WO2018055916A1 - 車両運動制御装置 - Google Patents
車両運動制御装置 Download PDFInfo
- Publication number
- WO2018055916A1 WO2018055916A1 PCT/JP2017/027611 JP2017027611W WO2018055916A1 WO 2018055916 A1 WO2018055916 A1 WO 2018055916A1 JP 2017027611 W JP2017027611 W JP 2017027611W WO 2018055916 A1 WO2018055916 A1 WO 2018055916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- trajectory
- acceleration
- track
- steering
- Prior art date
Links
- 230000007423 decrease Effects 0.000 claims abstract description 5
- 230000001133 acceleration Effects 0.000 claims description 122
- 230000008859 change Effects 0.000 claims description 99
- 238000000034 method Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000012889 quartic function Methods 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 11
- 239000002131 composite material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000036461 convulsion Effects 0.000 description 3
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 2
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 2
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18163—Lane change; Overtaking manoeuvres
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/114—Yaw movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
- B62D15/0255—Automatic changing of lane, e.g. for passing another vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
- B62D6/003—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
- B60W2520/125—Lateral acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/20—Steering systems
- B60W2710/205—Steering speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/20—Steering systems
- B60W2710/207—Steering angle of wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
Definitions
- the present invention relates to a vehicle motion control device that controls the motion of a vehicle.
- ADAS Advanced Driving Assistant System
- the technology that partially automates the driving operation can be classified into those that control the longitudinal movement of the vehicle and those that control the lateral movement.
- ACC Adaptive Cruise Control
- AEB Automatic Emergency Break
- LKS Li Keeping System
- LKS The purpose of LKS is to keep the lane, that is, to run on a preset track, and cannot respond to the need to change the running track.
- the traveling track cannot be set in advance, lane change, emergency obstacle avoidance, merging, branching, etc. are assumed.
- this technology is indispensable for driving on public roads in which uncertain changes in conditions are unavoidable in automatic driving.
- ADAS appropriate steering support is an important function in that it provides safety and security.
- Patent Document 1 discloses a technique for controlling vehicle motion.
- a method of setting a traveling track is described for vehicle movement in a lane change mode including avoidance of obstacles.
- the trajectory of the lane change mode described in Patent Document 1 is a trajectory considering the smoothness of the curve.
- the longitudinal and lateral combined accelerations are not taken into account, there is a possibility that the inertial force on the occupant becomes excessive, and there is room for improving the riding comfort.
- the force acting on the vehicle may become excessive due to the combined longitudinal and lateral acceleration, which may cause deviation from the set track and unstable vehicle behavior.
- the present invention has been made in view of the above problems, and an object thereof is to provide a vehicle motion control device capable of realizing a stable vehicle behavior in a vehicle motion in a lane change mode.
- the vehicle motion control device calculates a traveling track in which the vehicle is turned left and right and then continuously turned to the other, the peak value of the curvature of the traveling track becomes higher as the vehicle speed is higher.
- the travel trajectory is calculated so as to be smaller.
- the peak value of the front / rear / lateral combined acceleration is suppressed, and a stable vehicle behavior can be realized.
- FIG. 3 is an internal configuration diagram of a vehicle motion control device 15.
- FIG. It is a figure which shows the example which needs to set a driving
- FIG. 10 is a graph showing a theoretical calculation result of the “gg” diagram of the traveling track shown in FIG. 9; It is an example of the steering profile in this invention.
- FIG. 12 is a diagram showing a traveling track obtained by the steering profile of FIG. 11 superimposed on the point-symmetrical track of FIG. 9.
- FIG. 13 is a graph showing the principle calculation result of the “gg” diagram when traveling on the track shown in FIG. 12 and the calculation result when traveling on the point-symmetric track of FIG. It is a control block diagram for making a vehicle follow a running track.
- FIG. 3 is an internal configuration diagram of a trajectory generation unit 151.
- FIG. 10 is a flowchart for explaining processing by a lane change trajectory generation unit 1512. It is a graph which shows the example of the speed profile computed by G-Vectoring control. A vehicle motion model that approximates the change in yaw angle and tire side slip angle during lane change as sufficiently small is shown. It is a figure which shows the relationship between the passing point position of a lane change track
- FIG. 1 is a configuration diagram of a vehicle 1 equipped with an automatic driving system according to Embodiment 1 of the present invention.
- the automatic driving system here refers to a form in which the system may simultaneously control steering and acceleration / deceleration.
- an automatic lane change system triggered by a driver's instruction, an automatic braking and steering avoidance system limited to an emergency, and a fully automatic driving system that does not require a driver are all referred to.
- the vehicle 1 can control steering and acceleration / deceleration without depending on the operation of the driver by the control command of the vehicle motion control device 15.
- the steering device 18 includes an EPS (electric power steering).
- the EPS receives a control command transmitted by the vehicle motion control device 15 in addition to a function as a power steering that amplifies the steering force by the driver, and the left as an active actuator without depending on the operation of the driver.
- the front wheel 11 and the right front wheel 12 are steered.
- the drive device 19 is composed of an internal combustion engine and / or an electric motor, receives a control command transmitted from the vehicle motion control device 15, and receives the control command transmitted from the vehicle motion control device 15 and the left front wheel 11 as a drive wheel via the drive shaft 26. A driving force is generated on the right front wheel 12 to drive the vehicle 1. Further, the vehicle 1 is decelerated by generating a braking force on the drive wheels.
- the drive device 19 can control acceleration / deceleration in accordance with the control command without depending on the operation of the driver.
- the braking control device 20 has a function of receiving a control command transmitted by the vehicle motion control device 15 and applying a hydraulic pressure to the braking devices 21 to 24 to control the braking force.
- the braking control device 20 can control deceleration according to the control command without depending on the operation of the driver.
- the braking devices 21 to 24 operate in response to the hydraulic pressure from the braking control device 20 and generate braking forces on the four wheels 11 to 14, respectively.
