JP7488632B2 - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
JP7488632B2
JP7488632B2 JP2019024361A JP2019024361A JP7488632B2 JP 7488632 B2 JP7488632 B2 JP 7488632B2 JP 2019024361 A JP2019024361 A JP 2019024361A JP 2019024361 A JP2019024361 A JP 2019024361A JP 7488632 B2 JP7488632 B2 JP 7488632B2
Authority
JP
Japan
Prior art keywords
steering
steering angle
reaction force
command value
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019024361A
Other languages
English (en)
Other versions
JP2020131783A (ja
Inventor
慎也 笠井
高太郎 椎野
絢也 高橋
勝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2019024361A priority Critical patent/JP7488632B2/ja
Priority to CN201980084382.1A priority patent/CN113382916B/zh
Priority to DE112019006222.0T priority patent/DE112019006222B4/de
Priority to PCT/JP2019/032228 priority patent/WO2020166113A1/ja
Priority to US17/425,379 priority patent/US11939013B2/en
Publication of JP2020131783A publication Critical patent/JP2020131783A/ja
Application granted granted Critical
Publication of JP7488632B2 publication Critical patent/JP7488632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、操舵軸と車両車輪実舵角の間に物理的な結合を有さないステアバイワイヤを構成する操舵制御装置に関する。
車両の操舵制御を実現する技術として、ハンドルに連結した操舵軸と車両の車輪に実舵角を発生させる機構とを物理的に結合させず、電気的信号で結合することでそれぞれを独立に制御可能なステアバイワイヤシステムが提案されている。
このようなステアバイワイヤに関し、例えば、特許文献1に記載される技術が知られている。特許文献1には、操舵角検出部によって検出した操舵角と、角度ゲインに基づいて実舵角を算出する技術が提案されている。また、特許文献1には、ステレオカメラ、レーザレーダ、或いは赤外線レーダ等の監視センサによって自車両の前方に障害物が検出され、緊急回避が必要と判断された場合には、車輪角制御部が角度ゲインα11の値を標準値よりも大きく設定する。例えば、角度ゲインα11の標準値が1/15の車両の場合、障害物検出時には角度ゲインα11を1/10に設定する。これにより、障害物検出時には、通常走行時よりも1.5倍ほど車両が曲がりやすくなるため、操縦性(障害物の回避性)が向上する旨記載されている。
特開2004-82862号公報
しかしながら特許文献1に開示される構成では、検出した操舵角と実舵角とは比例関係にあり、この比例する角度ゲインを変更することで障害物を回避できるものの、通常走行時におけるドライバの操作性の確保については考慮されていない。すなわち、特許文献1に開示される構成では、上述の角度ゲインα11が変更されることにより、それまでのドライバの操舵感覚に対し急変することとなり、場合によってはドライバの想定を超える実舵角となり、操作性の向上は望めない。
そこで、本発明は、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供する。
上記課題を解決するため、本発明に係る操舵制御装置は、操舵角が所定値よりも小さい場合は操舵トルクに基づいて実舵角指令値を演算し、前記操舵角が所定値以上の場合は操舵角に基づいて実舵角指令値を演算する演算部を備えることを特徴とする。
本発明によれば、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
片側操舵によるコーナリングの概念図である。 片側操舵によるコーナリングにおける操舵トルクおよび操舵角および実舵角指令値の時間履歴を示した図である。 図2に示すP2区間において、操舵トルクベース実舵角指令値と操舵角ベース実舵角指令値の時間履歴、及び、これらに基づく最終実舵角指令値との関係を示す図である。 実舵角指令値演算時の操舵トルクにかけるゲインと操舵角との関係を示す図である。 図2に示すP2区間における、操舵トルク、操舵角、ゲイン、及び、操舵トルクベース実舵角指令値との関係を示す図である。 図2に示すP2区間において、操舵トルクベース目標ヨーレイトと操舵角ベース目標ヨーレイトの時間履歴、及び、これらに基づく目標ヨーレイトとの関係を示す図である。 連続操舵によるコーナリングの概念図である。 連続操舵によるコーナリングにおける操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示した図である。 本発明の一実施例に係る実施例1の操舵制御装置を搭載した車両の概念図である。 図6に示す操舵制御装置の機能ブロック図である。 図7に示す操舵制御装置の実舵角指令値生成における動作説明に供されるフローチャートである。 図7に示す操舵制御装置を構成する操舵トルクベース実舵角制御部における動作説明に供されるフローチャートである。 図7に示す操舵制御装置を構成する操舵角ベース実舵角制御部における動作説明に供されるフローチャートである。 本発明の他の実施例に係る実施例2の操舵制御装置の機能ブロック図である。 本発明の他の実施例に係る実施例3の操舵制御装置を搭載した車両の概念図である。 図12に示す操舵制御装置の機能ブロック図である。 図12に示す操舵制御装置を構成する操舵トルクベース実舵角制御部における動作説明に供されるフローチャートである。 図12に示す操舵制御装置を構成する操舵角ベース実舵角制御部における動作説明に供されるフローチャートである。 本発明の他の実施例に係る実施例4の操舵制御装置を搭載した車両の概念図である。 図16に示す操舵制御装置の機能ブロック図である。 図17に示す操舵制御装置の操舵反力指令値生成における動作説明に供されるフローチャートである。 本発明の他の実施例に係る実施例5の操舵制御装置の機能ブロック図である。 本発明の他の実施例に係る実施例6の操舵制御装置を搭載した車両の概念図である。 図20に示す操舵制御装置の機能ブロック図である。 図21に示す操舵制御装置の操舵反力指令値生成における動作説明に供されるフローチャートである。
以下、本発明の実施形態について説明する。なお、本発明は、下記の実施形態に限定されず、様々な実施形態にて実施することが可能である。
具体的な実施形態の説明に先立ち、本発明の理解が容易になるよう、図1~図3を用いて、実舵角指令値生成について説明する。図1は片側操舵によるコーナリングの概念図であり、コーナーにおいて一定速度V0で時刻t=T1にて片側操舵によるコーナリングを開始し、時刻t=T4にて片側操舵によるコーナリングを終了する車両の概念図である。
