14の代
りに負圧センサを使用しても良い。図中点線で示
した100は負圧センサであり、インテーク・マ
ニホールド26の負圧に応じた電圧VDを制御回
路10へ入力する。 負圧センサ10としては具体的には半導体負圧
センサが考えられる。シリコンチツプの片側にイ
ンテーク・マニホールドのブースト圧を作用さ
せ、他方に大気圧あるいは一定圧を作用させる。
場合によつては真空でもよい。このような構造と
することによりピエゾ抵抗効果等の作用によりマ
ニホールド圧に応じた電圧VDが発生し、制御回
路10へ印加される。 第2図は6気筒エンジンのクランク角に対する
点火タイミングと燃料噴射タイミングを説明する
動作図である。イはクランク角を表わし、クラン
ク角120゜毎にリフアレンス信号PRが角度センサ
98より出力される。すなわちクランク角の0゜、
120゜、240゜、360゜、480゜、600゜、720゜、毎にリフ

レンス信号PRが制御回路10へ入力される。 図でロ,ハ,ニ,ホ,ヘ,トは各々第1気筒、
第5気筒、第3気筒、第6気筒、第2気筒、第4
気筒の動作を表わす。またJ1〜J6は各気筒の
吸入弁の開弁位置を表わす。各気筒の開弁位置は
第2図に示す如く、クランク角で120゜毎にずれて
いる。この開弁位置と開弁幅はそれぞれのエンジ
ン構造により多少異なるがほぼ図に示すようにな
つている。 図でA1〜A5はフユーエル・インジエクタ6
6の開弁時期すなわち、燃料噴射時期を表わす。
各噴射時期A1〜A5の時間幅JDはフユーエ
ル・インジエクタ66の開弁時間を表わす。この
時間幅JDはフユーエル・インジエクタ66の燃
料噴射量を表わすと考えることができる。フユー
エル・インジエクタ66は各気筒に対応して各々
設けられているがこれらのインジエクタは制御回
路10内の駆動回路に対し、各々並列に接続され
ている。従つて制御回路10からの信号INJによ
り各気筒に対応したフユーエル・インジエクタは
各々同時に開弁し、燃料を噴射する。第2図ロに
示す第1気筒について説明する。クランク角360゜
において発生した基準信号INTISに同期し、制
御回路10より出力信号INJが各気筒のマニホー
ルドまたは吸気ポートに設けられたフユーエル・
インジエクタ66に印加される。これにより制御
回路10で計算された時間JDだけA2で示す如
く、燃料を噴射する。しかし第1気筒は吸気弁が
閉じているので噴射された燃料は第1気筒の吸気
ポート付近に保持され、シリンダ内には吸入され
ない。次にクランク角720゜の点で生じる基準信号
INTISに応じて再び制御回路から各フユーエ
ル・インジエクタ66へ信号が送られA3で示す
燃料噴射が行なわれる。この噴射とほぼ同時に第
1気筒の吸気弁が開弁し、この開弁でA2で噴射
した燃料とA3で噴射した燃料の両方を燃焼室へ
吸入する。他の気筒についても同様のことがいえ
る。すなわちハに示した第5気筒では吸気弁の開
弁位置J5でA2とA3で噴射された燃料が吸入
される。ニに示す第3気筒では吸気弁の開弁位置
J3でA2で噴射された燃料の一部とA3で噴射
された燃料とさらにA4で噴射された燃料の一部
が吸入される。A2で噴射された一部の燃料とA
4で噴射された一部の燃料を合せると1回分の噴
射量になる。従つて第3気筒の各吸気行程でもや
はり2回の噴射量をそれぞれ吸入することにな
る。ホ,ヘ,トに示す第6気筒、第2気筒、第4
気筒でも同様にフユーエル・インジエクタの2回
分の噴射を1回吸気行程で吸入する。以上の説明
で分かるように制御回路10よりの燃料噴射信号
INJで指定される燃料噴射量は吸入するに必要な
燃料の半分であり、フユーエル・インジエクタ6
6の2回の噴射で燃焼室34に吸入された空気に
対応した必要燃料量がえられる。 第2図でG1〜G6は第1気筒〜第6気筒に対
応した点火時期を示す。制御回路10内に設けら
れているパワートランジスタを遮断することによ
り点火コイル40の1次コイル電流を遮断し、2
次コイルに高電圧を発生する。この高電圧の発生
は点火時期G1,G5,G6,G2,G4のタイ
ミングで行なわれ、各気筒に設けられた点火プラ
グへ配電器38により配電される。これにより第
1気筒、第5気筒、第3気筒、第6気筒、第2気
筒、第4気筒の順序で各点火プラグに点火が行な
われ、燃料と空気の混合気は燃焼する。 第1図の制御回路10の詳細な回路構成を第3
図に示す。制御回路10の正電源端子90はバツ
テリの正端子110に接続され、VBなる電圧が
制御回路10へ供給される。電源電圧VBは定電
圧回路112で一定電圧PVCC、例えば5〔V〕
に一定保持される。この一定電圧PVCCはセント
ラルプロセツサ(以下CPUと記す。)、ランダム
アクセスメモリ(以下RAMと記す。)、リードオ
ンリメモリ(以下ROMと記す。)へ供給される。
さらに定電圧回路112の出力PVCCは入出力回
路120へも入力される。 入出力回路120はマルチプレクサ122、ア
ナログデイジタル変換器(以下A/D変換器と記
す。)124、パルス出力回路126、パルス入
力回路128、デイスクリート入出力回路130
等を有している。 マルチプレクサ122にはアナログ信号が入力
され、CPU114からの指令に基づいて入力信
号の1つが選択されA/D変換器124へ入力さ
れる。アナログ入力信号として、第1図に示した
各センサ、すなわち水温センサ96、吸気温セン
サ16、排気温センサ84、スロツトル位置検出
器24、排気ガス還流装置28、λセンサ80、
エア・フロー・メータQAからそれぞれ、エンジ
ンの冷却水温を表わすアナログ信号TW、吸気温
を表わすアナログ信号TA、排気ガス温度を表わ
すアナログ信号TE、スロツトル開度を表わすア
ナログ信号QTH、排気ガス還流装置の開弁状態
を表わすアナログ信号QE、吸入混合気の空気過
剰率を表わすアナログ信号Vλ、吸入空気量を表
わすアナログ信号QAがフイルタ132〜144
を介してマルチプレクサ122へ入力される。但
し、λセンサ80の出力Vλはフイルタ回路を有
する増幅器142を介してマルチプレクサへ入力
される。 この他に大気圧センサ146から大気圧を表わ
すアナログ信号VPAがマルチプレクサに入力さ
れる。また正電源端子90から抵抗150,15
2,154の直列回路に電圧VBが抵抗160を
介して供給され、さらに上記抵抗の直列回路の端
子電圧をツエナー148で一定に押えている。抵
抗150と152および抵抗152と154のそ
れぞれの接続点156,158に於ける電圧VH
とVLがマルチプレクサ122へ入力されている。 上で述べたCPU114とRAM116、ROM
118、入出力回路120の間はそれぞれデータ
バス162、アドレスバス164、コントロール
バス166で結ばれている。さらにCPU114
よりRAM116、ROM118、入出力回路1
20へそれぞれクロツク信号Eが印加され、この
クロツク信号Eに同期してデータバス162を介
してのデータの伝送が行なわれる。 入出力回路120のマルチペレクサ122には
水温TW、吸入空気温TA、排気ガス温度TE、ス
ロツトル開度QTH、排気還流量QE、λセンサ出
力Vλ、大気圧VPA、吸入空気量QA、基準電圧
VH、VL、吸入空気量QAの代りに負圧VDがそ
れぞれ入力される。これらの入力は、ROM11
8に記憶されていた命令プログラムに基づき
CPU114がアドレスバスを介してそのアドレ
スが指定され、指定されたアドレスのアナログ入
力が取込まれる。このアナログ入力はマルチプレ
クサ122からA/D変換器124へ送られ、デ
イジタル変換された値はそれぞれの入力に対応し
たレジスタに保持され、必要に応じ、コントロー
ルバス166を介して送られてくるCPU114
からの命令に基づきCPU114またはRAM11
6へ取込まれる。 パルス入力回路128には角度センサ98より
リフアレンスパルスPRおよび角度信号PCがパル
ス列の形でフイルタ168を介して入力される。
さらに車速センサ170から車速に応じた周波数
のパルスPSがパルス列の形でフイルタ172を
介してパルス入力回路128入力される。 CPU114により処理された信号はパルス出
力回路126に保持される。パルス出力回路12
6からの出力はパワー増幅回路188へ加えら
れ、この信号に基づいてフユーエル・インゼクタ
が制御される。 188,194,198はパワー増幅回路であ
り、各々点火コイル40の1次コイル電流、排気
ガス還流装置28の開度、エア・レギユレータ4
