JPS6318018B2 - - Google Patents

Info

Publication number
JPS6318018B2
JPS6318018B2 JP8948178A JP8948178A JPS6318018B2 JP S6318018 B2 JPS6318018 B2 JP S6318018B2 JP 8948178 A JP8948178 A JP 8948178A JP 8948178 A JP8948178 A JP 8948178A JP S6318018 B2 JPS6318018 B2 JP S6318018B2
Authority
JP
Japan
Prior art keywords
register
signal
output
value
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8948178A
Other languages
English (en)
Other versions
JPS5517636A (en
Inventor
Sanshiro Obara
Hiroatsu Tokuda
Hideo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8948178A priority Critical patent/JPS5517636A/ja
Publication of JPS5517636A publication Critical patent/JPS5517636A/ja
Publication of JPS6318018B2 publication Critical patent/JPS6318018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】
本発明はエンジン制御装置に関する。 エンジン制御値を基準レジスタに保持し、カウ
ンタの計数値と比較してパルスを発生し、アクチ
ユエータを駆動してエンジンを制御する方式は一
般に知られた方式である。例えば特公昭47−
38659,特公昭50−12055,特公昭47−38660,特
公昭47−38661号公報にそれぞれ開示されている。 上記方式においてエンジンの制御状態である上
記パルスの発生状態を検知して上記基準レジスタ
の保持値を変更した場合には誤動作を起すことな
く制御を行なえるが複雑となる。またデイジタル
計算機を用いる場合にはソフトウエアが複雑とな
る。一方上記パルスの発生状態を無視して基準レ
ジスタの保持値を変更すると誤動作を生じる。例
えば基準値よりカウンタの計数値が大きくなつた
との条件で点火制御等を行つた直後の基準値が書
き替えられ、再びカウンタの計数値より大きくな
ると上記点火制御動作を中断し、その後再びカウ
ンタの計数値が基準値を越えたとき点火制御が行
なわれる。このことにより制御が不安定となる。
この問題は点火制御に限らない。 本発明の目的は、エンジンの運転状態の急変に
ともなつて制御の基準値を大きく変更した場合で
も良好に制御できる電子式エンジン制御装置を提
供することである。 本発明は、エンジン制御のためのパルスの立上
りタイミングまたは立下りタイミングを示す基準
値にカウンタの計数値が達した後は上記基準値の
代りに固定値レジスタの出力をカウンタの計算値
との比較対象とする。このことにより基準値を変
更するときにカウンタとの動作状態を考慮する必
要がなく、回路が簡単となり、誤動作も防止でき
る。尚以下の実施例では固定値レジスタとしてゼ
ロレジスタ402が設けられており、このゼロレ
ジスタが選択されると基準レジスタの出力の代り
にゼロを示すデイジタル信号が比較器480へ入
力される。 次に本発明の実施例を用いて説明する。第1図
は電子式エンジン制御装置の主要構成を示すシス
テム図である。エア・クリーナ12を通して取り
込まれた空気はエア・フロー・メータでその流量
が計測され、エア・フロー・メータ14から空気
流量を表わす出力QAが制御回路10へ入力され
る。エア・フロー・メータ14には吸入空気の温
度を検出するための吸気温センサ16が設けら
れ、吸入空気の温度を表わす出力TAが制御回路
10へ入力される。 エア・フロー・メータ14を通過した空気はス
ロツトル・チヤンバ18を通過し、インテーク・
マニホールド26から吸入弁32を介してエンジ
ン30の燃焼室34へ吸入される。燃焼室34へ
吸入される空気の量はアクセル・ペダル22と機
械的に連動してスロツトル・チヤンバ内に設けら
れているスロツトル・バルブ20の開度を変化さ
せることにより制御される。スロツトル・バルブ
20の開度はスロツトル位置検出器24によりス
ロツトル・バルブ20の位置が検出されることに
より求められ、このスロツトル・バルブ20の位
置を表わす信号QTHはスロツトル位置検出器2
4から制御回路10へ入力される。 スロツトル・チヤンバ18にはアイドル用のバ
イパス通路42とこのバイパス通路42を通る空
気量を調整するアイドル・アジヤスト・スクリユ
44が設けられている。エンジンがアイドリング
状態で運転されている場合、スロツトル・バルブ
20が全閉状態に位置している。エア・フロー・
メータ14からの吸入空気はバイパス通路42を
通して流れ、燃焼室34へ吸入される。従つてア
イドリング運転状態の吸入空気量はアイドル・ア
ジヤスト・スクリユの調整により変えられる。燃
焼室で発生するエネルギはバイパス通路42から
の空気量によりほぼ定まるので、アイドル・アジ
ヤスト・スクリユ44を調整し、エンジンへの吸
入空気量を変えることにより、アイドリング運転
状態でのエンジン回転速度を適正な値に調整する
ことができる。 スロツトル・チヤンバ18にはさらに別のバイ
パス通路46とエア・レギユレータ48が設けら
れている。エア・レギユレータ48は制御回路1
0の出力信号NIDLに応じて通路46を通る空気
量を制御し、暖気運転時のエンジン回転速度の制
御信号やスロツトル・バルブ20の急変時のエン
ジンへの適正な空気量の供給を行う。また必要に
応じアイドル運転時の空気流量を変えることもで
きる。 次に燃料供給系について説明する。フユーエ
ル・タンク50に蓄わえられている燃料はフユー
エル・ポンプ52に吸入され、フユーエル・ダン
パ54へ圧送される。フユーエル・ダンパ54は
フユーエル・ポンプ52からの燃料の圧力脈動を
吸収し、所定圧力の燃料をフユーエル・フイルタ
56を介して燃圧レギユレータ62に送る。燃圧
レギユレータからの燃料は燃料パイプ60を介し
てフユーエル・インジエクタ66に圧送され、制
御回路10からの出力INJによりフユーエル・イ
ンジエクタ66が開き、燃料を噴射する。 フユーエル・インジエクタ66からの燃料噴射
量はこのインジエクタ66の開弁時間と、インジ
エクタへ圧送されてくる燃料圧力と燃料が噴射さ
れるインテーク・マニホールド26との圧力差で
定まる。しかしフユーエル・インジエクタ66か
らの燃料噴射量が制御回路10からの信号で決ま
る開弁時間にのみ依存することが望ましい。その
ためフユーエル・インジエクタ66への燃料圧力
とインテーク・マニホールド26のマニホールド
圧力の差が常に一定になるように燃圧レギユレー
タ62によりフユーエル・インジエクタ66への
圧送燃料圧力を制御している。燃圧レギユレータ
62には導圧管64を介してインテーク・マニホ
ールド圧が印加され、この圧力に対し燃料パイプ
60内の燃圧が一定以上になると、燃料パイプ6
0とフユーエル・リターン・パイプ58とが導通
し、過剰圧に対応した燃料がフユーエル・リター
ン・パイプ58を介してフユーエル・タンク50
へ戻される。このようにして燃料パイプ60内の
燃圧とインテーク・マニホールド内のマニホール
ド圧との差が常に一定に保たれる。 フユーエル・タンク50にはさらに燃料の気化
したガスを吸収するためのパイプ68とキヤニス
タ70が設けられ、エンジンの運転時大気開口7
4から空気を吸入し、吸収した燃料の気化ガスを
パイプ72により、インテーク・マニホールドへ
導びき、エンジン30へ導びく。 上で説明した如くフユーエル・インジエクタか
ら燃料がインテーク・マニホールドへ噴射され、
吸入弁32がピストン74の運動に同期して開
き、空気と燃料の混合気が燃焼室34へ導びかれ
る。この混合気が圧縮され、点火プラグ36から
の火花エネルギで燃焼することにより、混合気の
燃焼エネルギはピストンを動かす運動エネルギに
変換される。 燃焼した混合気は排気ガスとして排気弁(図示
せず)より排気管76、触媒コンバータ82、マ
フラ86を介して大気へ排気される。排気管76
には排気還流管78(以下EGRパイプと記す)
があり、この管を介して排気ガスの一部がインテ
ーク・マニホールド26へ導びかれる。すなわち
排気ガスの一部が再びエンジンの吸入側へ還流さ
れる。この還流量は排気ガス還流装置28の開弁
量で定まる。この開弁量は制御回路10の出力
EGRで制御され、さらに排気ガス還流装置28
の弁位置が電気信号に変換され、信号QEとして
制御回路10へ入力される。 排気管76にはλセンサ80が設けられてお
り、燃焼室34へ吸入された混合気の混合割合を
検出する。具体的にはO2センサ(酸素センサ)
が一般に使用され、排気ガス中の酸素濃度を検出
し、酸素濃度に応じた電圧Vλを発生する。λセ
ンサ80の出力Vλは制御回路10へ入力される。
触媒コンバータ82には排気温センサ84が設け
られており、排気温度に応じた出力TEが制御回
路10へ入力される。 制御回路10には負電源端子88と正電源端子
90が設けられている。さらに制御回路10より
上で述べた点火プラグ36の火花発生を制御する
信号IGNが点火コイル40の1次コイルに加え
られ、2次コイルに発生した高電圧が配電器38
を介して点火プラグ36へ印加され、燃焼室34
内で燃焼のための火花を発生する。さらに具体的
に述べると、点火コイル40には正電源端子92
が設けられ、さらに制御回路10には点火コイル
40の1次コイル電流を制御するためのパワート
ランジスタが設けられている。点火コイル40の
正電源端子92と制御回路10の負電源端子88
との間に、点火コイル40の1次コイルと上記パ
ワートランジスタとの直列回路を形成され、該パ
ワートランジスタが導通することにより点火コイ
ル40に電磁エネルギが蓄積され、上記パワート
ランジスタが遮断することにより上記電磁エネル
ギは高電圧を有するエネルギとして点火プラグ3
6へ印加される。 エンジン30には水温センサ96が設けられ、
エンジン冷却水94の温度を検出し、この温度に
応じた信号TWを制御回路10へ入力する。さら
にエンジン30にはエンジンの回転位置を検出す
る角度センサ98が設けられ、このセンサ98に
よりエンジンの回転に同期して例えば120度毎に
リフアレンス信号PRを発生し、またエンジンが
所定角度(例えば0.5度)回転する毎に角度信号
PCを発生する。これらの信号を制御回路10へ
入力する。 第1図においてエア・フロー・メータ14の代
りに負圧センサを使用しても良い。図中点線で示
した100は負圧センサであり、インテーク・マ
ニホールド26の負圧に応じた電圧VDを制御回
路10へ入力する。 負圧センサ10としては具体的には半導体負圧
センサが考えられる。シリコンチツプの片側にイ
ンテーク・マニホールドのブースト圧を作用さ
せ、他方に大気圧あるいは一定圧を作用させる。
場合によつては真空でもよい。このような構造と
することによりピエゾ抵抗効果等の作用によりマ
ニホールド圧に応じた電圧VDが発生し、制御回
路10へ印加される。 第2図は6気筒エンジンのクランク角に対する
燃料噴射タイミングを説明する動作図である。イ
はクランク角を表わし、クランク角120゜毎にリフ
アレンス信号PRが角度センサ98より出力され
る。すなわち、例えばクランク角の0゜,120゜,
240゜,360゜,480゜,600゜,720゜毎にリフアレンス