図2は、図1のコース走破時の操舵トルクおよび操舵角の時間履歴と、これら操舵トルクおよび操舵角に基づいて演算される実舵角指令値の時間履歴を示す。また、ここでの実舵角指令値演算は、上述の操舵トルクと操舵角から直接演算する実舵角指令値に限定するものではない。例えば、上記操舵トルクと上記操舵角と車両モデルから目標ヨーレイト指令値を演算し、演算した目標ヨーレイト指令値に車両速度を掛け合わせて実舵角指令値を最終的に演算する方法でも良い。
図3(a)は、図2に示すP2区間において、操舵トルクベース実舵角指令値と操舵角ベース実舵角指令値の時間履歴、及び、これらに基づく最終実舵角指令値との関係を示す図である。図3(b)は、実舵角指令値演算時の操舵トルクにかけるゲインと操舵角との関係を示す図である。図3(c)は、図2に示すP2区間における、操舵トルク、操舵角、ゲイン、及び、操舵トルクベース実舵角指令値との関係を示す図である。図3(d)は、図2に示すP2区間において、操舵トルクベース目標ヨーレイトと操舵角ベース目標ヨーレイトの時間履歴、及び、これらに基づく目標ヨーレイトとの関係を示す図である。
また、本説明では、走行経路を図1に示すように、以下4つの区間(P1,P2,P3,P4)に分け、それぞれの区間の終了時刻をT1,T2,T3,T4とする。
時刻t=0~T1のとき、車両(自車両)は図1のP1区間にて直進状態であり、図2に示すようにドライバからの入力である操舵トルクおよび操舵角は0になる。したがって、この区間(P1区間)の実舵角指令値は0となる。
時刻t=T1~T2のとき、図1のP2区間にてドライバは操舵角の切り増しを始める。図2に示すように、操舵角が所定操舵角θ以下であるt=T1~t0では、操舵トルクが立ち上がり、操舵角は微小変化になる。ドライバからの操舵トルク入力が継続されて時間が経過したt=t0~T2になると、操舵角は所定操舵角θ以上になり、変化量も大きくなる。この操舵トルクおよび操舵角の変化に応じて、実舵角指令値が演算される。
図2に示す縦ストライプ領域20において例えば操舵トルクに、あるゲインKtrqを掛け合わせた、操舵トルクベース実舵角指令値δcmd_trqを実舵角指令値とし、点線領域21において例えば操舵角にあるゲインδstrを掛け合わせた操舵角ベース実舵角指令値δcmd_strを実舵角指令値とする。この時の実舵角指令値の演算は、図3(a)に示すように、P2区間において、操舵トルクベース実舵角指令値δcmd_trq(図3(a)30)と操舵角ベース実舵角指令値δcmd_str(図3(a)31)をそれぞれ演算し、最終実舵角指令値δcmd(図3(a)32)が、時間t0前後において、操舵トルクベース実舵角指令値30から操舵角ベース実舵角指令値31に遷移するように演算する。
時刻t=T2~T3のとき、図1のP3区間にてドライバは操舵角を保舵している。図2に示すように、操舵角は所定操舵角θ以上であり、実舵角指令値の演算は例えば操舵角に操舵角ゲインを掛け合わせた実舵角指令値の演算を行う。
時刻t=T3~T4のとき、図1のP4区間にてドライバは操舵角を切り戻している。図2に示すように、操舵角は所定操舵角θ以上である時刻t=T3~t1では、実舵角指令値の演算は、例えば操舵角に操舵角ゲインを掛け合わせた実舵角指令値の演算を行う。また、操舵角は所定操舵角θ以下である時刻t=t1~T4では、操舵トルクが微小になるため、実舵角指令値の演算は操舵角に基づいた実舵角指令値の演算を行う。
なお、上記の方法以外に、図3(b),図3(c)に示すように、例えば実舵角指令値演算時の操舵トルクにかけるゲインKtrq(図3(b)33)を操舵角に応じて変化させ、操舵角の絶対値が増加するのに応じてゲインKtrq(図3(c)36)を増加させ、操舵トルクベース実舵角指令値δcmd_trq(図3(c)37)を演算し、演算により得られた操舵トルクベース実舵角指令値δcmd_trqを実舵角指令値δcmd(図3(c)37)とする方法であっても良い。
実舵角指令値の作成方法として、実舵角そのものではなく、車両に発生させるヨーレイトを目標値として作成しても良い。具体的には図3(d)に示すように、操舵トルクに基づいて作成される操舵トルクベース目標ヨーレイトrcmd_trqおよび操舵角に基づいて作成される操舵角ベース目標ヨーレイトrcmd_strから目標ヨーレイトrcmdを作成し、本目標ヨーレイトが車両に発生するように実舵角指令値を演算する方法であっても良い。目標ヨーレイトから実舵角を演算する方法としては、車両速度と車両モデルを用いる方法であっても、目標ヨーレイトに車両速度に基づくゲインをかけることで作成する方法であっても良い。また目標ヨーレイトの作成方法に関しては、上述の方法に限らず、図3(d)に示したように、操舵トルクに操舵角に応じたゲインをかけることで作成する方法であっても良い。
以上の方法により、操舵角が小さい領域では操舵トルクに応じた実舵角指令値が演算され、操舵角が大きくなるに応じて、操舵角に応じた実舵角指令値が演算されることにより、微小操舵時の車両旋回応答性を向上させながら、操舵角が大きい領域では操舵角に応じた旋回性を実現でき、初期の応答性と操作性を両立することができる。また操舵初期の旋回応答性向上により、例えば通常走行時の車線変更のように小さな旋回運動のみが必要な走行シーンでは、微小な操舵角操作で走行することができ、また車両に大きな旋回運動が必要な走行タスクでは、旋回の方向に応じた操舵角操作で走行することが可能となる。
次に図4および図5を用いて操舵反力指令値生成について説明する。
図4は連続操舵によるコーナリングの概念図であり、連続S字コーナーにおいて時刻t=T1にてS字コーナリングを開始し、時刻t=T4にてS字コーナリングを終了する車両の概念図である。図5は連続操舵によるコーナリングにおける操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示した図であり、図4のコース走破時における操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示す。
本説明では、S字走行経路を図4に示すように以下4つの区間(P5,P6,P7,P8)に分け、それぞれの区間の終了時刻をT1,T2,T3,T4とする。
時刻t=0~T1のとき、図4のP5区間において、操舵角および操舵角速度および操舵角加速度が微小な場合、ドライバが操舵角を変化させず直進するシーンと判断し、操舵角が中立点で安定するように、操舵反力指令値を増加させる。増加方法は、直進走行時の車両速度に応じて増す方法であっても、正の前後加速度(加速)に応じて増やす方法であっても、直進走行時間に応じて増す方法であって良く、操舵角が直進走行時に中立点で安定するように操舵反力指令値が増加する方法であれば良い。
時刻t=T1~T2のとき、図4のP6区間において、図5の二点鎖線で囲われた領域50のように操舵角および操舵角速度および操舵角加速度の符号が一致する場合、ドライバが操舵角を変化させようと操舵角を切り増し始めているシーンと判断し、ハンドル操作がしやすいように、例えば操舵角に応じて操舵反力指令値を減少させる。
時刻t=T2~T3のとき、図4のP7区間において、図5の点線で囲われた領域51のように操舵角および操舵角加速度の符号が一致しない場合、ドライバが連続操舵しているシーンと判断し、連続操舵し易いように操舵反力指令値を維持する。
時刻t=T3~T4のとき、図4のP8区間において、図5の一点鎖線で囲われた領域52のように操舵角および操舵角加速度の符号が一致かつ操舵角および操舵角速度が符号一致しない場合、ドライバが操舵角を中立点に戻そうと操舵角を切り戻し始めているシーンと判断し、操舵角が中立点で安定するように、操舵角応じて操舵反力指令値を増加させる。
このように、操舵角増加時には操舵反力指令値を小さくし、操舵角減少時には操舵反力指令値を大きくすることにより、操舵角の変化が増えるコーナリング時にはハンドル操作が容易となり、直進走行時は操舵角の中立点付近での保舵が容易となる。