8の開度をパルス出力回路126からの出力パル
スに応じて制御する。デイスクリート入出力回路
130はスロツトル・パルブ20が全閉状態にあ
ることを検出するスイツチ174、スタータスイ
ツチ176、トランスミツシヨンギアがトツプギ
アであることを示すギアスイツチ178からの信
号をそれぞれ、フイルタ180,182,184
を介して受信し、保持する。さらにセントラルプ
ロセツサCPU114からの処理信号を保持する。
デイスクリート入出力回路130が関係する信号
は1ビツトでその内容を表示できる信号である。
次にセントラルプロセツサCPU114からの信
号により、パワー増幅回路196,200,20
2,204へデイスクリート入出力回路から信号
が送られ、それぞれ、排気ガス還流装置28を閉
じて排気ガスの還流を停止させたり、燃料ポンプ
を制御したり、触媒の異状温度を表示したり、エ
ンジンのオーバーヒートを表示したりする。 第4図はパルス出力回路126の具体的な回路
を示すもので、レジスタ群470は基準レジスタ
群であり、CPU114で処理されたデータを保
持したりあるいは予じめ定められた一定値を示す
データを保持する。このデータはCPU114よ
りデータバス162を介して送られる。保持する
レジスタの指定はアドレスバス164を介して行
なわれ、指定されたレジスタに上記データが入力
され保持される。 レジスタ群472は瞬時レジスタ群であり、エ
ンジン等の瞬時の状態を保持する。瞬時レジスタ
群472とラツチ回路476とインクリメンタ4
78とでいわゆるカウンタ機能を呈する。 出力レジスタ群474は例えばエンジンの回転
速度を保持するレジスタ430と車速を保持する
レジスタ432を有している。これらの値は、あ
る条件が満されたとき瞬時レジスタの値が読み込
まれることにより得られる。出力レジスタ群47
4に保持されているデータは、CPU114から
アドレスバス164を介して送られてくる信号に
より関係するレジスタが選ばれ、このレジスタか
らデータバス162を介してCPU114に送ら
れる。 コンパレータ480は基準レジスタ群の内の選
ばれたレジスタからの基準データと瞬時レジスタ
群の内の選ばれたレジスタからの瞬時データをそ
れぞれ入力端482と484から受け、比較動作
を行う。その比較結果は出力端486より出力さ
れる。出力端は比較結果保持回路として作用する
第1比較出力レジスタ群502の内の所定のレジ
スタにセツトされる。さらにその後第2比較出力
レジスタ群504の所定のレジスタにセツトされ
る。 基準レジスタ群470、瞬時レジスタ群47
2、出力レジスタ群474の読出しや書込み動
作、インクリメンタ478やコンパレータ480
の動作、第1比較出力レジスタ502、第2比較
出力レジスタ504への出力セツト動作は、ある
定められた時間内に処理される。また種々の処理
はステージカウンタ572のステージ順序に従
い、時分割で行なわれる。各ステージ毎に基準レ
ジスタ群470、瞬時レジスタ群472、第1お
よび第2比較結果レジスタ群のそれぞれのレジス
タ群の所定のレジスタおよび必要に応じて出力レ
ジスタ群474の内の所定のレジスタが選ばれ
る。またインクリメンタ478とコンパレータ4
80は共通に使用される。 第5図は第4図のタイミングを説明するための
図である。CPU114よりクロツク信号Eが入
出力回路120に供給される。この信号をイに示
す。このクロツク信号Eより回路574により重
なりのない2つのクロツク信号φ1とφ2を作
る。この信号をロとハに示す。このクロツク信号
φ1とφ2により第4図に示す回路は動作する。 第5図ニはステージ信号であり、クロツク信号
φ2の立上がりで切換えられ、各ステージの処理
はφ2に同期して行なわれる。第5図中で
THROUGHとはラツチ回路やレジスタ回路がイ
ネーブルの状態にあることを示し、これらの回路
の出力が入力に依存されることを示す。また、
LATCHとはこれらの回路があるデータを保持
し、この回路の出力が入力に依存しないことを示
す。 ニに示すステージ信号は基準レジスタ470や
瞬時レジスタ472の読み出し信号となり、ある
選ばれた所定のレジスタからその内容を読み出
す。ホとヘはそれぞれ基準レジスタ470と瞬時
レジスタ472の動作を示す。この動作はクロツ
クφに同期してなされる。 ラツチ回路476の動作をトに示す。この回路
はφ2がハイレベルのときTHROUGH状態とな
り、瞬時レジスタ群472より読み出されたある
特定のレジスタのデータを書き込み、クロツクφ
2がローレベルになつたときLATCH状態とな
る。このようにしてそのステージに対応した瞬時
レジスタ群の内の所定のレジスタのデータを保持
する。ラツチ回路476に保持されたデータは、
クロツク信号に同期しないインクリメンタ478
により、外部の条件に基づいて修正される。 ここでインクリメンタ478はインクリメンタ
コントローラ490からの信号に基づき次のよう
な機能を有する。第1の機能はインクリメント機
能で入力データの示す値を1つ増加させる。第2
の機能はノンインクリメント機能で、入力を増加
させないでそのまま通過させる。第3の機能はリ
セツト機能で入力を全て0の値を示すデータに変
えてしまう。 瞬時レジスタのデータの流れを見ると、瞬時レ
ジスタ群472の内の1つのレジスタがステージ
カウンタ572により選ばれ、その保持データが
ラツチ回路476とインクリメンタ478を介し
てコンパレータ480に入力される。さらにイン
クリメンタ478の出力から元の選ばれたレジス
タへ戻る閉ループができる。従つてインクリメン
タがデータに対し1つ増加させる機能を呈すると
この閉ループはカウンタとしての機能を示す。し
かしこの閉ループで瞬時レジスタ群のデータが特
定の選ばれたレジスタから出力されながら、しか
もデータが回り込んできて入力されるような状態
が生じると誤動作を示す。従つてデータを切るた
めにラツチ回路476を設けている。ラツチ回路
476はラツクφ2に同期してTHROUGH状態
になり、一方瞬時レジスタに入力が書き込まれる
THROUGH状態はクロツクφ1に同期してい
る。従つてクロツクφ2とφ1との間でデータカ
ツトが行なわれる。つまりレジスタ472の特定
のレジスタの値が変更になつてもラツチ回路47
6の出力は変化しない。 コンパレータ480もインクリメンタ476と
同様クロツク信号と同期せずに動作する。コンパ
レータ480の入力は基準レジスタ群470の内
より選ばれた1つの基準レジスタの保持データ
と、瞬時レジスタ群の内の選ばれた1つのレジス
タの保持データのラツチ回路とインクリメンタを
介して伝えられたデータとを受ける。このデータ
の比較結果は、クロツク信号φ1に同期して
THROUGH状態になる第1の比較結果レジスタ
群502へセツトされる。さらにこのデータはク
ロツクφ2でTHROUGH状態になる第2の比較
結果レジスタ群504へセツトされる。このレジ
スタ504の出力は、上記インクリメンタの各機
能を制御するための信号や、フユーエル・インジ
エクタ、点火コイル、排気ガス還流装置などのド
ライブ信号となる。 またこの信号に基づきそれぞれのステージでエ
ンジンの回転速度や車速の測定結果が瞬時レジス
タ群から出力レジスタ群474に書き込まれる。
いま、例えばエンジン回転速度を書き込む場合
は、一定時間が経過したことを表わす信号が第2
比較結果レジスタRPMWBF552に保持され、
後述する第1表のRPMステージで、このレジス
タ552の出力に基づき瞬時レジスタ462の保
持データが出力レジスタ群のレジスタ430へ入
力される。このとき第2比較結果レジスタ
RPMWBF552に一定時間経過したことを表わ
す信号が保持されていない場合はRPMステージ
になつてもレジスタ462の保持データをレジス
タ430へ入力する動作は行なわれない。 一方第2比較結果レジスタVSPWBF556に
保持される信号に基づいてステージVSPのタイ
ミングで瞬時レジスタ468のデータが車速を表
わすデータとして出力レジスタ432へ入力され
る。 エンジンの回転速度RPMおよび車速VSPを表
わすデータの出力レジスタ群474への書き込み
は次のようにして行なわれる。第5図に於いて、
ステージ信号STGがRPMまたはVSPになつてお
り、瞬時レジスタ462または468のデータが
クロツクφ2のハイレベルでラツチ回路476が
THROUGH状態となり書き込まれ、クロツクφ
2がローレベルになることにより上記データが