号PRが制御回路10へ入力される。 図でロ,ハ,ニ,ホ,ヘ,トは各々第1気筒、
第5気筒、第3気筒、第6気筒、第2気筒、第4
気筒の開弁動作を表わす。各気筒の開弁位置は第
2図に示す如く、クランク角で120゜毎にずれてい
る。この開弁位置と開弁幅はそれぞれのエンジン
構造により多少異なるがほぼ図に示すようになつ
ている。 図でチはフユーエル・インジエクタ66の開弁
時期すなわち、燃料噴射時期を表わす。各噴射時
期の時間幅はフユーエル・インジエクタ66の開
弁時間を表わす。この時間幅はフユーエル・イン
ジエクタ66の燃料噴射量を表わすと考えること
ができる。フユーエル・インジエクタ66は各気
筒の開弁に対応して制御回路10からの信号INJ
によりインテーク・マニホールドに燃料を噴射す
る。第2図ロに示す第1気筒について説明する。
クランク角0゜において発生した基準信号INTISに
同期し、制御回路10より出力信号INJがインテ
ーク・マニホールドに設けられたフユーエル・イ
ンジエクタ66に印加される。これにより制御回
路10で計算された時間JDだけ燃料を噴射する。 第1図の制御回路10の詳細な回路構成を第3
図に示す。制御回路10の正電源端子90はバツ
テリの正端子110に接続され、VBなる電圧が
制御回路10へ供給される。電源電圧VBは定電
圧回路112で一定電圧PVCC、例えば5〔V〕
に一定保持される。この一定電圧PVCCはセント
ラルプロセツサ(以下CPUと記す。)、ランダム
アクセスメモリ(以下RAMと記す。)、リードオ
ンリメモリ(以下ROMと記す。)へ供給される。
さらに定電圧回路112の出力PVCCは入出力回
路120へも入力される。 入出力回路120はマルチプレクサ122、ア
ナログデイジタル変換器124、パルス出力回路
126、パルス入力回路128、デイスクリート
入出力回路130等を有している。 マルチプレクサ122にはアナログ信号が入力
され、CPUからの指令に基づいて入力信号の1
つが選択されアナログデイジタル変換器124へ
入力される。アナログ入力信号として、第1図に
示した各センサ、すなわち水温センサ96、吸気
温センサ16、排気温センサ84、スロツトル位
置検出器24、排気ガス還流装置28、λセンサ
80、エア・フロー・メータQAからそれぞれ、
エンジンの冷却水温を表わすアナログ信号TW、
吸気温を表わすアナログ信号TA、排気ガス温度
を表わすアナログ信号TE、スロツトル開度を表
わすアナログ信号QTH、排気ガス還流装置の開
弁状態を表わすアナログ信号QE、吸入混合気の
空気過剰率を表わすアナログ信号Vλ、吸入空気
量を表わすアナログ信号QAがフイルタ132〜
144を介してマルチプレクサ122へ入力され
る。但し、λセンサ80の出力Vλはフイルタ回
路を有する増幅器142を介してマルチプレクサ
へ入力される。 この他に大気圧センサ146から大気圧を表わ
すアナログ信号VPAがマルチプレクサに入力さ
れる。また正電源端子90゜から抵抗150,15
2,154の直列回路に電圧VBが抵抗160を
介して供給され、さらに上記抵抗の直列回路の端
子電圧をツエナ148で一定に押えている。抵抗
150と152および抵抗152と154の接続
点156と158の電圧VHとVLの値がマルチ
プレクサ122へ入力されている。 上で述べたCPU114とRAM116,ROM
118、入出力回路120の間はそれぞれデータ
バス162、アドレスバス164、コントロール
バス166で結ばれている。さらにCPUより
RAM、ROM、入出力回路120へそれぞれク
ロツク信号Eが印加され、このクロツク信号Eに
同期してデータバス162を介してのデータの伝
送が行なわれる。 入出力回路120のマルチプレクサ122には
水温TW、吸入空気温TA、排気ガス温度TE、ス
ロツトル開度QTH、排気還流量QE、λセンサ出
力Vλ、大気圧VPA、吸入空気量QA、基準電圧
VH,VL、吸入空気量QAの代りに負圧VDがそ
れぞれ入力される。これらの入力は、ROM11
8に記憶されていた命令プログラムに基づき
CPU114がアドレスバスを介してそのアドレ
スが指定され、指定されたアドレスのアナログ入
力が取込まれる。このアナログ入力はマルチプレ
クサ122からアナログデイジタル変換器124
へ送られ、デイジタル変換された値はそれぞれの
入力に対応したレジスタに保持され、必要に応
じ、コントロールバス166を介して送られてく
るCPU114からの命令に基づきCPU114ま
たはRAM116へ取込まれる。 パルス入力回路128には角度センサ98より
リフアレンスパルスPRおよび角度信号PCがパル
ス列の形でフイルタ168を介して入力される。
さらに車速センサ170から車速に応じた周波数
のパルスPSがパルス列の形でフイルタ172を
介してパルス入力回路128へ入力される。 CPU114により処理された信号はパルス出
力回路126に保持される。パルス出力回路12
6からの出力はパワー増幅回路188へ加えら
れ、この信号に基づいてフユーエル・インジエク
タが制御される。 188,194,198はパワー増幅回路であ
り、各々点火コイル40の1次コイル電流、排気
ガス還流装置28の開度、エア・レギユレータ4
8の開度をパルス出力回路126からの出力パル
スに応じて制御する。デイスクリート入出力回路
130はスロツトル・バルブ20が全閉状態にあ
ることを検出するスイツチ174、スタータスイ
ツチ176、トランスミツシヨンギアがトツプギ
アであることを示すギアスイツチ178からの信
号をそれぞれ、フイルタ180,182,184
を介して受信し、保持する。さらにセントラルプ
ロセツサCPU114からの処理信号を保持する。
デイスクリート入出力回路130が関係する信号
は1ビツトでその内容を表示できる信号である。
次にセントラルプロセツサCPU114からの信
号により、パワー増幅回路196,200,20
2,204へデイスクリート入出力回路から信号
が送られ、それぞれ、排気ガス還流装置28を閉
じて排気ガスの還流を停止させたり、燃料ポンプ
を制御したり、触媒の異状温度を表示したり、エ
ンジンのオーバーヒートを表示したりする。 第4図はパルス出力回路126の具体的な回路
を示すもので、レジスタ群470は上で述べた基
準レジスタ群であり、CPU114で処理された
データを保持したりあるいは予じめ定められた一
定値を示すデータを保持する。このデータは
CPU114よりデータバス162を介して送ら
れる。保持するレジスタの指定はアドレスバス1
64を介して行なわれ、指定されたレジスタに上
記データが入力され保持される。 レジスタ群472は瞬時レジスタ群であり、エ
ンジン等の瞬時の状態を保持する。瞬時レジスタ
群472とラツチ回路476とインクリメンタ4
78とでいわゆるカウンタ機能を呈する。 出力レジスタ群474は例えばエンジンの回転
速度を保持するレジスタ430と車速を保持する
レジスタ432を有している。これらの値は、あ
る条件が満されたとき瞬時レジスタの値が読み込
まれることにより得られる。出力レジスタ群47
4に保持されているデータは、CPUからアドレ
スバスを介して送られてくる信号により関係する
レジスタが選ばれ、このレジスタからデータバス
162を介してCPU114に送られる。 コンパレータ480は基準レジスタ群の内の選
ばれたレジスタからの基準データと瞬時レジスタ
群の内の選ばれたレジスタからの瞬時データをそ
れぞれ入力端482と484から受け、比較動作
を行う。その比較結果は出力端486より出力さ
れる。出力端は比較結果保持回路として作用する
第1比較出力レジスタ群502の内の所定のレジ
スタにセツトされる。さらにその後第2比較出力
レジスタ群504の所定のレジスタにセツトされ
る。 基準レジスタ群470、瞬時レジスタ群47
2、出力レジスタ群474の読出しやや書込み動
作、インクリメンタ478やコンパレータ480
の動作、第1比較出力レジスタ502、第2比較
出力レジスタ504への出力セツト動作は、ある
定められた時間内に処理される。また種々の処理
はステージカウンタ572のステージ順序に従
い、時分割で行なわれる。各ステージ毎に基準レ
ジスタ群470、瞬時レジスタ群472、第1お
よび第2比較結果レジスタ群のそれぞれのレジス
タ群の所定のレジスタおよび必要に応じて出力レ
ジスタ群474の内の所定のレジスタが選ばれ
る。またインクリメンタ478とコンパレータ4
80は共通に使用される。 第5図は第4図のタイミングを説明するための
図である。CPU114よりクロツク信号Eが入
出力回路120に供給される。この信号をイに示
す。このクロツク信号Eより回路574により重
なりのない2つのクロツク信号φ1とφ2を作
る。この信号をロとハに示す。このクロツク信号
φ1とφ2により第4図に示す回路は動作する。 第5図ニはステージ信号であり、クロツク信号
φ2の立上がりで切換えられ、各ステージの処理
はφ2に同期して行なわれる。第5図中で
THROUGHとはラツチ回路やレジスタ回路がイ
ネーブルの状態にあることを示し、これらの回路
の出力が入力に依存されることを示す。また
LATCHとはこれらの回路があるデータを保持
し、この回路の出力が入力に依存しないことを示