- the vehicle motion control device 15 includes a GNSS (Global Navigation Satellite System) sensor 17, an inertial sensor 16, a camera 28 that acquires external world information in front of the vehicle, a side image sensor 29, a laser scanner 30, and wheel speed sensors 31 to 34. Information from (via the braking control device 20) is input. Based on the information, the vehicle motion control device 15 sends a control command to the steering device 18, the drive device 19, and the brake control device 20 to control the motion of the vehicle 1.
- GNSS Global Navigation Satellite System
- the braking devices 21 to 24 and the driving device 19 may control the braking force in cooperation.
- the steering device 18 may be configured by a steering mechanism and a steering control device. Similarly, the configuration of other devices can be divided or integrated.
- FIG. 2 is an internal configuration diagram of the vehicle motion control device 15.
- the vehicle motion control device 15 includes a track generation unit 151 and a travel control unit 152.
- the trajectory generating unit 151 receives external information acquired in real time from the camera 28 that captures the front of the vehicle, surrounding solid object information by the laser scanner 30, and the current position, traveling direction, and speed of the vehicle.
- the track generation unit 151 holds map information acquired in advance as information on the curve shape of the road including the lane width and information on a predetermined traveling track generated in advance based on the map information.
- the track generation unit 151 integrates information detected by the GNSS sensor 17, the inertial sensor 16 that detects acceleration and angular velocity, the wheel speed sensors 31 to 34, the steering angle sensor 27, and the side image sensor 29 that detects a lane or a road edge. By doing so, the position, traveling direction and speed of the vehicle can be obtained with high accuracy.
- the track generation unit 151 detects a travelable range, and dynamically generates a travel track when it is necessary to deviate from the predetermined track.
- the trajectory generation unit 151 selects either a dynamically generated trajectory or a predetermined trajectory according to the situation, and outputs the selected trajectory together with the corresponding steering profile and speed profile to the travel control unit 152 as a target trajectory.
- the steering profile means the change of the steering angle with respect to time
- the speed profile means the change of the vehicle speed with respect to time.
- the travel control unit 152 calculates and transmits a steering command value based on feedforward control based on the steering profile to the actuator of the steering device 18 so as to follow the target track, and also detects a deviation from the target track of the vehicle and performs feedback. Control. At the same time, an acceleration / deceleration command value or a speed command value is calculated based on the speed profile and transmitted to the drive device 19 and the braking control device 20 to control acceleration / deceleration or speed.
- a lane change mode is a series of vehicle movements that move from a running lane to an adjacent lane or move laterally at the same distance, and in the middle of the movement, It is assumed that the left turn section is later or the right turn section is continued after the left turn section.
- the vehicle movement in the lane change mode includes a lane change on a multi-lane road on one side, merging, branching, overtaking, avoiding obstacles, and the like. In these scenes, unlike traveling along a predetermined lane, an appropriate track must be selected or generated according to the surrounding conditions.
- the vehicle 1 basically travels along a predetermined traveling track, but dynamically sets a traveling track or a steering profile as necessary to temporarily deviate from the predetermined traveling track. Then, it is assumed that it returns to the predetermined traveling track again.
- the vehicle motion control device 15 includes a section that becomes a traveling track in a lane change mode in which the vehicle continuously steers left and right. The vehicle 1 is controlled to generate a track and follow it.
- a travel track for automatic driving within that range.
- a stereo camera, a laser scanner, various radars, or a monocular that can detect the size of other vehicles and obstacles and the relative positional relationship between the object and the vehicle 1 Map information is also used to detect road edges and lanes as needed in combination with cameras.
- FIG. 3 is a diagram showing an example in which a traveling track needs to be set dynamically.
- a traveling track needs to be set dynamically.
- the vehicle while the vehicle is traveling at a certain speed, in order to avoid a collision with an obstacle ahead of the vehicle located closer to the braking distance, the vehicle is deviated from a predetermined track by automatic steering.
- it is necessary to dynamically set the traveling track.
- FIG. 4 is a diagram showing another example in which the traveling track needs to be set dynamically.
- FIG. 4 when joining the main road of the expressway from the merging lane, according to the relationship between the position and relative speed with other vehicles traveling on the main road, before the own vehicle reaches the end of the merging lane If it is safer to move to the main line while adjusting the speed, it is necessary to set the running track dynamically.
- various situations that cannot be dealt with by a predetermined traveling path are assumed as the conditions for dynamically setting the traveling path.
- the flow of control in which the vehicle motion control device 15 generates a lane change track and causes the vehicle 1 to travel along the track will be described.
- the input information is an avoidance distance, a lateral movement amount, and a current vehicle speed.
- the avoidance distance refers to the movement distance in the front-rear direction until the lateral movement in the lane change mode is completed for convenience.
- the lateral movement amount refers to a lateral movement distance until the lateral movement in the lane change mode is completed. If the direction of travel needs to be different at the start and end of a lane change, such information is also added.
- the current position becomes the lane change start point, and the lane change end point is the point moved by the avoidance distance and the lateral movement amount.
- FIG. 5 is a diagram showing the lateral movement amount of the lane change for the purpose of moving to the adjacent lane.
- the lateral movement amount corresponding to the lane width is set so that the lane change end point is located in the adjacent lane.
- the lane change end point can be set to one of the predetermined traveling tracks.
- FIG. 6 is a diagram showing the amount of lateral movement in the case of overtaking on an lane on one side or avoiding an obstacle, with overhanging on the opposite lane or overhanging the road shoulder.
- a lateral movement amount with a minimum margin is set for the distance between the object and the vehicle 1.
- FIG. 7 is a diagram for explaining a conventional method for setting a lane change trajectory.
- a policy for setting a lane change trajectory it is common that lateral acceleration is continuous and excessive lateral acceleration is not generated.
- the curvature of the traveling track is continuous, and in order not to generate excessive lateral acceleration, the avoidance distance may be made as long as possible with respect to the lateral movement amount.