以下、図面を用いて本発明の実施例について説明する。
図6は、本発明の一実施例に係る実施例1の操舵制御装置を搭載した車両の概念図である。図6に示すように、操舵制御装置61は、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて、実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。
また、操舵制御装置61から送る信号は実舵角そのものではなく、実舵角アクチェータ610により、舵角制御を実現し得る制御指令値(信号)であれば良い。
上述の車両運動状態の情報を取得するセンサは、加速度センサ62およびジャイロセンサ63および車輪速センサ68に限定するものではない。グローバルポジショニングシステムから得られる位置座標を用いて車両速度を取得しても良く、カメラやソナーのような外界認識のセンサを用いて前後加速度や横加速度を取得しても良い。さらに、操舵制御装置61がセンサからの直接入力を持たなくても良く、例えば別の制御ユニットから通信ラインを介して必要な情報を取得する構成としても良い。
上述のドライバからの操作情報を取得するセンサは、操舵角センサ65および操舵トルクセンサ66に限定するものでなく、ステアリングホイール64の操作量を取得できれば他のセンサでも良い。また、上述の車両運動状態の情報と同様に、操舵制御装置61がセンサからの直接入力を持たなくても良く、例えば別の制御ユニットから通信ラインを介して必要な情報を取得する構成としても良い。
本実施例の操舵反力は、上述した操舵反力指令値の演算ではなく、操舵角の変化に対してバネマスダンパ系を有する疑似操舵反力発生装置612によって操舵反力を生成する。また、操舵反力生成は操舵角の変化に対するバネマスダンパ系に限るものではなく、操舵角を中立点に復元する力を発生する機構を有するものであれば良い。
通信ラインとして、信号によって異なる通信ラインおよび通信プロトコルを用いても良い。例えば、大容量のデータをやり取りする必要のある自車両走行路情報を取得するセンサとの通信にイーサネット(登録商標)を用い、各アクチェータとの通信にはController Area Network(CAN)を用いる構成であっても良い。
図7は、図6に示す操舵制御装置61の機能ブロック図である。図7に示すように、操舵制御装置61は、ドライバ操作取得部70と、自車両運動状態情報取得部71と、操舵トルクベース実舵角制御部72と、操舵角ベース実舵角制御部73と、実舵角演算部74と、指令値送信部75と、で構成される。ここで、ドライバ操作取得部70、自車両運動状態情報取得部71、操舵トルクベース実舵角制御部72、操舵角ベース実舵角制御部73、実舵角演算部74、および指令値送信部75は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
ドライバ操作取得部70は、ドライバからの操作情報(操舵角操作量,操舵トルク入力量)を取得する。
自車両運動状態情報取得部71は、上記車両運動状態の情報(車両速度,前後加速度,横加速度,など)を取得する。
操舵トルクベース実舵角制御部72は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて、操舵トルクおよび車両速度によって上記操舵トルクによる舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、タイヤ67の転舵角である実舵角そのものを目標値として演算した目標実舵角指令値であっても、車両613の旋回速度であるヨーレイトを目標値として演算した、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、保舵時(トルク,または操舵角が一定)にはヨーレイトまたは横加速度が一定になるように舵角指令値を演算する。
操舵角ベース実舵角制御部73は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、タイヤ67の転舵角である実舵角そのものを目標値として演算した目標実舵角指令値であっても、車両613の旋回速度であるヨーレイトを目標値として演算した、目標ヨーレイト指令値であっても良く、操舵トルクベース実舵角制御部72にて演算される目標値と同じ次元の目標値であれば良い。目標実舵角指令値の演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、保舵時(トルク,または操舵角が一定)にはヨーレイトまたは横加速度が一定になるように舵角指令値を演算する。
実舵角演算部74は、ドライバ操作取得部70および自車両運動状態情報取得部71および操舵トルクベース実舵角制御部72および操舵角ベース実舵角制御部73により得られた情報に基づいて、操舵トルクベース実舵角制御部72による舵角指令値から操舵トルクベースの実舵角指令値を演算し、操舵角ベース実舵角制御部73による舵角指令値から操舵角ベースの実舵角指令値を演算し、最終的な実舵角指令値を演算して指令値送信部75に送る。演算方法は、例えば上述の図1~図3で示した方法によって行われる。
指令値送信部75は、実舵角演算部74により生成された実舵角指令値に基づいて、タイヤ実舵角を制御可能な実舵角アクチュエータ610の駆動制御を行う実舵角制御ユニット69に実舵角指令値を送る。
次に、フローチャートを用いて操舵制御装置61の処理手順を説明する。図8は図7に示す操舵制御装置61の実舵角指令値生成における動作説明に供されるフローチャートである。ステップS801では、ドライバ操作取得部70および自車両運動状態情報取得部71によりドライバからの操作情報および車両運動状態の情報を取得し、ステップS802へ進む。
ステップS802では、ステップS801で取得した情報を用いて、操舵トルクベース実舵角制御部72が操舵トルクベースの舵角指令値を生成し、操舵角ベース実舵角制御部73が制御パラメータベースの舵角指令値を生成し、実舵角演算部74へ出力する。その後、ステップS803へ進む。
ステップS803では、ステップS801で取得した情報およびステップS802で取得した情報を用いて、実舵角演算部74が操舵トルクベース実舵角制御部72の操舵トルクベースの舵角指令値および操舵角ベース実舵角制御部73の操舵角ベースの舵角指令値から実舵角指令値を生成し、ステップS804へ進む。
ステップS804では、ステップS803で取得した実舵角指令値を指令値送信部75に出力し、一連の処理を終了する。
次にフローチャートを用いて操舵トルクベース実舵角制御部72の処理手順を説明する。図9は図7に示す操舵制御装置61を構成する操舵トルクベース実舵角制御部72における動作説明に供されるフローチャートであって、上述の図8におけるステップS802の詳細フローである。
図9に示すように、ステップS901では、操舵トルクおよび車両運動状態の情報を取得し、ステップS902へ進む。
ステップS902では、ステップS901で取得した情報を用いて、操舵トルクより操舵トルクベース実舵角制御部72が舵角指令値を生成し、ステップS903へ進む。
ステップS903では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
次にフローチャートを用いて操舵角ベース実舵角制御部73の処理手順を説明する。図10は図7に示す操舵制御装置61を構成する操舵角ベース実舵角制御部73における動作説明に供されるフローチャートであって、上述の図8におけるステップ802の詳細フローである。
図10に示すように、ステップS1001では、操舵トルクと、操舵角と、を取得し、ステップS1002へ進む。