LATCHされる。このようにして保持されたデー
タは上記レジスタRPMWBF552または
VSPWBF556からの信号に基づいてクロツク
φ1のハイレベル同期で出力レジスタ群474は
第5図ルに示す如くTHROUGH状態となり、書
き込まれ、クロツクφ1のローレベルでLATCH
される。 出力レジスタ群474に保持されているデータ
をCPU114が読み場合は、CPU114よりア
ドレスバス164を介してレジスタを指定し、第
5図イに示すクロツク信号Eに同期してデータの
取り込みが行なわれる。 ステージ信号STGの発生回路を第6図に示す。
回路574からの信号φ1でステージカウンタ
SC570がカウントアツプされ、そのステージ
カウンタSC570の出力C0〜C6と第4図の
Tレジスタの出力を入力としてステージデコーダ
SDCに加えられる。ステージデコーダSDCは出
力として01〜017の信号をステージラツチ回路
STGLへクロツクφ2同期で書き込む。 ステージラツチSTGLのリセツト入力には第4
図のMODEレジスタの20ビツトの信号GOが入力
され、MODEレジスタの20ビツトのGO信号がロ
ーレベルとなるとSTGLの総ての出力がローレベ
ルとなり、どの処理動作も総て停止する。一方上
記GO信号がハイレベルになると再びステージ信
号STGが一定の順序で出力され、それに基づい
て処理が行なわれる。 上記ステージデコーダSDCはREAD、ONLY、
MEMORYなどを使用することにより容易に実
現できる。尚ステージラツチSTGLの出力である
ステージ信号STGの00〜6Fまでの詳細な内容を
第1表に示す。
【表】
【表】 先ず第6図のステージカウンタSC570のリ
セツト端子にゼネラルリセツト信号GRが入力さ
れ、これによつてカウンタ出力C0〜C6は総て
0となる。このゼネラルリセツト信号はこの制御
回路の起動時CPUより送られる。この状態でク
ロツク信号φ2が入力されるとφ2の立ち上りで
EGRPのステージ信号STGが出る。このステー
ジ信号に基づいてEGRPの処理を行う。次にクロ
ツクφ1でステージカウンタSC570が1つカ
ウントアツプし、さらにクロツクφ2で次のステ
ージ信号STGのINTLが出力される。このステー
ジ信号INTLSTGに基づいて、INTLの処理が行
なわれる。さらに次はステージ信号CYLSTGが
出力されCYLの処理がなされ、その次はステー
ジ信号ADVが出力されADVの処理が行なわれ
る。このようにしてステージカウンタSC570
がφ1に同期してカウントアツプを続けると、φ
2に同期してステージ信号STGが出力され、こ
の信号に応じた処理が行なわれる。 ステージカウンタSC570のC0〜C6が総
て1となるとステージ信号INJSTGが出力され、
INJの処理が行なわれ、第1表の総ての処理が終
了する。次のクロツク信号φ1でステージカウン
タSC570のC0〜C6は総て0となり、クロ
ツク信号φ2でステージ信号EGRPSTGが出力
され、STGの処理が行なわれる。このように第
1表の処理を繰り返す。 第1表に示す各ステージの処理内容を第2表に
示す。
【表】
【表】 第6図のステージラツチ回路STGLからの出力
STG0とSTG7信号は外部から入つてくる入力
と入出力回路120の内部のクロツク信号との同
期を取るための回路であり、出力STG0はステ
ージカウンタSC570のC0〜C2の総てが0
の時出力され、出力STG7はステージカウンタ
SC570のC0〜C2が総て1のとき出力され
る。 外部からの信号としては例えばエンジンの回転
に同期して発生するリフアレンス信号PR、角度
信号PCや車輪の回転に同期して生じる車速パル
スPSがある。これらのパルス周期は大きく変化
し、このままではクロツク信号φ1やφ2と同期
していない。従つて第1表のADVSTGのステー
ジ、VSPSTGのステージ、RPMSTGのステージ
でインクリメントすべきかどうかの判断ができな
い。 そこで外部からのパルス、例えばセンサからの
パルスと入出力回路のステージとの間で同期をと
ることが必要となる。しかも検出精度を向上させ
るためには角度信号PCと車速信号PSはその入力
パルスの立ち上がりと立ち下がりに対しステージ
と同期させる必要がある。リフアレンス信号PR
については立ち上がりと同期させればよい。 第6図のステージラツチ回路STGLの出力
STG0とSTG7を使用して上記同期をとつた信
号をφ2タイミングで作る。その回路を第7図に
示す。またその動作タイミングを第8図に示す。 センサ出力等の外部入力パルスとして例えばリ
フアレンスパルスPR、角度信号PC、車速信号
PSは第6図に示すTSG0出力により第7図のラ
ツチ回路600,602,604にそれぞれラツ
チされる。 第8図でイはクロツク信号φ2、ロはクロツク
信号φ1、ハとニはステージ信号STG7とSTG
0である。このステージ信号は第6図で説明した
如く、φ2に同期して発生する。ホに示す信号は
角度センサあるいは車速センサからの出力パルス
でリフアレンスパルスPRあるいは角度パルスPC
あるいは車速パルスPSを示し、この信号の発生
タイミングとパルスのデユーテイ、周期は不規則
であり、ステージ信号に対し無関係に入力され
る。 いま第8図ホに示すような信号がラツチ回路6
00,602,604に入力されたと仮定する
と、ステージ信号STG0(図のヌのパルス)で
それぞれラツチされる。従つて第8図ヘで示す如
く時点ルでハイレベルとなる。さらにヲで示すス
テージ信号STG0でも入力信号PR,PC,PSが
ハイレベルなのでラツチ回路600,602,6
04にそれぞれハイレベルがラツチされる。しか
しワで示すステージ信号STG0では入力信号
PR,PC,PSがローレベルになつているのでロ
ーレベルがラツチされる。従つてラツチ回路60
0,602,604の出力A1,A2,A3はヘ
に示すようになる。ラツチ回路606,608,
610は出力A1,A2,A3をそれぞれステー
ジ信号STG7のカでラツチするのでヨで示す時
点から立ち上がる。またステージ信号STG7の
タでもハイレベルラツチするので、ハイレベルを
続ける。従つてラツチ回路606,608,61
0の出力信号B1,B2,B3はそれぞれトに示
すようになる。 NOR回路612にはインバータ608を介し
て送られる信号A1と信号B1が入力され、同期
化されたリフアレンス信号PRSがチに示すよう
に発生する。この同期化リフアレンス信号PRS
はリフアレンス信号PRの立ち上がりを補え、ス
テージ信号STG0からSTG7のパルス幅になる。 EXCLUSIVELYOR回路614と616はそ
れぞれ信号A2とB2、信号A3とB3が入力さ
れ、信号PC,PVの立ち上がりでリに示す信号の
レが発生し、信号PC,PVの立ち下がりでソの信
号が発生する。信号レとソのデユーテイはチに示
すデユーテイと同じであり、ステージ信号STG
0とSTG7で決まる。 尚上記説明では信号PR,PC,PSが同時に同
じデユーテイで入力されたと可定したが実際はこ
れらの信号は同時には入力されずそのデユーテイ
も異なる。さらに同じ信号それ自身について見て
もその周期とデユーテイはそのつど異なる。 しかし第7図と同期化回路により一定の幅のパ
ルスとなる。このパルス幅はステージ信号STG
0とSTG7の時間差で定まる。従つてラツチ回
路600,602,604と606,608,6
10へ印加するステージ信号を変更することによ
りパルス幅を調整し変更することができる。 このパルス幅は第1表のステージのタイミング
に関係して定められる。すなわち第1表に示す如
く、INTLステージはステージカウンタC0〜C
2,C3〜C6が(1、0)の状態で割り当てら
れ、さらに(1、1)、(1、2)、(1、3)……
…と8回目のステージ毎に割り当てられている。 各ステージが1マイクロセツクに設定されてい
るので8マイクロセコンド毎にINTLステージが
割り当てられている。INTLステージでは角度信
号PCを検出してインクリメンタを制御する必要
があるので、角度センサ98の出力PCが第7図
に示す同期化回路に印加されると、同期化回路は
かならずINTLステージにひつかかるような同期
化パルスを作り、この同期化パルスPCSに基づき
INTLステージでインクリメンタコントローラを
制御する。 この同期化角度信号PCSはステージADVおよ
びRPMでも検出される。このステージADVと