- the starting point and the ending point of the lateral movement are connected by clothoids and various spline curves.
- the present invention is common to the conventional method in that the avoidance distance is as long as possible with respect to the lateral movement amount, but the shape of the track to be traveled is considered not only the lateral acceleration generated in the vehicle but also acceleration / deceleration. In more detail.
- acceleration / deceleration is controlled by superimposing a longitudinal acceleration linked to a lateral motion on a predetermined longitudinal acceleration. It has been found that it is desirable for the longitudinal acceleration to change according to the lateral jerk, both in terms of vehicle motion performance and ride comfort.
- the longitudinal acceleration is determined using G-Vectoring control that realizes this relationship.
- Equation 1 is a basic equation for G-Vectoring control.
- G x is the longitudinal acceleration
- G y is the lateral acceleration
- dG y / dt is the lateral jerk, which is the time change rate of the lateral acceleration
- C xy is the G-Vectoring control gain
- G x_DC is the longitudinal acceleration component independent of the lateral motion.
- G x ⁇ sgn (G y ⁇ dG y / dt) ⁇ C xy ⁇ dG y / dt + G x — DC (1)
- Equation 1 The first term on the right-hand side of Equation 1 is a longitudinal acceleration that is given a sign such that the lateral jerk is multiplied by a gain and the vehicle is decelerated when the lateral acceleration increases and accelerated when the lateral acceleration decreases. It is.
- the second term on the right side of Equation 1 is a predetermined longitudinal acceleration that is given when acceleration / deceleration is required regardless of lateral motion.
- the following equation 2 is an equation showing an approximate relationship among the steering angle, the vehicle speed, and the lateral acceleration.
- ⁇ is the steering angle
- V is the vehicle speed
- C G represents a proportionality constant based on simple linear model of vehicle motion.
- the lateral acceleration G y generated in the vehicle has a substantially linear relationship with the steering angle ⁇ . Therefore, according to Equations 1 and 2, when steering that lacks smoothness is performed, discontinuous longitudinal acceleration occurs due to changes in lateral acceleration.
- the magnitude of the steering speed is continuous so that the change in the longitudinal acceleration according to the steering becomes smooth. Therefore, in the present invention, a steering profile is generated based on a pattern in which the steering speed continuously changes. Considering the ease of handling in the calculation processing of the control program, a pattern in which the steering angle changes in a sine wave shape is desirable.
- FIG. 8 shows an example of a sinusoidal steering profile in which the magnitude of the steering speed continuously changes in the lane change trajectory. If the steering profile and the initial vehicle speed are determined, acceleration / deceleration corresponding to the lateral motion is determined by G-Vectoring control. A speed profile is determined by superimposing a predetermined acceleration or deceleration that gives a necessary speed change until the end of the lane change on the acceleration / deceleration. As the steering profile and the speed profile, a steering track and a driving / braking input are given to the vehicle, thereby determining the traveling track.
- Fig. 9 shows an example of a point-symmetric lane change trajectory.
- the traveling track shown in FIG. 9 is calculated based on a sinusoidal steering profile, and the right turning section and the left turning section are point-symmetric about the midpoint of the track.
- the lateral accelerations on the left and right are different.
- the longitudinal acceleration is controlled by G-Vectoring control, the longitudinal acceleration is determined with respect to different lateral acceleration changes, and as a result, the longitudinal and lateral combined accelerations are also different in the right turning section and the left turning section. It will be.
- the traveling trajectory is a clothoid curve or a spline curve
- the traveling trajectory is a point-symmetric traveling trajectory
- the longitudinal / lateral combined acceleration will be different between the right turning section and the left turning section.
- the magnitude of the front / rear / lateral combined acceleration is larger in the right turn sections A to B in the first half than in the left turn sections C to D in the second half.
- FIG. 10 is a graph showing the theoretical calculation results of the “gg” diagram of the traveling track shown in FIG. The change in the longitudinal / lateral combined acceleration will be described while comparing each section shown in FIG. 10 with the traveling track shown in FIG. 9.
- Equation 1 includes a deceleration component superimposed on the whole without linking with lateral motion. Therefore, at the start of the traveling track in FIG. 9, the lateral acceleration is zero and the longitudinal acceleration is generated on the deceleration side. Thereafter, in the right-hand turning section of the first half, the lateral acceleration in the right direction increases, and the deceleration increases due to the action of G-Vectoring control (A). In the process of turning back the steering from the right turn, the lateral acceleration in the right direction decreases and the deceleration decreases due to the action of the G-Vectoring control (B).
- the leftward lateral acceleration increases and the deceleration increases due to the action of G-Vectoring control, which is the same as the right turn section, but the vehicle speed is lower than the right turn section. Therefore, the lateral acceleration is small and the increase is relatively slow. Therefore, the deceleration is smaller than that in the right turn section (C). Even in the process of turning back the steering from the left turn, the lateral acceleration returns to 0 over time from the value smaller than the first half, so the change in deceleration is still smaller than that in the right turn section (D ).
- the large front / rear and side combined accelerations in the right turn sections A to B in the first half means that the second half has excessive margin and the first half This means that the front / rear / lateral composite acceleration is excessive.
- the longitudinal and lateral combined acceleration corresponds to the inertial force acting on the occupant, there is room for improvement in terms of riding comfort.
- the longitudinal / lateral combined acceleration corresponds to the force acting on the vehicle. The force is almost entirely generated between the road surface and the tire. Therefore, the lower limit value of the road surface ⁇ (friction coefficient) at which the vehicle can travel on this track is determined by the peak value of the right turn section in which the front-rear / lateral combined acceleration is relatively large.
- FIG. 11 is an example of a steering profile in the present invention.
- the maximum value of the steering angle of the right turning sections A to B is set to the steering angle of the left turning sections C to D in the traveling track in which the left turning section is generated next to the right turning section in accordance with the lane change. Make it smaller than the maximum value.