ステップS1002では、ステップS1001で取得した情報を用いて、操舵角より操舵角ベース実舵角制御部73が舵角指令値を生成し、ステップS1005へ進む。また、ここでの操舵角ベース実舵角制御部73による演算は、操舵角に応じた舵角指令値を生成できれば良く、上述の操舵角による入力パラメータに限定するものではない。例えば、操舵トルクに掛けるゲインKtrqを操舵角に応じて変更し、このゲインKtrqを操舵トルクに掛けることで舵角指令値を生成しても良い。
ステップS1003では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
また、操舵トルクおよび/または操舵角が所定値より小さい場合、舵角指令値をゼロにする不感帯を、実舵角指令値を演算する際のパラメータとしてもっていても良い。
このような構成で車両の実舵角およびステアリングホイールの操舵反力を制御することにより、ドライバがステアリングホイールに意図せず入力した微小な操舵トルクまたは/および微小な操舵角によって、車両613の実舵角が変動することを防止することが可能となる。また、操舵トルクが微小量に減少した場合、操舵トルクの減少に併せて操舵角および実舵角をゼロに戻すことが可能になる。
また本実施例において、上記実舵角指令値を作成する際のパラメータ(ゲイン、不感帯しきい値)を走行シーンに応じて変更しても良い。例えば、走行速度およびシフトポジションを取得でき、これら情報から走行シーンが駐車時であると判定される場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
また操舵角が連続的に変化している状態を検出し、ワンディング路を走行していると判定された場合、操舵角変化に対して線形的にヨーレイトが発生するよう前記ゲインを調整する。このように、走行シーンに応じてゲイン調整することにより、ドライバの操作性を向上することができる。
以上の通り本実施例によれば、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供することが可能となる。
また、ドライバが車両に実舵角を生じさせようとステアリングホイールに力を入れたタイミングでの操舵角がまだ微小な場合において、操舵トルクに基づく実舵角指令値の演算により、ドライバが曲がろうとする意図に対して応答性の高い旋回運動を実現できる。また、操舵角が増加していくと、操舵角に基づく実舵角指令値の演算に遷移するため、ステアリングホイールを切ってコーナリングする従来の操作性を確保することが可能になる.
図11は、本発明の他の実施例に係る実施例2の操舵制御装置61aの機能ブロック図である。本実施例では、ドライバ操作取得部70aがドライバからの操作情報に加え、更にドライバの志向等を入力する構成とした点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図11に示すように、ドライバ操作取得部70aは、ドライバからの操作情報(操舵角操作量,操舵トルク入力量など)に加え、ドライバの志向を取得する。ここでドライバの志向を反映するパラメータは、ユーザーインターフェースによるドライバからの入力によって設定される、または、ドライバによる運転からの自動学習および自動チューニングによる設定であっても、ドライバ認証によりドライバ毎に予め設定された値を反映する方法であっても良い。
実舵角演算部74aは、ドライバ操作取得部70および自車両運動状態情報取得部71および操舵トルクベース実舵角制御部72および操舵角ベース実舵角制御部73により得られた情報に基づいて、操舵角が所定舵角未満なら操舵トルクベース実舵角制御部72による舵角指令値から実舵角指令値を演算し、操舵角が所定操舵角以上なら前記操舵角ベース実舵角制御部73による舵角指令値から実舵角指令値を演算する。演算した実舵角指令値を指令値送信部75に送る。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、所定舵角、もしくは操舵トルクに基づいた舵角指令値演算時のゲインKtrq、もしくは操舵角に基づいた舵角指令値演算時のゲインKstrの少なくとも一つを、ドライバ操作取得部70によるドライバ志向を反映するパラメータによって増加または減少する。例えば、ドライバ志向としてノーマルモードとスポーツモードの二つのモードがある場合、スポーツモードではノーマルモードよりもゲインKtrq、ゲインKstrが大きくなるように設定しても良い。またこれらモードはドライバが選択する方法に限らず、ゲインKtrq、ゲインKstrおよび/もしくは操舵トルクベースから操舵角ベースに変わる操舵角を直接設定する方法であっても良い。またドライバの運転行動に基づいてこれらの値を変更する方法であっても良い。例えば単一カーブ路旋回時のドライバ操作において操舵角変化が、規範操舵モデルよりも頻繁に行われる場合は、操舵角変化の頻度が下がるよう前記各パラメータを変更しても良い。
以上の通り本実施例によれば、実施例1の効果に加え、操舵トルクに基づく実舵角制御と操舵角に基づく実舵角制御との切り替わりや操舵トルクや操舵角に対する旋回応答性にドライバ志向を反映することで、ステアリングホイールの操作性と操舵の応答性をドライバ志向に適した設定に調整することが可能になる。
図12は、本発明の他の実施例に係る実施例3の操舵制御装置61bを搭載した車両の概念図であり、図13は、図12に示す操舵制御装置61bの機能ブロック図である。本実施例では操舵制御装置61bが、更に自車両走行路情報取得部76を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図12に示すように、本実施例に係る操舵制御装置61bは、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66と、自車両走行情報を取得する自車両位置検出センサ1200および外界情報検出センサ1201と、から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて,実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。
上記自車両走行路情報を取得するセンサとして、グローバルポジショニングシステムを自車両位置検出センサ1200として用い、外界情報検出センサ1201として、カメラやソナーのような自車両周辺の障害物情報を取得し、走行可能な領域を検出可能なセンサを用いる。また、自車両周辺情報や走行可能領域が取得でれば良く、上述のセンサに限定するものではない。更に、車両運動状態の情報と同様に、操舵制御装置61bがセンサからの直接入力を持たなくても良く、例えば別の制御ユニットから通信ラインを介して必要な情報を取得する構成としても良い。
図13に示すように操舵制御装置61bは、ドライバ操作取得部70と、自車両運動状態情報取得部71と、自車両走行路情報部76と、操舵トルクベース実舵角制御部72bと、操舵角ベース実舵角制御部73bと、実舵角演算部74と、指令値送信部75と、で構成される。
自車両走行路情報取得部76は、自車両走行路情報(自車両周辺情報,走行可能領域,など)を取得する。
操舵トルクベース実舵角制御部72bは、ドライバ操作取得部70および自車両運動状態情報取得部71および自車両走行路情報取得部76により得られた情報に基づいて、操舵トルクおよび車両速度によって操舵トルクによる舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、目標実舵角指令値であっても、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、自車両走行路情報取得部76の自車両周辺情報および走行可能領域によって駐車時と判断した場合、操舵トルクに対するトルクゲインを増加する。