RPMはそれぞれステージカウンタC0〜C2が
3と6の状態でC3〜C6の値が1つカウントア
ツプするごとに割り当てられている。そしてその
割り当てられたステージは8マイクロセコンドの
サイクルで回つている。 第7図のSTG0信号はステージカウンタのC
0〜C2の値が0のとき出力され、一方STG7
はC0〜C2が7の値のとき出力される。この出
力はC3〜C6に無関係に作られる。従つて第8
図からわかるように同期化角度信号PCSはステー
ジカウンタ出力C0〜C2が0の値から6の値ま
で必ずそのパルス幅がそんざいし、このパルスを
ステージINTL、ADV、RPMで検出し、インク
リメンタコントローラをを制御する。 上と同様に同期化リフアレンスPRSを検出す
るCYLステージはステージカウンタ出力C0〜
C2の値が2のときに必ず割り当てられている、
角度センサ98よりリフアレンスパルスPRが入
力されたとき、この入力に同じ必ずステージカウ
ンタC0〜C2が2のとき同期化リフアレンス
PRSが出ることが必要である。第7図の回路は
STG0とSTG7の間のパルス幅がでるのでこの
情報を十分満足する。 次に車輪速度を検出するVSPステージはステ
ージカウンタ出力C0〜C2の値が常に5の値の
ときに割り当てられている。従つてC0〜C2の
値が5の値のときに同期化PSS信号が出力されれ
ばよい。第7図の回路ではC0〜C2の値が0値
から6値まで出るのでこの値を満足する。第7図
でSTG0信号の代りにC0〜C2の値が4の値
のときに常にでる信号STG4を作りこの信号を
用い、さらにSTG7の信号の代りにC0〜C2
の値が6の値のときに常にでる信号STG6を用
いてもよい。この場合は信号PSが入力された場
合同期化信号PSSはステージカウンタの出力C0
〜C2の値が4と5のときに常に出力されること
になる。 ここでステージのサイクルについて説明する。
第1表においてステージカウンタ出力C0〜C6
の値が0から127までの128種類のステージ信号が
作られ、この信号が総て発生し終ると大サイクル
が完了し再び新しい大サイクルが始まる。この大
サイクルはさらに16個の小サイクルから構成さ
れ、この小サイクルは8種類のステージ信号から
構成されている。この小サイクルはステージカウ
ンタ出力C0〜C2の値が0から7のにそれぞれ
対応し、8マイクロセコンドでこの小サイクルが
完了する。 センサからのパルス出力PR,PC,PSに対し
同期を確実にかけ、同期化パルスPRS,PCS,
PSSを確実に発生させるためには上記センサから
の出力がこの小サイクル以上のパルス幅を持つこ
とが必要である。例えば角度パルスはPCはエン
ジンの回転が早くなればなるほどそのデユーテイ
が狭くなる。例えば9000回転/分では約9マイク
ロセコンドぐらいになる。従つて9000回転/分に
対し十分に同期化できるようにするにはこの小サ
イクルをこれより短かくすることが必要であり、
本実施例では8マイクロセコンドにしている。 次に第4図に示したインクリメンタ478の動
作について説明する。インクリメンタ478の詳
細な回路を第9図に示す。このインクリメンタの
機能は上で述べた如く三つあり、第1の機能は入
力データを1の値だけ増加させる機能であり、第
2の機能は入力データをリセツトする機能であ
り、第3の機能は入力データをそのまま出力する
機能である。インクリメント機能はICNT信号
で、リセツト機能はIRST信号で行なわれる。
ICNT信号がハイレベルの時、インクリメント機
能、ローレベルのときノンインクリメント機能、
IRST信号がハイレベルのとき、リセツト機能と
なり、IRST信号はICNT信号より優先する。 各処理の指令するステージ信号により、条件を
セレクトすればよい。その条件とは、同期化され
た外部入力や、第2比較結果のレジスタ群504
の出力である。また、出力レジスタ474にデー
タを転送し書き込む条件も、インクリメンタの条
件と同様である。 第10図は、燃料噴射信号INJの処理を説明し
た図である。気筒数の違いにより噴射の開始が異
なるため、CYL COUNTERとして作用するレ
ジスタ442により、リフアレンス信号PRSよ
り作られた初期角パルスINTLDをカウントし、
その結果を、気筒数に関連した値を保持している
CYLレジスタ404と比較し、大なりもしくは
等しくなつたとき、第1のレジスタの群502の
CYL FF506に1をセツトし、さらに第2の
レジスタ群504のCYLBF508に1をセツト
する。このCYL BF=1でCYL COUNTER4
42はリセツトされる。またこのCYL BF=1
のとき、噴射時間を測定するINJ TIMER450
がリセツトされる。いつも、無条件で時間により
インクリメントされてゆき、噴射時間が設定され
たINJDレジスタ412と比較し、大なりもしく
は等しいとき、第1のレジスタ群のINJ FF52
2に1がセツトされる。また、第2のレジスタ群
のINJ BF524に1がセツトされる。このINJ
BF=1のときは、時間によるインクリメントは
禁止する。このINJ BFの反転出力が燃料の噴射
時間幅となり、フユーエル・インゼクタの開弁時
間となる。 第11図は、点火を制御する信号の処理を説明
した図である。初期角パルスINTLDによつて、
ADV COUNTERとして作用するレジスタ45
2をリセツトし、同期化された角度パルスPCが
ハイレベルであることによりインクリメントされ
る。そして、INTLDから点火する角度を保持し
ているADVレジスタ414と比較し、大なりも
しくは等しいとき、第1のレジスタ502の
ADV FF526に1をセツトし、また、第2の
レジスタ504のADV BF528に1がセツト
される。このADV BFの立上りを示すADVDに
より、通電開始のDWL COUNTER454をリ
セツトし、同期化された角度パルスPCがハイレ
ベルであることによりインクリメントされる。そ
して、前回の点火位置から通電開始する角度を保
持しているDWLレジスタ416と比較し、大な
りもしくは等しいとき、第1のレジスタ502の
DWL FF530に1をセツトし、また、第2の
レジスタ504のDWL BF532に1がセツト
される。このDWL BF532の出力が点火制御
信号ING1となる。 第12図はEGR(NIDL)の処理を説明した図
である。これらは、すべて比例ソレノイドである
ため、デユーテイ制御を行う。周期を保持する
EGRPレジスタ418とオン時間を保持する
EGRDレジスタ420の2つがあり、また、
TIMERとしては、EGR TIMER456により測
定される。処理上では、EGRP STGの処理のと
きは、無条件のインクリメント、またEGRPレジ
スタ418とEGR TIMER456との保持デー
タを比較し、大なりもしくは等しいとき、第1の
レジスタ群502のEGRP FF534に1をセツ
トする。さらに、第2のレジスタ群504の
EGRP BF536は1にセツトされる。 EGRD STGの処理のときは、無条件のノンイ
ンクリメント、また、EGRP BF=1でEGR
TIMER456はリセツトされる。EGRD FF5
38は、EGRDレジスタ420とEGR TIMER
456を比較し、その結果が大なりもしくは等し
いとき、1にセツトされ、EGRD BF540は1
にセツトされる。このEGRD BF540の反転出
力がEGRの制御信号である。NIDL同様の動作で
ある。 第13図は、エンジン回転数RPM(や車速
VSP)の測定方法や処理を説明した図である。 測定方法は、ある測定時間幅をRPMW
TIMER460で決定し、その時間幅にある同期
化された角度パルスPCを計数することにより得
るものである。 時間幅を測定するRPMW TIMER460は、
無条件にインクリメントされ、また、RPMW
BF552=1のとき、リセツトされる。RPMW
FF550に1がセツトされるのは、時間幅を保
持しているRPMWレジスタ426とRPMW
TIMER460を比較し、その結果が、大なりも
しくは等しいときである。 RPMW BF552の立上りを示すRPMWDに
より、該PCを計数したRPM COUNTER462
の内容を、出力レジスタ474のRPMレジスタ
430に転送し、書き込む。また、RPMW BF
552=1のときは、RPM COUNTER462
はリセツトされる。 VSP STGの処理についても、RPMと同様で
ある。 各レジスタの機能を第3表に示す。
【表】
【表】