- the left and right steering angles are changed based on a sinusoidal steering profile as shown in FIG. 8, and the steering speed in the right turn sections A to B is made higher than the steering speed in the left turn sections C to D. Slow down.
- FIG. 12 is a diagram showing the traveling trajectory obtained by the steering profile of FIG. 11 superimposed on the point-symmetric trajectory of FIG. Here, it is assumed that the lane is changed to the right while decelerating as in FIG.
- the traveling trajectory in the present invention is not point-symmetrical, and the peak value of the curvature of the traveling trajectory is smaller in the right turning sections A to B than in the left turning sections C to D.
- the vehicle speed in the section with a small curvature is high and the vehicle speed in the section with a large curvature is low. Therefore, by adjusting the curvature and the vehicle speed appropriately, And left turn sections C to D can be made equal.
- FIG. 13 is a graph showing the principle calculation result of the “gg” diagram when traveling on the track shown in FIG. 12 and the calculation result when traveling on the point-symmetric track shown in FIG. .
- it is common to change the lane to the right while decelerating and to perform G-Vectoring control.
- the lateral acceleration and the longitudinal acceleration are both smaller than the point symmetrical trajectory
- the left turn sections C to D the lateral acceleration and the longitudinal acceleration are both point symmetrical trajectories. It is bigger than that.
- the peak values of the combined longitudinal and lateral acceleration are approximately equal in the right turn sections A to B and the left turn sections C to D.
- the riding comfort is improved as compared with traveling tracks in which the peak values of the front / rear and lateral combined accelerations of the right turning section and the left turning section are different from each other.
- the lower limit value of the road surface ⁇ (friction coefficient) at which the vehicle can travel on this track is determined by the peak value of the composite acceleration, stable lane change is possible even with a smaller road surface ⁇ .
- the longitudinal acceleration and lateral acceleration are determined by the position on the running track with respect to time. Therefore, in order to appropriately control the acceleration, it is important to travel on the set track. Since the trajectory generation unit 151 calculates a travel trajectory based on the steering profile and the speed profile, if the vehicle motion model is sufficiently accurate, the trajectory generation unit 151 can travel along the target trajectory only by steering and acceleration / deceleration feedforward control. However, since deviation occurs in practice, pure feedforward control does not always allow the target trajectory to travel with the required tracking accuracy. Therefore, in order to accurately follow the target trajectory, it is necessary to use feedback control together.
- FIG. 14 is a control block diagram for causing the vehicle to follow the traveling track.
- This control block can be implemented by the traveling control unit 152, for example.
- This control block is obtained by adding feedback control for suppressing lateral position deviation and angle deviation to feedforward control for steering with a predetermined steering profile.
- the feed forward control by the steering profile may be omitted, and a general forward gaze model may be used.
- a general forward gaze model may be used.
- FIG. 15 is an internal configuration diagram of the trajectory generator 151.
- the lane change determination unit 1511 receives the vehicle surrounding information / position / traveling direction / speed as an input, calculates the avoidance distance and the lateral movement amount, and outputs them to the lane change track generation unit 1512 together with the current vehicle speed.
- the lane change trajectory generation unit 1512 calculates the steering profile / target trajectory / speed profile using these pieces of information.
- FIG. 16 is a flowchart for explaining processing by the lane change trajectory generation unit 1512. Hereinafter, each step of FIG. 16 will be described.
- the lane change trajectory generation unit 1512 sets the vehicle speed at the end of the lane change based on the necessary degree of acceleration / deceleration independent of the lateral motion, and sets a provisional steering profile with equal maximum left and right steering angles. .
- This provisional steering profile is, for example, as illustrated in FIG.
- Step S102 The lane change track generation unit 1512 determines whether or not the vehicle speed at the lane change start point is different from the vehicle speed at the continuous change end point. When the vehicle speed at the end point is different from the vehicle speed at the start point, the process proceeds to step S103, and when it is the same, the process skips to step S104. This is because when the vehicle speed is the same, the peak of the resultant acceleration becomes equal on the left and right, so that it is not necessary to perform step S103 described later.
- the lane change trajectory generation unit 1512 changes the maximum value of the left and right steering angles of the provisional steering profile. For example, as illustrated in FIG. 12, the maximum steering angle value is changed so that the curvature of the section of the traveling track where the vehicle speed is high becomes small.
- the lane change trajectory generation unit 1512 calculates a travel trajectory and a speed profile when G-Vectoring control is applied based on the provisional steering profile and Equation 1.
- Step S105 The lane change trajectory generation unit 1512 determines whether the longitudinal / lateral combined acceleration in the left turning section and the longitudinal / lateral combined acceleration in the right turning section are leveled. When leveling is performed, the process proceeds to step S106. When leveling is not performed, the process returns to step S103 and the same process is repeated.
- Step S105 Supplement 1
- the longitudinal and lateral combined accelerations between the left and right turning sections are compared with the case where the left and right turning sections are point-symmetrical trajectories. If the difference is small, it can be regarded as leveled. To what extent the difference becomes small, it can be determined using an appropriate threshold value that the level is regarded as equalized.
- Step S105 Supplement 2 If it is determined in step S102 that the vehicle speed at the start point of the lane change is equal to the vehicle speed at the end point, the peak value of the front / rear / lateral combined acceleration is regarded as already leveled in this step.
- the lane change trajectory generation unit 1512 adopts the provisional steering profile at that time as the steering profile, and adopts the travel trajectory and speed profile calculated in step S104.
- the lane change trajectory generation unit 1512 uses these as control targets.
- FIG. 17 is a graph showing an example of a speed profile calculated by G-Vectoring control.
- the second stage is the speed based on the acceleration / deceleration component calculated according to the lateral movement of the vehicle, and is determined by the G-Vectoring control gain.
- the third level is a speed based on an acceleration / deceleration component that is not linked to the lateral motion, and is set to give a speed difference between the start point and the end point of the lane change.
- the first stage is a speed profile that is finally used, and is obtained by synthesizing these.