す。 ニに示すステージ信号は基準レジスタ470や
瞬時レジスタ472の読み出し信号となり、ある
選ばれた所定のレジスタからその内容を読み出
す。ホとヘはそれぞれ基準レジスタ470と瞬時
レジスタ472の動作を示す。この動作はクロツ
クφ2に同期してなされる。 ラツチ回路476の動作をトに示す。この回路
はφ2がハイレベルのときTHROUGH状態とな
り、瞬時レジスタ群472より読み出されたある
特定のレジスタのデータを書き込み、クロツクφ
2がローレベルになつたときLATCH状態とな
る。このようにしてそのステージに対応した瞬時
レジスタ群の内の所定のレジスタのデータを保持
する。ラツチ回路476に保持されたデータは、
クロツク信号に同期しないインクリメンタ478
により、外部の条件に基づいて修正される。 ここでインクリメンタ478はインクリメンタ
コントローラ490からの信号に基づき次のよう
な機能を有する。第1の機能はインクリメント機
能で入力データの示す値を1つ増加させる。第2
の機能はノンインクリメント機能で、入力を増加
させないでそのまま通過させる。第3の機能はリ
セツト機能で入力を全て0の値を示すデータに変
えてしまう。 瞬時レジスタのデータの流れを見ると、瞬時レ
ジスタ群472の内の1つのレジスタがステージ
カウンタ572により選ばれ、その保持データが
ラツチ回路476とインクリメンタ478を介し
てコンパレータ480に入力される。さらにイン
クリメンタ478の出力から元の選ばれたレジス
タへ戻る閉ループができる。従つてインクリメン
タがデータに対し1つ増加させる機能を呈すると
この閉ループはカウンタとしての機能を示す。し
かしこの閉ループで瞬時レジスタ群のデータが特
定の選ばれたレジスタから出力されながら、しか
もデータが回り込んできて入力されるような状態
が生じると誤動作を示す。従つてデータを切るた
めにラツチ回路476を設けている。ラツチ回路
476はクラツクφ2に同期してTHROUGH状
態になり、一方瞬時レジスタに入力が書き込まれ
るTHROUGH状態はクロツクφ1に同期してい
る。従つてクロツクφ2とφ1との間でデータカ
ツトが行なわれる。つまりレジスタ472の特定
のレジスタの値が変更になつてもラツチ回路47
6の出力は変化しない。 コンパレータ480もインクリメンタ476と
同様クロツク信号と同期せずに動作する。コンパ
レータ480の入力は基準レジスタ群470の内
より選ばれた1つの基準レジスタの保持データ
と、瞬時レジスタ群の内の選ばれた1つのレジス
タの保持データのラツチ回路とインクリメンタを
介して伝えられたデータとを受ける。このデータ
の比較結果は、クロツク信号φ1に同期して
THROUGH状態になる第1の比較結果レジスタ
群502へセツトされる。さらにこのデータはク
ロツクφ2でTHROUGH状態になる第2の比較
結果レジスタ群504へセツトされる。このレジ
スタ504の出力は、上記インクリメンタの各機
能を制御するための信号や、フユーエル・インジ
エクタ、点火コイル、排気ガス還流装置などのド
ライブ信号となる。 またこの信号に基づきそれぞれのステージでエ
ンジンの回転速度や車速の測定結果が瞬時レジス
タ群から出力レジスタ群474に書き込まれる。
いま、例えばエンジン回転速度を書き込む場合
は、一定時間が経過したことを表わす信号が第2
比較結果レジスタRPMWBF552に保持され、
後述する第1表のRPMステージで、このレジス
タ552の出力に基づき瞬時レジスタ462の保
持データが出力レジスタ群のレジスタ430へ入
力される。このとき第2比較結果レジスタ
RPMWBF552に一定時間経過したことを表わ
す信号が保持されていない場合はRPMステージ
になつてもレジスタ462の保持データをレジス
タ430へ入力する動作は行なわれない。 一方第2比較結果レジスタVSPWBF556に
保持される信号に基づいてステージVSPのタイ
ミングで瞬時レジスタ468のデータが車速を表
わすデータとして出力レジスタ432へ入力され
る。 エンジンの回転速度RPMおよび車速VSPを表
わすデータの出力レジスタ群474への書き込み
は次のようにして行なわれる。第5図に於いて、
ステージ信号STGがRPMまたはVSPになつてお
り、瞬時レジスタ462または468のデータが
クロツクφ2のハイレベルでラツチ回路476が
THROUGH状態となり書き込まれ、クロツクφ
2がローレベルになることにより上記データが
LATCHされる。このようにして保持されたデー
タは上記レジスタRPMWBF552または
VSPWBF556からの信号に基づいてクロツク
φ1のハイレベル同期で出力レジスタ群474は
第5図ルに示す如くTHROUGH状態となり、書
き込まれ、クロツクφ1のローレベルでLATCH
される。 出力レジスタ群474に保持されているデータ
をCPU114が読む場合は、CPU114よりア
ドレスバス164を介してレジスタを指定し、第
5図イに示すクロツク信号Eに同期してデータの
取り込みが行なわれる。 ステージ信号STGの発生回路を第6図に示す。
回路574からの信号φ1でステージカウンタ
SC570がカウントアツプされ、そのステージ
カウンタSC570の出力C0〜C6と第4図の
Tレジスタの出力を入力としてステージデコーダ
SDCに加えられる。ステージデコーダSDCは出
力として01〜017の信号をステージラツチ回
路STGLへクロツクφ2同期で書き込む。 ステージラツチSTGLのリセツト入力には第4
図のMODEレジスタの20ビツトの信号GOが入力
され、MODEレジスタの20ビツトのGO信号がロ
ーレベルとなるとSTGLの総ての出力がローレベ
ルとなり、どの処理動作も総て停止する。一方上
記GO信号がハイレベルになると再びステージ信
号STGが一定の順序で出力され、それに基づい
て処理が行なわれる。 上記ステージデコーダSDCはREAD,ONLY,
MEMORYなどを使用することにより容易に実
現できる。尚ステージラツチSTGLの出力である
ステージ信号STGの00〜6Fまでの詳細な内
容を第1表に示す。
【表】
【表】 先ず第6図のステージカウンタSC570のリ
セツト端子にゼネラルリセツト信号GRが入力さ
れ、これによつてカウンタ出力C0〜C6は総て
0となる。このゼネラルリセツト信号はこの制御
回路の起動時CPUより送られる。この状態でク
ロツク信号φ2が入力されるとφ2の立ち上りで
EGRPのステージ信号STGが出る。このステー
ジ信号に基づいてEGRPの処理を行う。次にクロ
ツクφ1でステージカウンタSC570が1つカ
ウントアツプし、さらにクロツクφ2で次のステ
ージ信号STGのINTLが出力される。このステー
ジ信号INTLSTGに基づいて、INTLの処理が行
なわれる。さらに次はステージ信号CYLSTGが
出力されCYLの処理がなされ、その次はステー
ジ信号ADVが出力されADVの処理が行なわれ
る。このようにしてステージカウンタSC570
がφ1に同期してカウントアツプを続けると、φ
2に同期してステージ信号STGが出力され、こ
の信号に応じた処理が行なわれる。 ステージカウンタSC570のC0〜C6が総
て1となるとステージ信号INJSTGが出力され、
INJの処理が行なわれ、第1表の総ての処理が終
了する。次のクロツク信号φ1でステージカウン
タSC570のC0〜C6は総て0となり、クロ
ツク信号φ2でステージ信号EGRPSTGが出力
され、STGの処理が行なわれる。このように第
1表の処理を繰り返す。 第1表に示す各ステージの処理内容を第2表に
示す。
【表】
【表】 第6図のステージラツチ回路STGLからの出力
STG0とSTG7信号は外部から入つてくる入力
と入出力回路120の内部のクロツク信号との同
期を取るための回路であり、出力STG0はステ
ージカウンタSC570のC0〜C2の総てが0
の時出力され、出力STG7はステージカウンタ
SC570のC0〜C2が総て1のとき出力され
る。 外部からの信号としては例えばエンジンの回転
に同期して発生するリフアレンス信号PR、角度
信号PCや車輪の回転に同期して生じる車速パル
スPSがある。これらのパルス周期は大きく変化
し、このままではクロツク信号φ1やφ2と同期
していない。従つて第1表のADVSTGのステー
ジ、VSPSTGのステージ、RPMSTGのステージ
でインクリメントすべきかどうかの判断ができな
い。 そこで外部からのパルス、例えばセンサからの
パルスと入出力回路のステージとの間で同期をと
ることが必要となる。しかも検出精度を向上させ
るためには角度信号PCと車速信号PSはその入力
パルスの立ち上がりと立ち下がりに対しステージ
と同期させる必要がある。リフアレンス信号PR
については立ち上がりと同期させればよい。 第6図のステージラツチ回路STGLの出力
STG0とSTG7を使用して上記同期をとつた信
号φ2タイミングで作る。その回路を第7図に示
す。またその動作タイミングを第8図に示す。 センサ出力等の外部入力パルスとして例えばリ
フアレンスパルスPR、角度信号PC、車速信号
PSは第6図に示すPTG0出力により第7図のラ
ツチ回路600,602,604にそれぞれラツ