【表】
【表】
【表】
【表】 次に基準レジスタ470に基準データをセツト
する方法について説明する。レジスタ402,4
04,406,410はこの実施例の装置の起動
時にセツトされる。これらの値は一度セツトされ
ると変更されない。次にレジスタ408のデータ
セツトはプログラム処理により行なわれる。 レジスタ412にはフユーエル・インジエクタ
66の開弁時間を表わすデータINJDが入力され
る。このデータINJDは例えば次のようにして定
められる。エア・フロー・メータ14の出力信号
QAをマルチプレクサ122を介してアナログデ
イジタル変換器124へ取込む。ここでデイジタ
ルデータに変換されレジスタ(図示せず)に保持
される。この吸入空気量を表わすデータと第4図
のレジスタ430に保持されているデータから計
算処理あるいはマツプ状に記憶された情報により
負荷データTPを求める。さらに吸気温センサ1
6、水温センサ、大気圧センサの出力をデイジタ
ル変換し、このデータとエンジンの運転状態によ
り補正を行う。この補正係数をK1とする。さら
にバツテリ電圧もデイジタル化され、このデータ
に応じて補正が行なわれる。この補正係数をTS
とする。次にλセンサ80によつて補正が行なわ
れる。この補正係数をαとする。すなわちデータ
INJDは次の式となる。このようにしてフユ INJD=α(K1・TP+TS) ーエル・インジエクタの開弁時間が定められる。
しかしここで示した方法は1例であり、他の方法
で定めることはもちろん可能である。 レジスタ414には点火時期を表わすデータ
ADVがセツトされる。このデータADVは例えば
次のようにして作られる。上記負荷データTPと
回転数をフアクタとするマツプ状の点火データ
θIGをROM118内に保持し、このマツプより
求める。さらにこのθIGに始動補正、水温補正、
加速補正などを加える。このようにしてデータ
ADVが作られる。 レジスタ416には点火コイルの1次電流充電
時間を制御するためのデータとしてデータDWL
がセツトされる。このデータDWLは上記データ
ADVの値とバツテリ電圧のデイジタル値より計
算されて求められる。 レジスタ418と422には信号EGRの周期
を表わすデータEGRPと信号NIDLの周期を表わ
すデータNIDLPがそれぞれセツトされる。これ
らのデータは予め定められているものである。 レジスタ420にはEGR弁(排気ガス還流装
置の通電幅を表わすデータEGRDがセツトされ
る。この通電幅が大きくなると排気ガス還流装置
の開弁割合が増大し、排気ガスの還流率が増大す
る。データEGRDは例えば上記負荷データTPと
回転速度をフアクタとするマツプ状態でROM1
18内に保持される。さらにこのデータは水温な
どにより補正される。 レジスタ424にはエア・レギユレータ48の
通電幅を表わすデータNIDLDがセツトされる。
このデータは、例えば無負荷状態におけるエンジ
ンの回転速度が所定の回転速度になるようにフイ
ードバツク制御され、そのフイードバツク量とし
て定められる。 レジスタ426と428には一定時間を表わす
データRPMWとVSPWが、この実施例の回路が
起動されるときにそれぞれセツトされる。 以上の説明では燃料噴射量、点火進角、排気ガ
ス還流量などの制御にエア・フロー・センサの出
力をその入力フアクタとして使用した。しかし吸
入空気の状態を表わすセンサとしてこのエア・フ
ロー・センサ以外のセンサを使用することが可能
である。 例えばインテーク・マニホールド圧を検出する
圧力センサを用いても良い。 本発明によればステージサイクルに対し不規則
に入力されるパルス信号を同期化しているので正
確な検出ができる。 さらに上で説明した実施例ではステージサイク
ルを大サイクルと小サイクルに分けているので精
度に応じて検出サイクルを短かくでき、しかも同
期化信号を検出するステージを小サイクルの構成
の中に入れているのでエンジンの高速回転でも正
確な検出が可能である。 以上説明した実施例によればさらに基準レジス
タ群と瞬時レジスタ群と比較結果保持レジスタ群
をそなえ、ステージカウンタに基づいて上記レジ
スタ群のそれぞれの所定レジスタを比較回路へつ
なぐので、多くのエンジン制御機能を持つにもか
かわらず比較的回路は簡単となる効果がある。 次に本発明の主要部について説明する。 第14図のイ,ロは、スロツトルバルブの開弁
量と空気流量の変化を示したものである。空気流
量の過渡応答の時定数はほぼ一定であるから、ス
ロツトルバルブの開弁移動量が大きい程、空気流
量の立上りは急峻になる。すなわち、第14図に
おいて、スロツトルバルブ開弁量がの状態から
の状態へ変化した時または、の状態からの
状態へ変化した時の対応する空気流量はそれぞれ
Qa〓からQa〓、またはQa〓からQa〓の状態のように
変化する。従つて、単位時間当りの空気流量の変
化分dQa/dtが運転者の加速要求の度合を表わすこ とになる。 また、同図ハはエンジン回転数の過渡応答を示
したものであり、一般に、エンジンは空気流量の
数倍の時定数を有しているため、空気流量が一定
値に達した後も回転数の上昇は継続する。前記変
化分dQa/dtによる加速補正は第14図におけるA の期間に行われ、これのみにてもかなりの加速性
能の向上が図れるが、Bの期間では効果がない。
そこで、Aの期間で得た加速補正量を用いて、B
の期間のうちのある期間の加速補正を行うことに
より、加速性能は更に向上する。 燃料噴射時間の計算は、エンジンの回転に同期
して行う場合と、一定時間毎に行う場合がある
が、ここでは後者の例にて説明することにする。
第15図は割込要因を記憶するSTATUSレジス
タの構成を示したものであり、27ビツトは初期角
パルスINTL割込を、26ビツトはタイマ割込を表
わし、簡単のため、この2つの割込のみが存在す
るものとする。なお、INTL割込信号は、第16
図に示すように、4気筒エンジンの場合1回転に
つき2回(180゜回転毎)、6気筒エンジンの場合
3回(120゜回転毎)発生し、第10図に示した
INTLDパルス信号に対応する。 また、タイマ割込信号は、第4図に示した
INTVレジスタ408に時間Tを表わすデータを
設定しておくことにより時間T毎に発生する。本
例では、簡単のため、時間Tは、燃料噴射時間を
計算する同期に等しいものとする。 第17図は、上記割込信号にて動作する処理プ
ログラムの概略を示すフローチヤートである。
CPU114が割込を受け付けると第17図のプ
ログラムが動作し、ステツプ(イ)で第15図に示し
たSTATUSレジスタの状態を入力し、INTL割
込要因がある場合は、ステツプ(ロ)で既に計算され
ている燃料噴射時間tiを第4図及び第3表に示し
た燃料噴射時間設定用INJDレジスタ412へ出
力し、第10図に示したタイムチヤートに従つて
燃料噴射が行われる。更にステツプ(ハ)でタイマ割
込要因の有無を判断しタイマ割込要因がある場合
は、ステツプ(ニ)で燃料噴射時間tiの計算を行う。
第18図は、本発明の実施例を含む該時間Tiの算
出過程の詳細な処理フローチヤートを示したもの
である。同図において、ステツプ(a)では第1図に
示したエアーフローセンサ14にて検出される空
気流量Qaを、第3図に示したマルチプレクサ1
22及びA/D変換器124を介してCPU11
4に入力する。 次にステツプ(b)ではエンジン回転数Nを、第4
図及び第3表に示したRPMレジスタ430より
CPU114に入力する。 更にステツプ(c)では入力した前記空気流量Qa
及びエンジン回転数Nより、第(1)式を用いて基本
燃料噴射時間tpを算出する。 そしてステツプ(d)ではエンジン冷却水温Tw
吸気温Ta等のフアクターによる補正を行つて、
燃料噴射時間tiを算出する。 ステツプ(e)では加速補正を実施可能な状態にあ
るかどうか各種の条件をチエツクする。条件とし
ては、例えば、スロツトルスイツチ174が
OFF状態にあること、スタータスイツチがOFF
状態にあること、等が挙げられる。 次にステツプ(f)では前回計算時に入力した空気
流量Qa′に対する今の増分量ΔQaを求める。 ΔQa=Qa−Qa′ ……(1) ステツプ(g)では空気流量の増分が一定値ΔQac
以上かどうかをチエツクし、ΔQac以上であれば、
以下の加速増量補正を行う。 そしてステツプ(h)では第14図の期間Aにおけ
る加速補正を行うことを記憶するためのフラグ
FA=1とする。 ステツプ(i)では空気流量の増分ΔQaに比例した