操舵角ベース実舵角制御部73bは、ドライバ操作取得部70および自車両運動状態情報取得部71および自車両走行路情報取得部76により得られた情報に基づいて、舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、目標実舵角指令値であっても、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、自車両走行路情報取得部76の自車両周辺情報および走行可能領域によって駐車時と判断した場合、操舵角に対する操舵角ゲインを増加する。
次に、フローチャートを用いて操舵トルクベース実舵角制御部72bの処理手順を説明する。図14は、図12に示す操舵制御装置61bを構成する操舵トルクベース実舵角制御部61bにおける動作説明に供されるフローチャートである。
図14に示すように、ステップS1401では、操舵トルクと、自車両走行路情報と、を取得し、ステップS1402へ進む。
ステップS1402では、ステップS1401で取得した情報に基づいて、自車両走行路情報より走行シーンに合わせて上述のゲインKtrqを増減し、ステップS1403へ進む。ここでのゲイン設定において、例えば走行シーンが駐車時の場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
ステップS1403では、ステップS1401およびステップS1402で取得した情報を用いて、操舵トルクおよび上述のゲインKtrqより操舵トルクベース実舵角制御部72bは舵角指令値を生成し、ステップS1404へ進む。
ステップS1404では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
次に、フローチャートを用いて操舵角ベース実舵角制御部73bの処理手順を説明する。図15は、図12に示す操舵制御装置61bを構成する操舵角ベース実舵角制御部73bにおける動作説明に供されるフローチャートである。
図15に示すように、ステップS1501では、操舵角と、記自車両走行路情報と、を取得し、ステップS1502へ進む。
ステップS1502では、ステップS1501で取得した情報に基づいて、自車両走行路情報より走行シーンに合わせて上述のゲインKstrを増減し、ステップS1503へ進む。ここでのゲイン設定において、例えば走行シーンが駐車時の場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
ステップS1503では、ステップS1501およびステップS1502で取得した情報を用いて、操舵トルクおよび上述のゲインKstrより操舵トルクベース実舵角制御部73bは舵角指令値を生成し、ステップS1504へ進む。
ステップS1504では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
以上の通り本実施例によれば、実施例1の効果に加え、走行するコース情報や障害物情報に応じてゲインが調整可能となり、走行シーンに応じたドライバのハンドル操作量が調整可能になる。例えば、大舵角による操舵が必要になる駐車時において、ドライバは少ない操舵角で大きな実舵角を発生することができるため、操舵量を低減した駐車が可能になる。
図16は、本発明の他の実施例に係る実施例4の操舵制御装置61cを搭載した車両の概念図であり、図17は、図16に示す操舵制御装置61cの機能ブロック図である。本実施例では操舵制御装置61cが、更に操舵反力演算部170および操舵反力送信部171を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図16に示すように、本実施例に係る操舵制御装置61cは、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66と、から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて、実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。また、得られる各情報に基づいて、操舵反力制御に必要な演算を行い、その演算結果に基づいて、操舵反力アクチュエータ1601を駆動制御する操舵反力制御ユニット1600に通信ラインを介して操舵反力指令値を送信する。また、操舵制御装置61cから送る信号は操舵反力そのものではなく、操舵反力アクチュエータ1601により操舵反力制御を実現し得る操舵反力指令値(信号)であれば良い。
図17に示すように、操舵制御装置61cは、図7に示す実施例1に係る操舵制御装置61に比べ、更に、操舵反力演算部170および操舵反力送信部171を備える。
操舵反力演算部170は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。
操舵反力送信部171は、操舵反力演算部170により生成された操舵反力指令値に基づいて、図16におけるステアリングホイール64の反力を制御可能な操舵反力制御アクチュエータ1601の駆動制御を行う操舵反力制御ユニット1600に操舵反力指令値を送る。
次にフローチャートを用いて操舵反力演算部170の処理手順を説明する。図18は、図17に示す操舵制御装置61cの操舵反力指令値生成における動作説明に供されるフローチャートである。
図18に示すように、ステップS1801では、ドライバからの操作情報,車両運動状態の情報を取得し、ステップS1802へ進む。
ステップS1802では、ステップS1801で取得した情報に基づいて、直進時であるか否かを判定し、直進時であると判定した場合はステップS1803へ進み、非直進時であると判定した場合はステップS1804へ進む。
ステップS1803では、ステップS1801で取得した情報を用いて、前後加速度に応じて操舵反力指令値を増加し、ステップS1809へ進む。
一方、ステップS1804では、ステップS1801で取得した情報に基づいて、操舵角および操舵角速度および操舵角加速度が同符号か否かを判定する。同符号であると判定した場合はステップS1805へ進み、異符号であると判定した場合はステップS1806へ進む。
ステップS1805では、ステップS1801で取得した情報を用いて、操舵反力指令値を減少し、ステップS1809へ進む。
一方、ステップS1806では、ステップS1801で取得した情報に基づいて、操舵角および操舵角加速度が同符号かつ操舵角速度が異符号であるか否かを判定する。操舵角および操舵角加速度が同符号かつ操舵角速度が異符号である場合はステップS1807へ進み、それ以外の場合はステップS1808へ進む。
ステップS1807では、ステップS1801で取得した情報を用いて、操舵反力指令値を増加し、ステップS1809へ進む。
一方、ステップS1808では、操舵反力指令値を維持し、処理S1809へ進む。
ステップS1809では、ステップS1803またはステップS1805或いはステップS1807またはステップS1808で取得した操舵反力指令値に対して、操舵反力最低所定値を下回る場合はステップS1810へ進み、上回る場合は取得した操舵反力指令値を操舵反力送信部171に出力し、一連の処理を終了する。なお、操舵反力最低所定値は車両速度に応じて変化するものとする。
ステップS1810では、ステップS1809で取得した操舵反力指令値に対して、操舵反力指令値を操舵反力最低所定値に補正して操舵反力送信部171に出力し、一連の処理を終了する。
以上の通り本実施例によれば、実施例1の効果に加え、ステアリングホイールの操舵反力を制御することにより、ドライバが車両を直進させる場合において操舵反力指令値は増加するため、ステアリングホイールはドライバに対して力強い手ごたえを提供する。その結果、ドライバは直進時の安定性を得ることが可能となる。
また、ドライバが車両をコーナリングさせる場合において操舵反力指令値は操舵角に応じて減少するため、ステアリングホイールはドライバに対する手ごたえを軽減する。そのため、ドライバはステアリングホイールを切ってコーナリングする従来の操作性を確保することが可能になる。