チされる。 第8図でイはクロツク信号φ2、ロはクロツク
信号φ1、ハとニはステージ信号STG7とSTG
0である。このステージ信号は第6図で説明した
如く、φ2に同期して発生する。ホに示す信号は
角度センサあるいは車速センサからの出力パルス
でリフアレンスパルスPRあるいは角度パルスPC
あるいは車速パルスPSを示し、この信号の発生
タイミングとパルスのデユーテイ、周期は不規則
であり、ステージ信号に対し無関係に入力され
る。 いま第8図ホに示すような信号がラツチ回路6
00,602,604に入力されたと仮定する
と、ステージ信号STG0(図のヌのパルス)で
それぞれラツチされる。従つて第8図ヘで示す如
く時点ルでハイレベルとなる。さらにヲで示すス
テージ信号STG0でも入力信号PR,PC,PSが
ハイレベルなのでラツチ回路600,602,6
04にそれぞれハイレベルがラツチされる。しか
しワで示すステージ信号STG0では入力信号
PR,PC,PSがローレベルになつているのでロ
ーレベルがラツチされる。従つてラツチ回路60
0,602,604の出力A1,A2,A3はヘ
に示すようになる。ラツチ回路606,608,
610は出力A1,A2,A3をそれぞれステー
ジ信号STG7のカでラツチするのでヨで示す時
点から立ち上がる。またステージ信号STG7の
タでもハイレベルをラツチするので、ハイレベル
を続ける。従つてラツチ回路606,608,6
10の出力信号B1,B2,B3はそれぞれトに
示すようになる。 NOR回路612にはインバータ608を介し
て送られる信号A1と信号B1が入力され、同期
化されたリフアレンス信号PRSがチに示すよう
に発生する。この同期化リフアレンス信号PRS
はリフアレンス信号PRの立ち上がりを捕え、ス
テージ信号STG0からSTG7のパルス幅になる。 EXCLUSIVELYOR回路614と616はそ
れぞれ信号A2とB2、信号A3とB3が入力さ
れ、信号PC,PVの立ち上がりでリに示す信号の
レが発生し、信号PC,PVの立ち下がりでソの信
号が発生する。信号レとソのデユーテイはチに示
すデユーテイと同じであり、ステージ信号STG
0とSTG7で決まる。 尚上記説明では信号PR,PC,PSが同時に同
じデユーテイで入力されたと可定したが実際はこ
れらの信号は同時には入力されずそのデユーテイ
も異なる。さらに同じ信号それ自身について見て
もその周期とデユーテイはそのつど異なる。 しかし第7図と同期化回路により一定の幅のパ
ルスとなる。このパルス幅はステージ信号STG
0とSTG7の時間差で定まる。従つてラツチ回
路600,602,604と606,608,6
10へ印加するステージ信号を変更することによ
りパルス幅を調整し変更することができる。 このパルス幅は第1表のステージのタイミング
に関係して定められる。すなわち第1表に示す如
く、INTLステージはステージカウンタC0〜C
2,C3〜C6が(1,0)の状態で割り当てら
れ、さらに(1,1),(1,2),(1,3)…と
8回目のステージ毎に割り当てられている。 各ステージが1マイクロセツクに設定されてい
るので8マイクロセツク毎にINTLステージが割
り当てられている。INTLステージでは角度信号
PCを検出してインクリメンタを制御する必要が
あるので、角度センサ98の出力PCが第7図に
示す同期化回路に印加されると、同期化回路はか
ならずINTLステージにひつかかるような同期化
パルスを作り、この同期化パルスPCSに基づき
INTLステージでインクリメンタコントローラを
制御する。 この同期化角度信号PCSはステージADVおよ
びRPMでも検出される。このステージADVと
RPMはそれぞれステージカウンタC0〜C2が
3と6の状態でC3〜C6の値が1つカウントア
ツプするごとに割り当てられている。そしてその
割り当てられたステージは8マイクロセツクのサ
イクルで回つている。 第7図のSTG0信号はステージカウンタのC
0〜C2の値が0のとき出力され、一方STG7
はC0〜C2が7の値のとき出力される。この出
力はC3〜C6に無関係に作られる。従つて第8
図からわかるように同期化角度信号PCSはステー
ジカウンタ出力C0〜C2が0の値から6の値ま
で必ずそのパルス幅がそんざいし、このパルスを
ステージINTL,ADV,RPMで検出し、インク
リメンタコントローラを制御する。 上と同様に同期化リフアレンスPRSを検出す
るCYLステージはステージカウンタ出力C0〜
C2の値が2のときに必ず割り当てられている、
角度センサ98よりリフアレンスパルスPRが入
力されたとき、この入力に同じ必ずステージカウ
ンタC0〜C2が2のとき同期化リフアレンス
PRSが出ることが必要である。第7図の回路は
STG0とSTG7の間のパルス幅がでるのでこの
情報を十分満足する。 次に車輪速度を検出するVSPステージはステ
ージカウンタ出力C0〜C2の値が常に5の値の
ときに割り当てられている。従つてC0〜C2の
値が5の値のときに同期化PSS信号が出力されれ
ばよい。第7図の回路ではC0〜C2の値が0値
から6値まで出るのでこの値を満足する。第7図
でSTG0信号の代りにC0〜C2の値が4の値
のときに常にでる信号STG4を作りこの信号を
用い、さらにSTG7の信号の代りにC0〜C2
の値が6の値のときに常にでる信号STG6を用
いてもよい。この場合は信号PSが入力された場
合同期化信号PSSはステージカウンタの出力C0
〜C2の値が4と5のときに常に出力されること
になる。 ここでステージのサイクルについて説明する。
第1表においてステージカウンタ出力C0〜C6
の値が0から127までの128種類のステージ信号が
作られ、この信号が総て発生し終ると大サイクル
が完了し再び新しい大サイクルが始まる。この大
サイクルはさらに16個の小サイクルから構成さ
れ、この小サイクルは8種類のステージ信号から
構成されている。この小サイクルはステージカウ
ンタ出力C0〜C2の値が0から7のにそれぞれ
対応し、8マイクロセツクでこの小サイクルが完
了する。 センサからのパルス出力PR,PC,PSに対し
同期を確実にかけ、同期化パルスPRS,PCS,
PSSを確実に発生させるためには上記センサから
の出力がこの小サイクル以上のパルス幅を持つこ
とが必要である。例えば角度パルスはPCはエン
ジンの回転が早くなればなるほどそのデユーテイ
が狭くなる。例えば9000回転/分では約9マイク
ロセツクくらいになる。従つて9000回転/分に対
し十分に同期化できるようにするにはこの小サイ
クルをこれより短かくすることが必要であり、本
実施例では8マイクロセツクにしている。 次に第4図に示したインクリメンタ478の動
作について説明する。インクリメンタ478の詳
細な回路を第9図に示す。このインクリメンタの
機能は上で述べた如く三つあり、第1の機能は入
力データを1の値だけ増加させる機能であり、第
2の機能は入力データをリセツトする機能であ
り、第3の機能は入力データをそのまま出力する
機能である。インクリメント機能はICNT信号
で、リセツト機能はIRST信号で行なわれる。
ICNT信号がハイレベルの時、インクリメント機
能、ローレベルのときノンインクリメント機能、
IRST信号がハイレベルのとき、リセツト機能と
なり、IRST信号はICNT信号より優先する。 各処理の指令するステージ信号により、条件を
セレクトすればよい。その条件とは、同期化され
た外部入力や、第2比較結果のレジスタ群504
の出力である。また、出力レジスタ474にデー
タを転送し書き込む条件も、インクリメンタの条
件と同様である。 第10図は、燃料噴射信号INJの処理を説明し
た図である。気筒数の違いにより噴射の開始が異
なるため、CYL COUNTERとして作用するレ
ジスタ442により、リフアレンス信号PRSよ
り作られた初期角パルスINTLDをカウントし、
その結果を、気筒数に関連した値を保持している
CYLレジスタ404と比較し、大なりもしくは
等しくなつたとき、第1のレジスタの群502の
CYL FF506に1をセツトし、さらに第2のレジ
スタ群504のCYLBF508に1をセツトす
る。このCYL BF=1でCYL COUNTER44
2はリセツトされる。またこのCYL BF=1の
とき、噴射時間を測定するINJ TIMER450が
リセツトされる。いつも、無条件で時間によりイ
ンクリメントされてゆき、噴射時間が設定された
INJDレジスタ412と比較し、“大なり”もし
くは“等しい”とき、第1のレジスタ群のINJ
FF522に1がセツトされる。また、第2のレ
ジスタ群のINJ BF524に1がセツトされる。
このINJ BF=1のときは、時間によるインクリ
メントは禁止する。このINJ BFの反転出力が燃
料の噴射時間幅となり、フユーエル・インゼクタ
の開弁時間となる。 第11図は、点火を制御する信号の処理を説明
した図である。初期角パルスINTLDによつて、
ADV COUNTERとして作用するレジスタ45
2をリセツトし、同期化された角度パルスPCが
ハイレベルであることによりインクリメントされ
る。そして、INTLDから点火する角度を保持し
ているADVレジスタ414と比較し、大なりも
しくは等しいとき、第1のレジスタ502の