- the third-stage acceleration / deceleration component does not necessarily have to be constant. However, when changing the acceleration / deceleration at the third stage, the acceleration / deceleration change is longer in the cycle than the left / right steering cycle so as not to impair the linkage between the lateral motion and the longitudinal motion by the G-Vectoring control. At this time, the acceleration / deceleration may be determined so that the vehicle speed at the end point of the lane change is set and the vehicle speed is realized. Alternatively, the vehicle speed at the lane change end point may be determined as a result of setting the degree of acceleration / deceleration.
- the vehicle motion model it is possible to calculate the vehicle travel trajectory and the longitudinal / lateral composite acceleration using parameters of predetermined acceleration / deceleration, sinusoidal steering, and acceleration / deceleration caused by G-Vectoring control.
- the maximum left and right steering angles that is, sinusoidal waveforms
- the amplitude of the steering angle change) and the steering frequency can be obtained as inverse problems, and the steering profile and traveling track at that time can be set as control targets.
- the maximum value of the turning steering angle in the first half is repeatedly made larger than the maximum value of the turning steering angle in the second half opposite to the first half, while decelerating.
- the maximum value of the first half turning steering angle may be repeated to be smaller than the maximum value of the second half turning steering angle opposite to the first half.
- FIG. 18 shows a vehicle motion model approximated on the assumption that the change in the yaw angle during the lane change and the tire side slip angle are sufficiently small.
- the integral value based on the travel distance of the steering angle is the yaw angle
- the integral value based on the travel distance of the yaw angle is the lateral position. Therefore, it can be regarded as a simple relationship in which the second-order integral value according to the travel distance of the steering angle becomes the lateral position, and the calculation load is minimized.
- a more detailed vehicle motion model can be used according to the calculation performance of the control device.
- a planar two-wheel model that takes into account the tire slip angle, or a multi-degree-of-freedom model that takes into account the influence of vertical movement more precisely can be used.
- the higher the accuracy of the model the smaller the deviation from the previous prediction and the less the correction rudder by feedback control. Therefore, the steering profile as a result of actual traveling becomes more sinusoidal and smooth steering is achieved.
- the present invention is intended for vehicle movement in a lane change mode, and the number of input parameters necessary for determining a steering profile is limited. Therefore, in the second embodiment, the final lateral position and yaw angle with respect to the steering profile are obtained by referring to a previously created map.
- a plurality of combinations of four input parameters of the avoidance distance, the lateral movement amount, and the vehicle speed of each start point and end point of the lane change trajectory are set as discrete patterns, and the peak value of the front / rear / lateral combined acceleration is reduced.
- a sinusoidal steering profile is obtained in advance for all the set combinations.
- each input parameter takes a continuous value
- a continuous four-dimensional map is created by interpolating data points based on neighboring values set as discrete values.
- a steering profile and a traveling track are obtained from this map, and feedforward control based on the steering profile is supplemented by feedback control.
- the target trajectory can also be calculated by setting a passing point on the way. If the lane change trajectory is set so that the peak values of the front / rear and lateral combined accelerations are leveled, the target trajectory will shift outward compared to the point-symmetric trajectory when changing lane while decelerating, and the lane will change while accelerating. In case it is shifted inward.
- the target passing point at the midpoint of the lane change trajectory can be set outside or inside the point-symmetric trajectory, and the steering can be controlled so as to pass through that point.
- FIG. 19 is a diagram showing the relationship between the passing point position of the lane change trajectory and the curvature. On a trajectory with one turn to the left and one to the right, if the target passing point is set to the outside, the peak value of the first half of the curvature will be smaller than that of the second half, and if set to the inside, the peak value of the second half will be It becomes smaller than that of the first half.
- the position of the start point, (2) The travel direction at the start point, (3) The position of the passing point, (4) The position of the end point, (5) The travel direction at the end point are defined as input parameters.
- the rate of change of the curvature of the trajectory at the start point is made to coincide with the rate of change of the curvature of the predetermined trajectory until immediately before that, and (7) the rate of change of the trajectory of the trajectory at the end point is
- the change in curvature becomes continuous, and by applying the G-Vectoring control, the front / rear / lateral composite acceleration changes smoothly, so that the riding comfort is improved.
- the target passing point is determined with respect to the four input parameters of the avoidance distance, the lateral movement amount, and the vehicle speed of each start point and end point of the lane change trajectory.
- a defined map is prepared in advance and can be determined by referring to this map.
- Embodiment 3 The traveling track described in the above embodiment can be combined with dynamic track generation other than the lane change mode.
- Embodiment 3 of the present invention an example of the combination will be described.
- the lane change control is terminated when the end point of the lane change is reached, and the travel control following the predetermined trajectory is resumed. If the end point of the lane change trajectory set according to the present invention is not on the predetermined travel trajectory, it is necessary to further generate a trajectory ahead of it. In this case, the vehicle motion control device 15 determines again whether or not traveling in the lane change mode is necessary based on the surrounding situation. At this time, if the traveling track in the lane change mode is used to return to the default track, the end point of the lane change may be set on the default track.
- the vehicle travels using a trajectory that draws a curve in only one of the left and right directions, and returns to a predetermined static travel trajectory. Alternatively, the vehicle continues to turn straight or to the left or right until the lane change mode is suitable.
- the steering speed is preferably continuous so that the longitudinal acceleration changes smoothly according to steering, as in the lane change mode section.
- the present invention is not limited to the above-described embodiments, and includes various modifications.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- the ride comfort and vehicle motion performance are improved by applying the G-Vectoring control when traveling on either of the tracks shown in FIG. 9 (point symmetry track) and FIG. 12 (present invention).
- G-Vectoring control when traveling on either of the tracks shown in FIG. 9 (point symmetry track) and FIG. 12 (present invention).
- the longitudinal acceleration is constant regardless of the lateral motion, and therefore the “ gg ” diagram has a flat shape unlike FIGS.