図19は、本発明の他の実施例に係る実施例5の操舵制御装置61dの機能ブロック図である。本実施例では、ドライバ操作取得部70dがドライバからの操作情報に加え、更にドライバの志向等を入力する点、および、操舵反力演算部170dおよび操舵反力送信部171を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図19に示すように、ドライバ操作取得部70dは、ドライバからの操作情報(操舵角操作量,操舵トルク入力量,ドライバ志向,など)を取得する。ここでのドライバからの操作情報に含まれるドライバの志向を反映するパラメータは、ユーザーインターフェースによるドライバからの入力によって設定される、または、ドライバによる運転からの自動学習および自動チューニングによる設定であっても、ドライバ認証によりドライバ毎に予め設定された値を反映する方法であっても良い。
操舵反力演算部170dは、ドライバ操作取得部70dおよび自車両運動状態情報取得部71により得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。また、直進時における操舵反力指令値および/またはコーナリング時における操舵角変化に応じた操舵反力指令値の変化量は、ドライバ操作取得部70dによるドライバの志向を反映するパラメータによって増加または減少する。例えばドライバの志向としてノーマルモードとスポーツモードの二つのモードがある場合、スポーツモードではノーマルモードよりも操舵反力指令値が大きくなるように設定しても良い。またドライバの運転行動に基づいてこれらの値を変更する方法であっても良い。例えば単一カーブ路旋回時のドライバ操作において操舵角変化が、規範操舵モデルよりも頻繁に行われる場合は、操舵反力指令値が低くなるよう操舵角変化に応じた操舵反力指令値の変化量を変更しても良い。
以上の通り本実施例によれば、実施例1の効果に加え、ステアリングホイールの操舵反力を制御することにより、ハンドル操作に伴う反力生成にドライバの志向を反映することで、ステアリングホイールの操作性と操舵の応答性をドライバの志向に適した設定に調整することが可能となる。
図20は、本発明の他の実施例に係る実施例6の操舵制御装置61eを搭載した車両の概念図であり、図21は、図20に示す操舵制御装置61eの機能ブロック図である。本実施例では操舵制御装置61eが、自車両走行路情報取得部76eおよび操舵反力演算部170eおよび操舵反力送信部171を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図20に示すように、本実施例に係る操舵制御装置61eは、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66と、自車両走行情報を取得する自車両位置検出センサ1200および外界情報検出センサ1201と、から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて、実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。また、得られる各情報に基づいて、操舵反力制御に必要な演算を行い、その演算結果に基づいて、操舵反力アクチュエータ1601を駆動制御する操舵反力制御ユニット1600に通信ラインを介して操舵反力指令値を送信する。また、操舵制御装置61eから送る信号は操舵反力そのものではなく、操舵角の変化に対してバネマスダンパ系を有する疑似操舵反力発生装置612によって操舵反力を生成する。
図21に示すように、操舵制御装置61eを構成する自車両走行路情報76eは、自車両走行路情報(自車両周辺情報,走行可能領域,など)を取得する。
操舵反力演算部170eは、ドライバ操作取得部70および自車両運動状態情報取得部71および実舵角演算部74および自車両走行路情報76eにより得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。また、自車両走行路情報取得部76eの自車両周辺情報および走行可能領域によって駐車時と判断した場合かつ実舵角演算部74の実舵角が所定値より大きい場合、ストロークエンドを模擬する操舵反力指令値を演算する。
次にフローチャートを用いて操舵反力演算部170eの処理手順を説明する.図22は図21に示す操舵制御装置61eの操舵反力指令値生成における動作説明に供されるフローチャートである。
図22に示すように、ステップS2201では、ドライバからの操作情報,車両運動状態の情報を取得し、ステップS2202へ進む。
ステップS2202では、ステップS2201で取得した情報に基づいて、駐車時かつ実舵角指令値が所定値より大きいか否かを判定する。駐車時かつ実舵角指令値が所定値より大きいと判定した場合はステップS2203へ進み、異なると判定した場合はステップS2204へ進む。
ステップS2203では、ストロークエンドを模擬する操舵反力指令値を生成し、ステップS2211へ進む。
ステップS2204では、ステップS2201で取得した情報に基づいて、直進時であるか否かを判定する。直進時であると判定した場合はステップS2205へ進み、非直進時であると判定した場合はステップS2206へ進む。
ステップS2205では、ステップS2201で取得した情報を用いて、前後加速度に応じて操舵反力指令値を増加し、ステップS2211へ進む。
一方、ステップS2206では、ステップS2201で取得した情報に基づいて、操舵角および操舵角速度および操舵角加速度が同符号か否かを判定する。同符号であると判定した場合はステップS2207へ進み、異符号であると判定した場合はステップS2208へ進む。
ステップS2207では、ステップS2201で取得した情報を用いて、操舵反力指令値を減少し、ステップS2211へ進む。
一方、ステップS2208では、ステップS2201で取得した情報に基づいて、操舵角および操舵角加速度が同符号かつ操舵角速度が異符号であるか否かを判定する。操舵角および操舵角加速度が同符号かつ操舵角速度が異符号である場合はステップS2209へ進み、それ以外の場合はステップS2210へ進む。
ステップS2209では、ステップS2201で取得した情報を用いて、操舵反力指令値を増加し、ステップS2211へ進む。
一方、ステップS2210では、操舵反力指令値を維持し、ステップS2211へ進む。ステップS2211では、ステップS2203またはステップS2205またはステップS2207またはステップS2209またはステップS2210で取得した操舵反力指令値に対して、操舵反力最低所定値を下回る場合は処理S2212へ進み、上回る場合は取得した操舵反力指令値を操舵反力送信部171に出力し、一連の処理を終了する。なお、操舵反力最低所定値は車両速度に応じて変化するものとする。
ステップS2212では、ステップS2211で取得した操舵反力指令値に対して、操舵反力指令値を操舵反力最低所定値に補正して操舵反力送信部171に出力し、一連の処理を終了する。
以上の通り本実施例によれば、実施例1の効果に加え、ステアリングホイールの操舵反力を制御することにより、ドライバは現在の実舵角がストロークエンドに到達したことを認識することが可能となる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
61,61a,61b,61c,61d,61e…操舵制御装置
62…加速度センサ
63…ジャイロセンサ
64…ステアリングホイール
65…操舵角センサ
66…操舵トルクセンサ
67…タイヤ
68…車輪速センサ
69…実舵角制御ユニット
70,70a,70d…ドライバ操作取得部
71…自車両運動状態情報取得部
72,72b…操舵トルクベース実舵角制御部