加速補正噴射時間taを求める。 ta=ka・ΔQa ……(2) ここで、kaは定数である。 ステツプ(j)では噴射時間tiに加速補正分taを加
える。 次にステツプ(k)ではtanaxは、第14図の期間
Aにおける加速補正時間の最大値を示し、今回の
加速補正時間がそれを上回るかどうかをチエツク
する。tanaxは、第14図の期間Bの加速補正に
用いられる。 更にステツプ(l)ではステツプ(g)において空気流
量増加が一定値以下の場合、以前に期間Aにおけ
る加速補正が行われたかどうかチエツクし、FA
=1の時は、以下の期間Bにおける加速補正の初
期化を行う。 ステツプ(m)、(n)では期間Bにおける加速
補正の初期化として、フラグFB=1(期間Bにお
ける加速補正が実行中であることを表わす)、FA
=0(期間Aにおける加速補正終了を表わす)と
し、期間Bにおける加速補正時間初期値をtanax
とする。 そしてステツプ(o)では期間Bにおける加速
補正が実行中であるかどうかをチエツクする。 更にステツプ(p)では期間Bにおける加速補
正が実行中である時は、前回の加速補正時間ta
り一定値ΔTaを減じた値を今回の加速補正時間と
する。 ステツプ(q)、(r)では求められた加速補正
時間taの値が正か否かチエツクする。ta≦0とな
つた時は、次のステツプ(s)にて、期間Bにお
ける加速補正は終了とし、ta>0の時は、ステツ
プ(r)にて噴射時間tiを修正する。 なお、上記実施例のステツプ(i)では期間A
における加速補正時間taをΔQAに比例した値とし
たが、一定値を用いても効果は得られる。この場
合は、ステツプ(k)及びステツプ(n)の処理は不
要となる。 第19図は上記説明におけるフラグFA,FBと
燃料噴射時間における加速補正のための燃料噴射
時間つまり正常状態での燃料噴射時間に追加され
る加速増量のための燃料噴射時間の時間経過に対
する変化を示したものである。 次に本発明の理解を助けるために本発明の構成
と一実施例との対応関係を次の第4表を用いて説
明する。尚この表は本発明を一実施例に限定する
ことを意図するものではない。
【表】 本発明によればエンジン制御用計算機の負荷変
動は極めて少なくなる。 また、本発明によればタイマ割込みに応じて燃
料供給量を演算し、エンジンの回転に同期して発
生する回転割込みに応じて演算結果を制御パルス
発生回路に入力し、この入力された演算結果によ
り制御パルスが発生されることとなる。このよう
に回転割込みに応じて演算結果を制御パルス発生
回路へ入力しているので、制御パルスの終了直後
つまりパルスの立下がりの直後に制御パルス発生
回路に入力されていた演算結果が新しい値に変更
されるようなことがなくなる。従つて制御パルス
終了直後の演算結果の変更による誤動作の発生を
防止できる効果がある。
【図面の簡単な説明】
第1図は自動車用エンジンの総合的制御システ
ムを示すブロツク図、第2図は第1図の動作を説
明するための動作説明図、第3図は第1図の制御
回路10の詳細図、第4図は第3図のパルス出力
回路126の部分詳細図、第5図は第4図の動作
説明図、第6図は第4図のステージカウンタの詳
細図、第7図は同期化回路の詳細図、第8図は第
7図の動作説明図、第9図はインクレメンタコン
トローラの詳細図、第10図は燃料噴射信号
(INJ)処理の動作説明図、第11図は点火時期
制御の動作説明図、第12図はEGR信号あるい
はNIDL信号の処理を説明する動作説明図、第1
3図はエンジン回転数信号(RPM)あるいは車
速信号(VSP)を検出する際の動作説明図、第
14図はスロツトルバルブ開弁量に対する空気流
量および回転数の推移を示す図、第15図は割込
要因を記憶するSTATUSレジスタの構成図、第
16図はINTL信号による割込動作を説明する動
作説明図、第17図は割込処理のフローチヤート
図、第18図は本発明の実施例を示す燃料噴射時
間を決定する処理フローチヤート図、第19図は
本発明の実施例における加速補正の動作説明図で
ある。 10……制御回路、12……エア・クリーナ、
14……エア・フロー・メータ、16……吸気温
センサ、18……スロツトル・チヤンバ、20…
…スロツトル・バルブ、22……アクセル・ペダ
ル、24……スロツトル位置検出器、26……イ
ンテーク・マニホールド、28……排気ガス還流
装置、30……エンジン、32……吸入弁、34
……燃焼室、36……点火プラグ、38……配電
器、40……点火コイル、42……バイパス通
路、44……アイドル・アジヤスト・スクリユ、
46……バイパス通路、48……エア・レギユレ
ータ、50……フユーエル・タンク、52……フ
ユーエル・ポンプ、54……フユーエル・ダン
パ、56……フユーエル・フイルタ、58……フ
ユーエル・リターン・パイプ、60……燃料パイ
プ、62……燃圧レギユレータ、64……導圧
管、66……フユーエル・インジエクタ、68…
…パイプ、70……キヤニスタ、72……パイ
プ、74……ピストン、76……配気管、78…
…排気還流管(EGRパイプ)、80……λセン
サ、82……触媒コンバータ、84……排気温セ
ンサ、86……マフラ、88……負電源端子、9
0……正電源端子、92……正電源端子、94…
…冷却水、96……水温センサ、98……角度セ
ンサ、PR……リフアレンス信号、PC……角度信
号、110……バツテリ正端子、112……定電
圧回路(出力電圧PVCC)、114……(CPU)
セントラルプロセツサ、116……(RAM)ラ
ンダムアクセスメモリ、118……(ROM)リ
ードオンリメモリ、120……入出力回路、12
2……マルチプレクサ、124……アナログデイ
ジタル変換器、126……パルス出力回路、12
8……パルス入力回路、130……デイスクリー
ト入出力回路、132……フイルタ、134……
フイルタ、136……フイルタ、138……フイ
ルタ、140……フイルタ、142……増幅器、
144……フイルタ、146……大気圧センサ、
148……ツエナ、150,152,154……
抵抗、156,158……接続点、160……抵
抗、162……データバス、164……アドレス
バス、166……コントロールバス、168……
フイルタ、170……スピード検出器、172…
…フイルタ、174……スロツトルスイツチ(全
閉)、176……スタータスイツチ、178……
ギアスイツチ、180,182,184……フイ
ルタ、186……パワー増幅回路(燃料噴射)、
188……パワー増幅回路(点火回路)、194
……パワー増幅回路(EGR)、196……パワー
増幅回路(EGR OFF)、198……パワー増幅
回路(NIDLE)、200……パワー増幅回路(燃
料ポンプ)、202……パワー増幅回路(触媒警
報)、204……パワー増幅回路(オーバヒー
ト)、206……燃料ポンプ、208……ランプ
(触媒警報)、210……ランプ(オーバヒート)、
402……レジスタ、404……レジスタ、40
6……レジスタ、408……レジスタ、410…
…レジスタ、412……レジスタ、414……レ
ジスタ、416……レジスタ、418……レジス
タ、420……レジスタ、422……レジスタ、
424……レジスタ、426……レジスタ、42
8……レジスタ、430……レジスタ、432…
…レジスタ、442……レジスタ、444……レ
ジスタ、446……レジスタ、448……レジス
タ、450……レジスタ、452……レジスタ、
454……レジスタ、456……レジスタ、45
8……レジスタ、460……レジスタ、462…
…レジスタ、464……レジスタ、468……レ
ジスタ、470……基準レジスタ群(RF0)、4
72……瞬時レジスタ群(RF1)、474……出
力レジスタ群(RF2)、476……ラツチ回路、
478……インクリメンタ、480……コンパレ
ータ、482……コンパレータの入力端子、48
4……コンパレータの入力端子、486……コン
パレータの出力端子、490……インクリメンタ
コントローラ、502……第1比較出力レジスタ
群(FFM)、504……第2比較出力レジスタ群
(FFS)、506……レジスタ(CYL)、508…
…レジスタ(CYL)、510……レジスタ
(INTL)、512……レジスタ(INTL)、51
4……レジスタ(INTV)、516……レジスタ
(INTV)、518……レジスタ(ENST)、52
0……レジスタ(EMST)、522……レジスタ
(INJ)、524……レジスタ(INJ)、526…