- the composite acceleration peak value between left and right turns can be leveled by applying the present invention. Riding comfort can be improved.
- the travel trajectory generated by the vehicle motion control device 15 is a trajectory generated up to the end point of the lane change before the lane change, the avoidance target moves differently from the prediction and there is a risk of contact.
- the trajectory must be changed in the middle of the travel trajectory calculated in advance.
- the peak value of the longitudinal / lateral combined acceleration is not necessarily minimized. This is because if the degree of acceleration / deceleration and the steering angle are increased, the combined longitudinal / lateral acceleration will increase.
- a sinusoidal steering profile or a traveling track having a quartic or sixth order function shape is used.
- the longer the vertical travel distance (avoidance distance) from the start point to the end point of the lane change the smaller the maximum value of the steering angle and the maximum value of the steering speed, and the lateral movement amount from the start point to the end point of the lane change becomes smaller.
- the peak value of the front / rear / lateral combined acceleration itself is reduced, and the burden on the occupant can be reduced.
- other steering profiles and traveling tracks may be used.
- the above components, functions, processing units, processing means, etc. may be realized by hardware by designing a part of them, for example, by an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本発明は、レーンチェンジ様態の車両運動において、安定した車両挙動を実現することができる車両運動制御装置を提供する。本発明に係る車両運動制御装置は、車両を左右一方へ旋回させた後に連続して他方へ旋回させる走行軌道を算出する場合は、車両の車速が高い部分ほど前記走行軌道の曲率のピーク値が小さくなるように、前記走行軌道を算出する。
Description
本発明は、車両の運動を制御する車両運動制御装置に関する。
自動車における先進運転支援システム(Advanced Driving Assistant System:以下、ADASと称す)および自動運転関連技術の開発が、近年急速に進められている。
運転操作を部分的に自動化する技術は、車両の前後方向の運動を制御するものと、横方向の運動を制御するものとに分類できる。前後運動を制御する技術として、ACC(Adaptive Cruise Control)やAEB(Automatic Emergency Brake)などがある。これらは他車や障害物等の不確定な要素に対応することができる。横運動の制御としては、車線に沿って自動的に操舵もしくは操舵を支援する技術であるLKS(Lane Keeping System)が実用化されている。
LKSは、あくまでも車線を保持すること、つまりあらかじめ設定された軌道上を走行させることが目的であり、走行軌道を変化させる必要がある場合には対応できない。あらかじめ走行軌道を設定しておくことができない状況として、レーンチェンジ、障害物緊急回避、合流、分岐などが想定される。そのような状況においては、車線内を走行する場合よりも走行軌道の自由度が高いので、適切な走行軌道の設定とその軌道を走行するための車両運動制御が必要である。この技術は、自動運転において、不確定な状況の変化が避けられない一般公道を支障なく走行するために必須である。またADASにおいても、適切な操舵支援は安全と安心をもたらすという点で重要な機能である。
下記特許文献1は、車両運動を制御する技術を開示している。同文献においては、障害物の回避を含むレーンチェンジ様態の車両運動を対象として、走行軌道を設定する方法が記載されている。
特許文献1に記載のレーンチェンジ様態の軌道は、曲線の滑らかさを考慮した軌道である。しかし、前後・横合成加速度を考慮していないので、乗員に対する慣性力が過大となる可能性があり、乗り心地改善の余地があった。また同じく前後・横合成加速度に起因して、車両に働く力が過大となる可能性があり、設定した軌道からの逸脱や車両挙動が不安定化する恐れがあった。
本発明は、上記課題に鑑みてなされたものであり、その目的は、レーンチェンジ様態の車両運動において、安定した車両挙動を実現することができる車両運動制御装置を提供することにある。
本発明に係る車両運動制御装置は、車両を左右一方へ旋回させた後に連続して他方へ旋回させる走行軌道を算出する場合は、車両の車速が高い部分ほど前記走行軌道の曲率のピーク値が小さくなるように、前記走行軌道を算出する。
本発明に係る車両運動制御装置によれば、前後・横合成加速度のピーク値が抑制され、安定した車両挙動を実現できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされるであろう。