73,73b…操舵角ベース実舵角制御部
74,74a…実舵角演算部
75…指令値送信部
76,76e…自車両走行路情報取得部
170,170d,170e…操舵反力演算部
171…操舵反力送信部
610…実舵角アクチュエータ
612…疑似操舵反力発生装置
613…車両
1200…自車両位置検出センサ
1201…外界情報取得センサ
1600…操舵反力制御ユニット
1601…操舵反力アクチュエータ

Claims (9)

  1. ステアバイワイヤシステムを構成する操舵制御装置であって、
    操舵角が所定値よりも小さい場合は操舵トルクに基づいて実舵角指令値を演算し、前記操舵角が所定値以上の場合は操舵角に基づいて実舵角指令値を演算する演算部を備えることを特徴とする操舵制御装置。
  2. 請求項1に記載の操舵制御装置であって、
    前記演算部は、前記操舵角が所定値よりも小さい場合は操舵トルクベース実舵角制御部によって操舵トルクに基づき実舵角指令値を演算し、前記操舵角が所定値以上の場合は操舵角ベース実舵角制御部による舵角指令値に基づき実舵角指令値を演算することを特徴とする操舵制御装置。
  3. 請求項2に記載の操舵制御装置であって、
    前記演算部は、前記操舵トルクまたは前記操舵角が一定のときにはヨーレイトが一定になるように実舵角指令値を演算することを特徴とする操舵制御装置。
  4. 請求項2に記載の操舵制御装置であって、
    前記演算部は、前記操舵トルクまたは前記操舵角が一定のときには横加速度が一定になるように実舵角指令値を演算することを特徴とする操舵制御装置。
  5. 請求項に記載の操舵制御装置であって、
    車両の状態に応じて操舵反力を制御する操舵反力演算部を備え、
    記操舵反力演算部は、前後加速度に基づき反力を制御することを特徴とする操舵制御装置。
  6. 請求項に記載の操舵制御装置であって、
    少なくとも、車両の状態および前記操舵角のうち、いずれか一方に応じて反力を制御する操舵反力演算部を備え、
    反力の最低値は所定値以下にはならないことを特徴とする操舵制御装置。
  7. 請求項に記載の操舵制御装置であって、
    前記反力の最低所定値は車両速度に応じて変化することを特徴とする操舵制御装置。
  8. 請求項1に記載の操舵制御装置であって、
    少なくとも、車両の状態および前記操舵角のうち、いずれか一方に応じて反力を制御する操舵反力演算部を備え、
    前記操舵反力演算部は、前記操舵角、操舵角速度、操舵角加速度が同符号の時のみ反力を減少させることを特徴とする操舵制御装置。
  9. 請求項1に記載の操舵制御装置であって、
    少なくとも、車両の状態および前記操舵角のうち、いずれか一方に応じて反力を制御する操舵反力演算部を備え、
    前記操舵反力演算部は、前記操舵角、操舵角加速度が同符号、操舵角速度が異符号の時は反力を増加させることを特徴とする操舵制御装置。
JP2019024361A 2019-02-14 2019-02-14 操舵制御装置 Active JP7488632B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019024361A JP7488632B2 (ja) 2019-02-14 2019-02-14 操舵制御装置
CN201980084382.1A CN113382916B (zh) 2019-02-14 2019-08-19 操舵控制装置
DE112019006222.0T DE112019006222B4 (de) 2019-02-14 2019-08-19 Lenksteuervorrichtung
PCT/JP2019/032228 WO2020166113A1 (ja) 2019-02-14 2019-08-19 操舵制御装置
US17/425,379 US11939013B2 (en) 2019-02-14 2019-08-19 Steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024361A JP7488632B2 (ja) 2019-02-14 2019-02-14 操舵制御装置

Publications (2)

Publication Number Publication Date
JP2020131783A JP2020131783A (ja) 2020-08-31
JP7488632B2 true JP7488632B2 (ja) 2024-05-22

Family

ID=72043899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024361A Active JP7488632B2 (ja) 2019-02-14 2019-02-14 操舵制御装置

Country Status (5)

Country Link
US (1) US11939013B2 (ja)
JP (1) JP7488632B2 (ja)
CN (1) CN113382916B (ja)
DE (1) DE112019006222B4 (ja)
WO (1) WO2020166113A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204857A1 (de) * 2019-04-04 2020-10-08 Thyssenkrupp Ag Verfahren zur Steuerung eines Steer-by-Wire-Lenksystems und Steer-by-Wire-Lenksystem für ein Kraftfahrzeug
US11753027B2 (en) 2021-01-27 2023-09-12 Aptiv Technologies Limited Vehicle lateral-control system with adjustable parameters

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082862A (ja) 2002-08-27 2004-03-18 Fuji Heavy Ind Ltd 電動式パワーステアリング装置
JP2006015811A (ja) 2004-06-30 2006-01-19 Toyota Motor Corp 車両の操舵装置
JP2006248308A (ja) 2005-03-09 2006-09-21 Honda Motor Co Ltd 車両用操舵装置
JP2008024166A (ja) 2006-07-21 2008-02-07 Nissan Motor Co Ltd 操舵機構制御装置、自動車及び操舵機構制御方法
JP2008087680A (ja) 2006-10-03 2008-04-17 Fuji Heavy Ind Ltd 車両運動制御装置
JP2011001041A (ja) 2009-06-22 2011-01-06 Fujitsu Ten Ltd 操舵装置
JP2012516262A (ja) 2009-01-27 2012-07-19 パルマリックス・リミテッド 駆動制御システム
JP2019127237A (ja) 2018-01-26 2019-08-01 株式会社ジェイテクト 操舵制御装置
JP2020001606A (ja) 2018-06-29 2020-01-09 株式会社ショーワ ステアリング制御装置及びステアリング装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254803A (ja) * 1996-03-25 1997-09-30 Nissan Motor Co Ltd 操舵角制御装置
JP3940056B2 (ja) * 2002-10-11 2007-07-04 アイシン精機株式会社 路面状態推定装置、及び該装置を備えた車両の運動制御装置