ADV FF526に1をセツトし、また、第2の
レジスタ504のADV BF528に1がセツト
される。このADV BFの立上りを示すADVDに
より、通電開始のDWL COUNTER454をリ
セツトし、同期化された角度パルスPCがハイレ
ベルであることによりインクリメントされる。そ
して、前回の点火位置から通電開始する角度を保
持しているDWLレジスタ416と比較し、大な
りもしくは等しいとき、第1のレジスタ502の
DWL FF530に1をセツトし、また、第2の
レジスタ504のDWL BF532に1がセツト
される。このDWL BF532の出力が点火制御
信号ING1となる。 第12図はEGR(NIDL)の処理を説明した図
である。これらは、すべて比例ソレノイドである
ため、デユーテイ制御を行う。周期を保持する
EGRPレジスタ418とオン時間を保持する
EGRDレジスタ420の2つがあり、また、
TIMERとしては、EGR TIMER456により測
定される。処理上では、EGRP STGの処理のと
きは、無条件のインクリメント、またEGRPレジ
スタ418とEGR TIMER456との保持デー
タを比較し、大なりもしくは等しいとき、第1の
レジスタ群502のEGRP FF534に1をセツ
トする。さらに、第2のレジスタ群504の
EGRP BF536は1にセツトされる。 EGRD STGの処理のときは、無条件のノンイ
ンクリメント、また、EGRP BF=1でEGR
TIMER456はリセツトされる。EGRD FF5
38は、EGRDレジスタ420とEGR TIMER
456を比較し、その結果が大なりもしくは等し
いときに、1にセツトされ、EGRD BF540は
1にセツトされる。このEGRD BF540の反転
出力がEGRの制御信号である。NIDL同様の動作
である。 第13図は、エンジン回転数RPM(や車速
VSP)の測定方法や処理を説明した図である。 測定方法は、ある測定時間幅をRPMW
TIMER460で決定し、その時間幅にある同期
化された角度パルスPCを計数することにより得
るものである。 時間幅を測定するRPMW TIMER460は、
無条件にインクリメントされ、また、RPMW
BF552=1のとき、リセツトされる。RPMW
FF550に1がセツトされるのは、時間幅を保
持しているRPMWレジスタ426とRPMW
TIMER460を比較し、その結果が、大なりも
しくは等しいときである。 RPMW BF552の立上りを示すRPMWDに
より、該PCを計数したRPM COUNTER462
の内容を、出力レジスタ474のRPMレジスタ
430に転送し、書き込む。また、RPMW BF
552=1のときは、RPM COUNTER462
はリセツトされる。 VSP STGの処理についてもRPMと同様であ
る。 各レジスタの機能を第3表に示す。
【表】
【表】
【表】
【表】
【表】 次に基準レジスタ470に基準データをセツト
する方法について説明する。レジスタ402,4
04,406,410はこの実施例の装置の起動
時にセツトされる。これらの値は一度セツトされ
ると変更されない。次にレジスタ408のデータ
セツトはプログラム処理により行なわれる。 レジスタ412にはフユーエル・インジエクタ
66の開弁時間を表わすデータINJDが入力され
る。このデータINJDは例えば次のようにして定
められる。エア・フロー・メータ14の出力信号
QAをマルチプレクサ122を介してアナログデ
イジタル変換器124へ取込む。ここでデイジタ
ルデータに変換されレジスタ(図示せず)に保持
される。この吸入空気量を表わすデータと第4図
のレジスタ430に保持されているデータから計
算処理あるいはマツプ状に記憶された情報により
負荷データTPを求める。さらに吸気温センサ1
6、水温センサ、大気圧センサの出力をアナログ
デイジタル変換し、このデータとエンジンの運転
状態により補正を行う。この補正係数をK1とす
る。さらにバツテリ電圧もデイジタル化され、こ
のデータに応じて補正が行なわれる。この補正係
数をTSとする。次にλセンサ80によつて補正
が行なわれる。この補正係数をαとする。すなわ
ちデータINJDは次の式となる。このようにして
フユ INJD=α(K1・TP+TS) ーエル・インジエクタの開弁時間が定められる。
しかしここで示した方法は1例であり、他の方法
で定めることはもちろん可能である。 レジスタ414には点火時期を表わすデータ
ADVがセツトされる。このデータADVは例えば
次のようにして作られる。上記負荷データTPと
回転数をフアクタとするマツプ状の点火データ
θIGをROM118内に保持し、このマツプより
求める。さらにこのθIGに始動補正、水温補正、
加速補正などを加える。このようにしてデータ
ADVが作られる。 レジスタ416には点火コイルの1次電流充電
時間を制御するためのデータとしてデータDWL
がセツトされる。このデータDWLは上記データ
ADVの値とバツテリ電圧のデイジタル値より計
算されて求められる。 レジスタ418と422には信号EGRの周期
を表わすデータEGRPと信号NIDLの周期を表わ
すデータNIDLPがそれぞれセツトされる。これ
らのデータは予め定められているものである。 レジスタ420にはEGR弁(排気ガス還流装
置の通電幅を表わすデータEGRDがセツトされ
る。この通頂幅が大きくなると排気ガス還流装置
の開弁割合が増大し、排気ガスの還流率が増大す
る。データEGRDは例えば上記負荷データTPと
回転速度をフアクタとするマツプ状態でROM1
18内に保持される。さらにこのデータは水温な
どにより補正される。 レジスタ424にはエア・レギユレータ48の
通電幅を表わすデータNIDLDがセツトされる。
このデータは、例えば無負荷状態におけるエンジ
ンの回転速度が所定の回転速度になるようにフイ
ードバツク制御され、そのフイードバツク量とし
て定められる。 レジスタ426と428には一定時間を表わす
データRPMWとVSPWが、この実施例の回路が
起動されるときにそれぞれセツトされる。 第14図は本発明を点火時期制御IGN機能の
DWL処理を例に説明するための図である。この
機能の動作についてはすでに第11図を用いて説
明した。 点火時期角度や次の通電開始角度のデータはイ
に示すエンジンに同期したINTLDの割込信号発
生後に変更される。たとえば、第14図のロに示
すA時点でデータが変更された場合、出力信号
IGNはヘに示す破線で示すようになり、A時点
で誤点火することがある。つまり、IGN信号に
斜線で示すようなスリツトが生じる。この誤点火
をおこした場合は基準レジスタ群470や瞬時レ
ジスタ群472のそれぞれの選択レジスタの比較
が常に“以上”(“大なり”と“等しい”の両出力
を用いる。)の条件で行なわれることによる。つ
まり時点でホに示す如く、DWLREG416の
設定値が変更となり、DWLCREG454の値よ
り大きくなる。これにより、比較条件が取れなく
なり点火装置への信号IGNの信号が時点で
OFFとなる。従つてこの時点で点火コイルの1
次電流がOFFとなり、2次コイルに高電圧を生
じる。ここで誤点火が生じる。この誤点火を防止
するため次の第4表の如き制御を行なう。
【表】 例えば時点でDWLREG416の基準値より
DWLCREG454の値が大きくなると、比較器
の基準側レジスタとしてレジスタ416の代りに
ZEROREG402が接続される。さらに比較条
件は“大きい”(<)のみとなり“等しい”(=)
の条件は用いられない。次にADVREG414の
信号が出ると、DWLCのカウント値がゼロにク
リアーされ、点火が行なわれる。つまり時点と
の間点火コイルの1次コイルに1次電流が流
れ、点で遮断されて点火が行なわれる。 信号ADVDにより再び基準レジスタとして
DWLREG416がつながり、DWLREG416
とDWLCREG454の比較が行なわれる。この
時点で比較条件として“大きい”と“等しい”の
両方の条件が用いられ、以上≦であるかどうかが
判断される。 次に点でDWLCREG454の値がDWLREG
416の値以上(≦)になると、信号IGNが高
レベルとなり、DWLREG416の代りに
ZEROREG402が接続され、比較条件が“大
きい”のみとなる。今時点でCPUよりの信号
によりDWLREG416の基準設定値が変更され
たとする。しかし第4表でわかるように比較器の
基準側入力がDWLREG416からZEROREG4
02へ切り換えられているので比較器の出力には
影響がでない。従つて第14図ヘの信号は点線で
なく実線のようになり、誤点火が生じない。つま
り時点と間も点と間や点と間と同様
に(ZEROREG402の値)<(DWLC454)
の条件が保たれる。 その後、点火指令すなわち信号ADVDが発生
すると、DWLC454はADVD・DWL・ステー
ジのタイミングでリセツトされる。従つて
DWLCの出力はZEROとなり、(ZEROREG40
2の値)<(DWLC454)の条件が満されなく
なり、IGN信号は低レベルとなり、点火が行な
われる。次のDWLSTGで再びDWLREG416
とDWLCが比較され、比較条件が以上である
“≦”となる。ここでZEROREG402をセレク