<実施の形態1>
図1は、本発明の実施形態1に係る自動運転システムを搭載する車両1の構成図である。ここでいう自動運転システムとは、操舵と加減速を同時にシステムが司る場合がある形態を指す。例えば、ドライバの指示をトリガとした自動レーンチェンジシステム、緊急時限定の自動制動および操舵回避システム、ドライバ不要の完全自動運転システム、いずれをも指すものとする。車両1は、車両運動制御装置15の制御指令によって運転者の操作に依存せずに操舵と加減速を制御することができる。
図1は、本発明の実施形態1に係る自動運転システムを搭載する車両1の構成図である。ここでいう自動運転システムとは、操舵と加減速を同時にシステムが司る場合がある形態を指す。例えば、ドライバの指示をトリガとした自動レーンチェンジシステム、緊急時限定の自動制動および操舵回避システム、ドライバ不要の完全自動運転システム、いずれをも指すものとする。車両1は、車両運動制御装置15の制御指令によって運転者の操作に依存せずに操舵と加減速を制御することができる。
操舵装置18は、EPS(電動パワーステアリング)を備える。EPSは、運転者による操舵力を増幅するパワーステアリングとしての機能に加えて、車両運動制御装置15が送信する制御指令を受信して、能動的なアクチュエータとして運転者の操作に依存せずに左前輪11と右前輪12を操舵する機能を有する。
駆動装置19は、内燃機関または電動モータまたはその両方で構成され、車両運動制御装置15が送信する制御指令を受信して、減速機25とドライブシャフト26を介して駆動輪である左前輪11と右前輪12に駆動力を発生させて車両1を走行させる。また、駆動輪に制動力を発生させて車両1を減速させる。駆動装置19は、制御指令に応じて、運転者の操作に依存せずに加減速を制御することができる。
制動制御装置20は、車両運動制御装置15が送信する制御指令を受信して、制動装置21~24に液圧を作用させて制動力を制御する機能を有する。制動制御装置20は、制御指令に応じて、運転者の操作に依存せずに減速を制御することができる。制動装置21~24は、制動制御装置20からの液圧を受けて作動し、4輪11~14それぞれに制動力を発生させる。
車両運動制御装置15には、GNSS(Global Navigation Satellite System)センサ17、慣性センサ16、車両前方の外界情報を取得するカメラ28、側方画像センサ29、レーザースキャナ30、および車輪速センサ31~34(制動制御装置20を経由)からの情報が入力される。車両運動制御装置15はそれら情報に基づいて、操舵装置18、駆動装置19、制動制御装置20、に対して制御指令を送り、車両1の運動を制御する。
制駆動装置として、制動装置21~24と駆動装置19が協調して制動力を制御してもよい。操舵装置18は、操舵機構と操舵制御装置によって構成してもよい、同様にその他装置の構成は、分割あるいは統合することができる。
図2は、車両運動制御装置15の内部構成図である。車両運動制御装置15は、軌道生成部151と走行制御部152を備える。
軌道生成部151には、車両前方を撮影するカメラ28からリアルタイムに取得される外界情報、レーザースキャナ30による周囲立体物情報、および現在の車両の位置と進行方向と速度が入力される。軌道生成部151は、車線幅を含む道路のカーブ形状の情報として、事前に取得した地図情報と、それに基づいて事前に生成した既定の走行軌道の情報を保持している。軌道生成部151は、GNSSセンサ17、加速度および角速度を検出する慣性センサ16、車輪速センサ31~34、操舵角センサ27、車線あるいは道路端を検出する側方画像センサ29が検出した情報を統合することにより、車両の位置と進行方向と速度を精度高く取得することができる。
軌道生成部151は、走行可能範囲を検知し、既定の軌道から外れる必要がある場合には、動的に走行軌道を生成する。軌道生成部151は、状況に応じて、動的に生成された軌道と既定の軌道のいずれかを選択し、対応する操舵プロファイルと速度プロファイルとともに目標軌道として走行制御部152に対して出力する。操舵プロファイルとは時間に対する操舵角の推移を意味し、速度プロファイルとは時間に対する車速の推移を意味するものとする。
走行制御部152には、軌道生成部151が出力した目標軌道と操舵プロファイルと速度プロファイルが入力されるのに加えて、現在の車両の位置と進行方向と速度が入力される。走行制御部152は、目標軌道に追従するように操舵装置18のアクチュエータに操舵プロファイルに基づくフィードフォワード制御による操舵指令値を算出して送信するとともに、車両の目標軌道からの偏差を検知してフィードバック制御する。同時に速度プロファイルに基づいて加減速指令値または速度指令値を算出して駆動装置19と制動制御装置20に対してこれを送信し、加減速あるいは速度を制御する。
次に、レーンチェンジ様態の走行における車両運動制御の枠組みについて説明する。レーンチェンジ様態とは、走行中の車線から隣接する車線への移動、もしくはそれと同程度の距離を横方向に移動する一連の車両運動であって、その運動の最中において、右旋回区間の後に左旋回区間、あるいは、左旋回区間の後に右旋回区間が連続するものを指すこととする。レーンチェンジ様態の車両運動としては、片側複数車線の道路におけるレーンチェンジの他、合流、分岐、追い越し、障害物の回避などが含まれる。これらの場面では、既定の車線に沿った走行とは異なり、周囲の状況に応じて適切な軌道を選択、あるいは生成して走行しなければならない。
車両1は、基本的には既定の走行軌道に沿って走行するものとするが、必要に応じて動的に走行軌道もしくは操舵プロファイルを設定して、一時的に既定の走行軌道から外れて走行し、再度、既定の走行軌道に戻るものとする。
静的な既定の軌道から一時的に外れる際には、大半の場合において、左右に連続して転舵するレーンチェンジ様態の走行軌道となる区間を含むので、車両運動制御装置15はその区間の軌道を生成し、それに追従するように車両1を制御する。
他車や障害物との接触・衝突を避けて走行することができる走行可能範囲にはある程度の自由度があるため、その範囲内で自動運転をする走行軌道を定める必要がある。走行可能範囲を検知するためには、他車や障害物の大きさ、それら対象物と車両1との間の相対的な位置関係を検知できるステレオカメラ、レーザースキャナ、各種レーダ、あるいはそれらと単眼カメラとの組み合わせ、さらに必要に応じて道路端や車線検出のために地図情報も利用する。
図3は、走行軌道を動的に設定する必要がある例を示す図である。例えば図3に示すように、自車がある速度で走行中に、制動距離より近距離に位置する前方の障害物への衝突を避けるため、自動操舵によって既定の軌道から外れて当該障害物の側方を通過する場合は、走行軌道を動的に設定する必要がある。