…レジスタ(ADV)、528……レジスタ
(ADV)、530……レジスタ(DWL)、532
……レジスタ(DWL)、534……レジスタ
(EGRP)、536……レジスタ(EGRP)、53
8……レジスタ(BGRD)、540……レジスタ
(BGRD)、524……レジスタ(NIDLP)、54
4……レジスタ(NIDLP)、546……レジスタ
(NIDLD)、548……レジスタ(NIDLD)、5
50……レジスタ(PPMW)、552……レジス
タ(PPMW)、554……レジスタ(VSPW)、
556……レジスタ(VSPW)、570……ステ
ージカウンタ、572……ステージデコーダ。

Claims (1)

    【特許請求の範囲】
  1. 1 エンジンの運転状態を検出し、上記検出結果
    に基づいて燃料の供給量を演算し、その演算結果
    を燃料供給量を制御するための制御パルスを発生
    するパルス発生回路にセツトし、上記制御パルス
    に基づいて燃料供給量を制御する方法において、
    エンジンの回転に同期して回転割込みを発生さ
    せ、また所定時間毎にタイマ割込みを発生させ、
    上記燃料供給量の演算をタイマ割込みに応答して
    行ない、上記回転割込みに応答して上記タイマ割
    込みによる演算結果を上記パルス発生回路へセツ
    トしたことを特徴とするエンジンの制御方法。
JP10860878A 1978-09-06 1978-09-06 Controlling acceleration of automobile engine Granted JPS5535165A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10860878A JPS5535165A (en) 1978-09-06 1978-09-06 Controlling acceleration of automobile engine
DE19792935679 DE2935679A1 (de) 1978-09-06 1979-09-04 Vorrichtung und verfahren zum steuern einer brennkraftmaschine
GB7930717A GB2031185B (en) 1978-09-06 1979-09-05 Electronic control of an internal combustion engine
US06/073,085 US4408279A (en) 1978-09-06 1979-09-06 Method and apparatus for adjusting the supply of fuel to an internal combustion engine for an acceleration condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10860878A JPS5535165A (en) 1978-09-06 1978-09-06 Controlling acceleration of automobile engine

Publications (2)

Publication Number Publication Date
JPS5535165A JPS5535165A (en) 1980-03-12
JPH0112931B2 true JPH0112931B2 (ja) 1989-03-02

Family

ID=14489104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10860878A Granted JPS5535165A (en) 1978-09-06 1978-09-06 Controlling acceleration of automobile engine

Country Status (4)

Country Link
US (1) US4408279A (ja)
JP (1) JPS5535165A (ja)
DE (1) DE2935679A1 (ja)
GB (1) GB2031185B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738642A (en) * 1980-08-19 1982-03-03 Nippon Denso Co Ltd Method of internal-combustion engine control
JPS58150039A (ja) * 1982-03-03 1983-09-06 Toyota Motor Corp 電子制御機関の空燃比の学習制御方法
DE3224030A1 (de) * 1982-06-28 1983-12-29 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur steuerung eines mikrorechners
DE3224286A1 (de) * 1982-06-28 1983-12-29 Robert Bosch Gmbh, 7000 Stuttgart Steuervorrichtung mit einem mikrorechner
JPS5951137A (ja) * 1982-09-16 1984-03-24 Toyota Motor Corp 4サイクル多気筒内燃機関の燃料噴射制御装置
JPS5974340A (ja) * 1982-10-20 1984-04-26 Hitachi Ltd 燃料噴射装置
JPS60182325A (ja) * 1984-02-28 1985-09-17 Toyota Motor Corp 内燃機関のΝOx低減方法
DE3478488D1 (en) * 1984-07-12 1989-07-06 Bosch Gmbh Robert Control apparatus for a vehicle
DE3522806A1 (de) * 1985-06-26 1987-01-08 Pierburg Gmbh & Co Kg Verfahren zur optimalen anpassung einer kraftstoffmenge
JP2865661B2 (ja) * 1987-02-18 1999-03-08 株式会社日立製作所 エンジンの状態判別型適応制御装置
JPS6445934A (en) * 1987-08-12 1989-02-20 Japan Electronic Control Syst Fuel supply controller for internal combustion engine
US5353768A (en) * 1993-11-15 1994-10-11 Ford Motor Company Fuel control system with compensation for intake valve and engine coolant temperature warm-up rates
JP3697427B2 (ja) * 2002-05-20 2005-09-21 三菱電機株式会社 車載電子制御装置
US8156269B2 (en) * 2008-11-04 2012-04-10 Renesas Electronics America Inc. Reference distribution bus
US9328690B2 (en) * 2010-10-01 2016-05-03 GM Global Technology Operations LLC System and method for controlling fuel injection timing to decrease emissions during transient engine operation
US9677495B2 (en) 2011-01-19 2017-06-13 GM Global Technology Operations LLC Fuel rail pressure control systems and methods
JP5894493B2 (ja) * 2011-08-09 2016-03-30 ルネサスエレクトロニクス株式会社 タイミング制御装置及びそれを備えた制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314232A (en) * 1976-07-23 1978-02-08 Nippon Denso Co Ltd Fuel injection quantity calculation system for internal combustion engine