トしたとき比較条件を“大きい”とし以上(≦)
としないのはZEROREGの出力をゼロの値とし
ているためであり、DWLCのカウント値がリセ
ツトされたとき、もし以上(≦)を比較条件とし
ていると(ZEROREG402の値)≦(DWLC4
54)の条件が満されてしまい。IGN信号が低
レベルにならないためである。 以上の説明はDWLREGとDWLCREGとの関係
で説明したが、ADVREG414とADVC452
との関係および、INJREGとINJTREGでも同様
のことが言える。 第15図はDWLREGとDWLCREGおよび
ADVREGとADVCREGとの比較にそれぞれ用い
た例である。 第4図の比較結果保持レジスタ群の526,5
30にはそれぞれのステージ信号ADVSTGと
DWLSTGとにより比較器480の出力がセツト
される。この出力には“大きい”(<)と“等し
い”(=)との2つの種類があり、この出力の両
方又は一方が用いられる。 ADVステージでADVレジスタ414がセレク
トされ、これとADVCとが比較されコンパレー
タ480より“等しい”(=)の出力が出ると、
フリツプフロツプ526へφ1同期でセツトされ
る。次のφ2でフリツプフロツプ528がセツト
される。従つてゲート704からはADVD信号
が出る。次にステージがすすみステージ0になる
とフリツプフロツプ704が信号STG0でリセ
ツトされる。これにより信号ADVDはゲート7
04からは出力されなくなる。次に再びADVス
テージになると、ゲート708にインヒビツトが
かかり、ゲート706によりZEROREG402
がセレクトされる。従つてコンパレータにより
ZEROREGとADVCREGが比較される。またゲ
ート714にインヒビツトがかかり、ゲート71
4の出力がでなくなる。従つてインバータ716
を介して“<”の比較条件のみがつたえられるこ
とになる。この為、第4表の時点,間および
時点,間で述べた如く比較条件は“大きい”
(<)となる。 今ADVステージについて述べたが、DWLステ
ージについても同様であり、フリツプフロツプ5
32がセツトされるとDWLREG416の代りに
ZEROREGが選ばれ、さらにゲート714がイ
ンヒビツトされ、比較条件は“以上”(≦)から
“大きい”(<)に変わる。第4表の時点でフリ
ツプフロツプ528がリセツト状態となると、ゲ
ート706がインヒビツトされ、ゲート714は
“等しい”(=)との比較条件をゲート712を出
力することになる。さらにADVステージおよび
DWLステージに応じ、ADVREGやDWLREGが
セレクトされる。 以上の説明は点火信号IGNの処理を例として
説明したが、燃料噴射信号INJの処理や、EGR,
NIDLの処理にも応用することができる。 以上述べたように、比較器48の比較条件
(≦)満足後、基準レジスタ群470の
ZEROREG402を選択し、さらに比較条件を
“大きいか(<)”のみにすることにより、基準レ
ジスタ群470のデータが急変しても、各出力処
理が誤動作することがなく、エンジンを良好に駆
動することができる。 次に本発明の構成と一実施例との対応を次の第
4表に示す。
【表】 なお、第4表は発明の理解を助けるためのみを
目的としたもので、発明の構成を実施例に沿つて
限定することを意図したものではない。
【図面の簡単な説明】
第1図は本発明の1実施例のセンサとアクチユ
エータの位置を示す配置図、第2図は第1図の動
作を説明するための動作説明図、第3図は第1図
の制御回路の詳細図、第4図は第3図の入出力回
路の部分詳細図、第5図は第4図の動作説明図、
第6図は第4図のステージカウンタの詳細図、第
7図は同期化回路の詳細図、第8図は第7図の動
作説明図、第9図はインクリメンタコントローラ
の詳細図、第10図は燃料噴射信号処理の動作説
明図、第11図は点火時期制御の動作説明図、第
12図はEGRあるいはNIDLの処理の動作説明
図、第13図はエンジン回転速度RPMあるいは
車速VSP検出の動作説明図、第14図はADVス
テージの動作を説明する説明図、第15図は第1
4図の実施例を示す回路図である。 10……制御回路、12……エア・クリーナ、
14……エア・フロー・メータ、16……吸気温
センサ、18……スロツトル・チヤンバ、20…
…スロツトル・バルブ、22……アクセル・ペダ
ル、24……スロツトル位置検出器、26……イ
ンテーク・マニホールド、28……排気ガス還流
装置、30……エンジン、32……吸入弁、34
……燃焼室、36……点火プラグ、38……配電
器、40……点火コイル、42……バイパス通
路、44……アイドル・アジヤスト・スクリユ、
46……バイパス通路、48……エア・レギユレ
ータ、50……フユーエル・タンク、52……フ
ユーエル・ポンプ、54……フユーエル・ダン
パ、56……フユーエル・フイルタ、58……フ
ユーエル・リターン・パイプ、60……燃料パイ
プ、62……燃圧レギユレータ、64……導圧
管、66……フユーエル・インジエクタ、68…
…パイプ、70……キヤニスタ、72……パイ
プ、74……ピストン、76……配気管、78…
…排気還流管(EGRパイプ)、80……λセン
サ、82……触媒コンバータ、84……排気温セ
ンサ、86……マフラ、88……負電源端子、9
0……正電源端子、92……正電源端子、94…
…冷却水、96……水温センサ、98……角度セ
ンサ、PR……リフアレンス信号、PC……角度信
号、110……バツテリ正端子、112……定電
圧回路(出力電圧PVCC)、114……(CPU)
セントラルプロセツサ、116……(RAM)ラ
ンダムアクセスメモリ、118……(ROM)リ
ードオンリメモリ、120……入出力回路、12
2……マルチプレクサ、124……アナログデイ
ジタル変換器、126……パルス出力回路、12
8……パルス入力回路、130……デイスクリー
ト入出力回路、132……フイルタ、134……
フイルタ、136……フイルタ、138……フイ
ルタ、140……フイルタ、142……増幅器、
144……フイルタ、146……大気圧センサ、
148……ツエナ、150,152,154……
抵抗、156,158……接続点、160……抵
抗、162……データバス、164……アドレス
バス、166……コントロールバス、168……
フイルタ、170……スピード検出器、172…
…フイルタ、174……スロツトルスイツチ(全
閉)、176……スタータスイツチ、178……
ギアスイツチ、180,182,184……フイ
ルタ、186……パワー増幅回路(燃料噴射)、
188……パワー増幅回路(点火回路)、194
……パワー増幅回路(EGR)、196……パワー
増幅回路(EGR OFF)、198……パワー増幅
回路(NIDLE)、200……パワー増幅回路(燃
料ポンプ)、202……パワー増幅回路(触媒警
報)、204……パワー増幅回路(オーバヒー
ト)、206……燃料ポンプ、208……ランプ
(触媒警報)、210……ランプ(オーバヒート)、
402……レジスタ、404……レジスタ、40
6……レジスタ、408……レジスタ、410…
…レジスタ、412……レジスタ、414……レ
ジスタ、416……レジスタ、418……レジス
タ、420……レジスタ、422……レジスタ、
424……レジスタ、426……レジスタ、42
8……レジスタ、430……レジスタ、432…
…レジスタ、442……レジスタ、444……レ
ジスタ、446……レジスタ、448……レジス
タ、450……レジスタ、452……レジスタ、
454……レジスタ、456……レジスタ、45
8……レジスタ、460……レジスタ、462…
…レジスタ、464……レジスタ、468……レ
ジスタ、470……基準レジスタ群(RF0)、4
72……瞬時レジスタ群(RF1)、474……
(出力レジスタ群(RF2)、476……ラツチ回
路、478……インクリメンタ、480……コン
パレータ、482……コンパレータの入力端子、
484……コンパレータの入力端子、486……
コンパレータの出力端子、490……インクリメ
ンタコントローラ、502……第1比較出力レジ
スタ群(FFM)、504……第2比較出力レジス
タ群(FFS)、506………レジスタ(CYL)、
508……レジスタ(CYL)、510……レジス
タ(INTL)、512……レジスタ(INTL)、5
14……レジスタ(INTV)、516……レジス
タ(INTV)、518……レジスタ(ENST)、5
20……レジスタ(EMST)、522……レジス
タ(INJ)、524……レジスタ(INJ)、526
……レジスタ(ADV)、528……レジスタ
(ADV)、530……レジスタ(DWL)、532
……レジスタ(DWL)、534……レジスタ
(EGRP)、536……レジスタ(EGRP)、53
8……レジスタ(BGRD)、540……レジスタ
(BGRD)、524……レジスタ(NIDLP)、54
4……レジスタ(NIDLP)、546……レジスタ
(NIDLD)、548……レジスタ(NIDLD)、5
50……レジスタ(PPMW)、552……レジス
タ(PPMW)、554……レジスタ(VSPW)、
556……レジスタ(VSPW)、570……ステ
ージカウンタ、572……ステージデコーダ。