JP4340096B2 (ja) * 2003-06-02 2009-10-07 本田技研工業株式会社 車両用の操舵装置
JP4379261B2 (ja) * 2004-08-30 2009-12-09 日産自動車株式会社 車両用操舵装置
JP4729907B2 (ja) * 2004-11-22 2011-07-20 日産自動車株式会社 車両用操舵装置およびその操舵トルク制御方法
JP4581651B2 (ja) * 2004-11-29 2010-11-17 日産自動車株式会社 車両用操舵装置
JP4367383B2 (ja) * 2005-07-08 2009-11-18 トヨタ自動車株式会社 車両の操舵アシスト装置
JP5297037B2 (ja) * 2007-12-25 2013-09-25 富士重工業株式会社 車両の操舵制御装置
DE102008008835B4 (de) * 2008-02-13 2010-04-22 Zf Friedrichshafen Ag Vorrichtung zum Ermitteln eines Drehmoments
JP5233738B2 (ja) * 2009-02-25 2013-07-10 日産自動車株式会社 車両用操舵装置、車両用操舵装置付き車両
JP5338491B2 (ja) * 2009-06-05 2013-11-13 日産自動車株式会社 車両用操舵装置および車両用操舵方法
JP5532295B2 (ja) * 2009-11-12 2014-06-25 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5829585B2 (ja) * 2012-08-07 2015-12-09 株式会社デンソー 制御システム及び車両操舵制御システム
JP6187090B2 (ja) * 2013-09-25 2017-08-30 日産自動車株式会社 車両用運転制御装置及び車両用運転制御方法
SE542604C2 (en) * 2014-08-22 2020-06-16 Scania Cv Ab A method for controlling an electrical steering system and an electrical steering system
JP6662188B2 (ja) * 2016-05-12 2020-03-11 日産自動車株式会社 運転支援方法及び運転支援装置
US10494018B2 (en) * 2016-09-16 2019-12-03 Jtekt Corporation Steering device
JP2019127214A (ja) * 2018-01-26 2019-08-01 株式会社ジェイテクト 転舵制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082862A (ja) 2002-08-27 2004-03-18 Fuji Heavy Ind Ltd 電動式パワーステアリング装置
JP2006015811A (ja) 2004-06-30 2006-01-19 Toyota Motor Corp 車両の操舵装置
JP2006248308A (ja) 2005-03-09 2006-09-21 Honda Motor Co Ltd 車両用操舵装置
JP2008024166A (ja) 2006-07-21 2008-02-07 Nissan Motor Co Ltd 操舵機構制御装置、自動車及び操舵機構制御方法
JP2008087680A (ja) 2006-10-03 2008-04-17 Fuji Heavy Ind Ltd 車両運動制御装置
JP2012516262A (ja) 2009-01-27 2012-07-19 パルマリックス・リミテッド 駆動制御システム
JP2011001041A (ja) 2009-06-22 2011-01-06 Fujitsu Ten Ltd 操舵装置
JP2019127237A (ja) 2018-01-26 2019-08-01 株式会社ジェイテクト 操舵制御装置
JP2020001606A (ja) 2018-06-29 2020-01-09 株式会社ショーワ ステアリング制御装置及びステアリング装置

Also Published As

Publication number Publication date
WO2020166113A1 (ja) 2020-08-20
US11939013B2 (en) 2024-03-26
CN113382916B (zh) 2023-06-02
US20220097758A1 (en) 2022-03-31
DE112019006222B4 (de) 2024-06-13
CN113382916A (zh) 2021-09-10
DE112019006222T5 (de) 2021-09-09
JP2020131783A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
WO2018055916A1 (ja) 車両運動制御装置
JP4865727B2 (ja) 車両を駐車余地内に操縦する方法及び駐車アシスト装置
JP4270259B2 (ja) 障害物回避制御装置
JP4042979B2 (ja) 車両操作支援装置
WO2017145555A1 (ja) 走行制御装置及び走行制御システム
US20110257845A1 (en) Steering control apparatus for vehicle
WO2011080830A1 (ja) 運転支援装置
WO2006101005A1 (ja) 車両の操舵制御装置
JP2005327117A (ja) 車両操作支援装置
JP6637952B2 (ja) 車両の車線逸脱防止制御装置
US20190233003A1 (en) Steering control device
JP2012516806A (ja) 回避運転を実行するための方法および装置
CN107416020B (zh) 用于控制和/或调节车辆的转向系统的系统和方法及车辆
WO2018189912A1 (ja) 車両制御方法及び車両制御装置
JP4446935B2 (ja) 車両操作支援装置
JP7488632B2 (ja) 操舵制御装置
US20230174147A1 (en) Method and control circuit for controlling an active rear axle steering of a motor vehicle when steering out from straight travel, and a motor vehicle having the control circuit
JP2007253770A (ja) 車両用支援制御装置
KR20220121186A (ko) 차량 제어 방법, 차량 제어 시스템, 및 차량
JP2003341501A (ja) 運転支援制御システム
JP2007038766A (ja) 車両用操舵装置
JP2022028983A (ja) 車両制御装置
JP2009101809A (ja) 車両用運転支援装置
JP7052745B2 (ja) 車両制御システム
JP7275646B2 (ja) 車両の走行制御方法及び走行制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510

R150 Certificate of patent or registration of utility model

Ref document number: 7488632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150