JPS53142323A (en) * 1977-05-17 1978-12-12 Sanyo Electric Co Preparation of cylinder block

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339528B1 (ja) * 1971-03-06 1978-10-21
DE2243037C3 (de) * 1972-09-01 1981-04-30 Robert Bosch Gmbh, 7000 Stuttgart Elektrisch gesteuerte Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit einem im oder am Saugrohr angeordneten Luftmengenmesser
GB1441262A (en) * 1972-10-04 1976-06-30 Cav Ltd Fuel pumping apparatus
US3969614A (en) * 1973-12-12 1976-07-13 Ford Motor Company Method and apparatus for engine control
US4010717A (en) * 1975-02-03 1977-03-08 The Bendix Corporation Fuel control system having an auxiliary circuit for correcting the signals generated by the pressure sensor during transient operating conditions
JPS5232427A (en) * 1975-09-08 1977-03-11 Nippon Denso Co Ltd Electronic controlled fuel jet device for internal combustion engine
US4148283A (en) * 1976-07-19 1979-04-10 Nippondenso Co., Ltd. Rotational speed detecting apparatus for electronically-controlled fuel injection systems
JPS5340105A (en) * 1976-09-24 1978-04-12 Nippon Denso Co Ltd Automobile control unit
US4159697A (en) * 1976-10-04 1979-07-03 The Bendix Corporation Acceleration enrichment circuit for fuel injection system having potentiometer throttle position input
JPS5372931A (en) * 1976-12-10 1978-06-28 Nippon Soken Inc Internal combustion engine electronic controller
DE2702184C2 (de) * 1977-01-20 1985-03-21 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung zur Beschleunigungsanreicherung bei einer elektrisch gesteuerten Kraftstoffzufuhreinrichtung, insbesondere Kraftstoffeinspritzeinrichtung, für Brennkraftmaschinen
US4184461A (en) * 1977-09-26 1980-01-22 The Bendix Corporation Acceleration enrichment for closed loop control systems
JPS6047460B2 (ja) * 1977-10-19 1985-10-22 トヨタ自動車株式会社 燃料噴射制御装置
FR2417642A1 (fr) * 1978-02-20 1979-09-14 List Hans Moteur a injection de carburant, notamment moteur diesel avec installation de reglage de l'instant d'injection
US4244023A (en) * 1978-02-27 1981-01-06 The Bendix Corporation Microprocessor-based engine control system with acceleration enrichment control
JPS54130734A (en) * 1978-03-31 1979-10-11 Nippon Denso Co Ltd Engine electronic controller
DE2814397A1 (de) * 1978-04-04 1979-10-18 Bosch Gmbh Robert Einrichtung zur kraftstoffzumessung bei einer brennkraftmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314232A (en) * 1976-07-23 1978-02-08 Nippon Denso Co Ltd Fuel injection quantity calculation system for internal combustion engine
JPS53142323A (en) * 1977-05-17 1978-12-12 Sanyo Electric Co Preparation of cylinder block

Also Published As

Publication number Publication date
US4408279A (en) 1983-10-04
JPS5535165A (en) 1980-03-12
DE2935679C2 (ja) 1988-02-18
GB2031185B (en) 1983-03-23
DE2935679A1 (de) 1980-03-13
GB2031185A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
JPS6360220B2 (ja)
JPS623303B2 (ja)
JPS6060024B2 (ja) エンジン制御方法
JPS6218742B2 (ja)
JPS6060025B2 (ja) 自動車制御方法
JPH0112931B2 (ja)
JPS6060019B2 (ja) エンジンの制御方法
JPS623304B2 (ja)
US4274142A (en) Apparatus for detecting revolutions of an internal combustion engine
JPS6315465B2 (ja)
JPH0120301B2 (ja)
JPS6225860B2 (ja)
JPS6224616B2 (ja)
US4765297A (en) Internal-combustion engine having at least two intake valves per cylinder
JPS627373B2 (ja)
JPS627381B2 (ja)
JPS6319698B2 (ja)
US4658785A (en) Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor
JPS6315469B2 (ja)
JPS6217105B2 (ja)
JPS6318018B2 (ja)
JPS6224617B2 (ja)
JP2827491B2 (ja) 内燃機関の燃料噴射量制御装置
JPS6139501B2 (ja)
JPS623305B2 (ja)