Claims (1)

    【特許請求の範囲】
  1. 1 エンジンを制御するための情報を検知するた
    めのセンサと、所定時間またはエンジン軸の所定
    回転毎に基準タイミング信号を発生する基準タイ
    ミング信号発生回路と、該センサの出力をデイジ
    タル的に演算処理しエンジンを制御する制御値を
    基準タイミング信号の発生からの時間または回転
    角のデイジタル値の形で基準レジスタに出力する
    デイジタル計算機と、一定時間またはエンジン軸
    の一定回転毎に計数を行うカウンタと、上記基準
    レジスタの保持値と上記カウンタの上記基準タイ
    ミング信号発生からの計数値とを比較するコンパ
    レータと、上記コンパレータの出力を保持するこ
    とによりエンジンを制御する制御パルスを発生す
    るパルス発生回路と、上記パルス発生回路の出力
    パルスによりエンジンを制御するアクチユエータ
    とを備えるとともに、上記デイジタル計算機は上
    記基準レジスタの保持値と上記カウンタの計数値
    との比較条件が満足された後次の基準タイミング
    信号の発生までの間のどこかで上記制御値を上記
    基準レジスタに出力できるようになつているもの
    において、一定デイジタル値を出力する固定値レ
    ジスタと、上記基準レジスタの保持値と上記カウ
    ンタの計数値との比較条件が満足された後次の基
    準タイミング信号の発生までの間上記基準レジス
    タの保持値の代わりに上記固定値レジスタの一定
    デイジタル値を上記コンパレータに加える切り換
    え回路とを設けたことを特徴とする電子式エンジ
    ン制御装置。
JP8948178A 1978-07-24 1978-07-24 Electronic controller for engine Granted JPS5517636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8948178A JPS5517636A (en) 1978-07-24 1978-07-24 Electronic controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8948178A JPS5517636A (en) 1978-07-24 1978-07-24 Electronic controller for engine

Publications (2)

Publication Number Publication Date
JPS5517636A JPS5517636A (en) 1980-02-07
JPS6318018B2 true JPS6318018B2 (ja) 1988-04-15

Family

ID=13971919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8948178A Granted JPS5517636A (en) 1978-07-24 1978-07-24 Electronic controller for engine

Country Status (1)

Country Link
JP (1) JPS5517636A (ja)

Also Published As

Publication number Publication date
JPS5517636A (en) 1980-02-07

Similar Documents

Publication Publication Date Title
JPS6360220B2 (ja)
JPS623303B2 (ja)
US4280189A (en) Input signal processor used in electronic engine control apparatus
JPS6218742B2 (ja)
US4282573A (en) Processor interrupt device for an electronic engine control apparatus
US4276601A (en) Electronic engine control apparatus
US4274141A (en) Method and apparatus for controlling an internal combustion engine, particularly the starting up of the engine
US4373489A (en) Spark timing control system
JPS623304B2 (ja)
JPS6060019B2 (ja) エンジンの制御方法
US4530332A (en) Fuel control system for actuating injection means for controlling small fuel flows
JPH0120301B2 (ja)
JPS6315465B2 (ja)
JPS6225860B2 (ja)
US4274142A (en) Apparatus for detecting revolutions of an internal combustion engine
JPH0112931B2 (ja)
JPS6224616B2 (ja)
JPS627373B2 (ja)
JPS627381B2 (ja)
JPS6319698B2 (ja)
JPS6318018B2 (ja)
JPS623305B2 (ja)
JPS6315469B2 (ja)
JPS6224617B2 (ja)
JPS6139501B2 (ja)