図4は、走行軌道を動的に設定する必要がある他例を示す図である。図4に示すように、高速道路の本線に合流車線から合流する際に、本線を走行中の他車との位置および相対速度の関係によれば、自車が合流車線の末端まで達する前に速度を調整しながら本線に移動した方が安全である場合は、走行軌道を動的に設定する必要がある。図3と図4に例示するように、走行軌道を動的に設定する状況として、既定の走行軌道では対応できない種々の状況が想定される。
いずれのレーンチェンジ様態においても、衝突リスクの低減と衝突を避け切れなかった際の被害軽減のためには、対象物との間の相対距離を確保する軌道の設定だけでなく、対象物との間の相対速度が小さいことが望ましい。さらに車両の運動特性として、低速である方が大きい曲率で旋回可能となるので、レーンチェンジ様態の車両運動は一般に加減速をともなう。
車両運動制御装置15がレーンチェンジ軌道を生成し、その軌道に沿って車両1を走行させる制御の流れについて説明する。まず、既定の軌道を走行中に、周囲の状況と前述の検知された走行可能範囲に基づいて、現在、レーンチェンジ様態の走行へ移行することが必要か否かを判断する。必要と判断されると、制御に必要な入力情報が設定される。入力情報とは、回避距離、横移動量、現在車速である。回避距離とは、便宜上、レーンチェンジ様態の横移動が完了するまでの前後方向の移動距離を指す。横移動量とは、レーンチェンジ様態の横移動が完了するまでの横方向への移動距離を指す。レーンチェンジ開始時と終了時で進行方向が異なる必要がある場合は、それらの情報も付加する。現在位置がレーンチェンジ始点となり、そこからの回避距離と横移動量の分だけ移動した点がレーンチェンジ終点となる。
図5は、隣接車線への移動を目的とするレーンチェンジの横移動量を示す図である。この場合は、レーンチェンジ終点が隣接車線内に位置するように車線幅分の横移動量を設定する。このような片側複数車線の区間においては、既定の走行軌道を車線毎に平行して用意しておくことにより、レーンチェンジ終点をそれら既定の走行軌道のいずれかに設定することができる。
図6は、片側一車線の道路における追い越しや障害物回避などにおいて、対向車線へのはみ出しや路肩へのはみ出しをともなう場合の横移動量を示す図である。この場合は、対象物と車両1との間の距離に最低限の余裕を設けた横移動量を設定する。
図7は、レーンチェンジ軌道を設定する従来の方法を説明する図である。従来、レーンチェンジ軌道を設定する方針として、横加速度が連続かつ過剰な横加速度を発生させないことは一般的であった。横加速度を連続とするためには走行軌道の曲率が連続であればよく、過剰な横加速度を発生させないためには横移動量に対して回避距離をなるべく長くとればよい。図7に示す2つの方法においては、これら原則に基づいて、横移動の始点と終点をクロソイドや各種スプライン曲線によって接続している。
これに対して本発明は、横移動量に対して回避距離をなるべく長くとる点は従来手法と共通するが、走行すべき軌道の形状を、車両に生じる横加速度だけでなく加減速も考慮してより詳細に定める。
本発明においては、所定の前後加速度に対して、横運動に連携した前後加速度を重畳することにより、加減速を制御する。車両運動性能の面でも乗り心地の面でも、横加加速度に応じて前後加速度が変化することが望ましいことが分かっている。本発明においては、この関係を実現するG-Vectoring制御を用いて、前後加速度を定める。
下記式1は、G-Vectoring制御の基礎式である。Gxは前後加速度、Gyは横加速度、dGy/dtは横加速度の時間変化率である横加加速度、CxyはG-Vectoring制御ゲイン、Gx_DCは横運動から独立した前後加速度成分を表す。
Gx=-sgn(Gy・dGy/dt)・Cxy・dGy/dt+Gx_DC (1)
式1の右辺第1項は、横加加速度にゲインを乗算し、横加速度の大きさが増える際には減速し、横加速度の大きさが減る際には加速するように符号を与えた前後加速度である。
式1の右辺第2項は、横運動にかかわらず加減速が必要な場合に与える所定の前後加速度である。
式1の右辺第2項は、横運動にかかわらず加減速が必要な場合に与える所定の前後加速度である。
下記式2は、操舵角と車速と横加速度の近似的な関係を示す式である。δは操舵角、Vは車速、CGは車両運動の簡易的な線形モデルに基づく比例定数を表す。
Gy=δV2CG (2)
式2に示すように、車両に生じる横加速度Gyは、操舵角δと概ね線形関係にある。したがって式1と式2より、スムーズさを欠く操舵を実施すると、横加速度変化に起因して不連続な前後加速度が発生する。G-Vectoring制御の効果を活かすためには、操舵に応じた前後加速度の変化がスムーズになるよう、操舵速度の大きさが連続であることが望ましい。そこで本発明においては、操舵速度が連続的に変化するパターンを基にして、操舵プロファイルを生成する。制御プログラムの演算処理における扱い易さを考慮すると、操舵角が正弦波状に推移するパターンが望ましい。
図8は、レーンチェンジ軌道において操舵速度の大きさが連続的に変化する正弦波状の操舵プロファイルの例である。操舵プロファイルと初期車速が定まれば、G-Vectoring制御によって横運動に応じた加減速が定まる。この加減速に対して、レーンチェンジの終了までに必要な速度変化を与える所定の加速もしくは減速を重畳させることにより、速度プロファイルが定まる。操舵プロファイルと速度プロファイルとして、車両に対して操舵と制駆動の入力を与えることにより、走行軌道が決定する。
G-Vectoring制御を用いる場合、車両に生じる前後・横合成加速度は、走行軌道の形状によっても影響を受ける。そこで以下では、走行軌道の形状と車両に生じる前後・横合成加速度との関係について説明する。
図9は、点対称形なレーンチェンジ軌道の例である。図9に示す走行軌道は、正弦波状の操舵プロファイルに基づいて算出されたものであり、右旋回区間と左旋回区間が軌道の中点を中心として点対称になっている。このような軌道を右旋回区間と左旋回区間とで車速が異なるように走行すると、左右の横加速度が異なることになる。またこの際、G-Vectoring制御によって前後加速度が制御されるので、異なる横加速度の変化に対して前後加速度が定められ、結果として前後・横合成加速度も右旋回区間と左旋回区間とで異なることになる。走行軌道がクロソイド曲線やスプライン曲線であっても、点対称な走行軌道であれば同様に、前後・横合成加速度が右旋回区間と左旋回区間とで異なることになる。例えば減速しながら右にレーンチェンジする場合は、前半の右旋回区間A~Bの方が後半の左旋回区間C~Dよりも前後・横合成加速度の大きさが大きくなる。
図10は、図9に示す走行軌道の“g-g”ダイアグラムの原理的な試算結果を示すグラフである。図10に示す各区間と図9に示す走行軌道を対比しながら、前後・横合成加速度の変化について説明する。
式1は、横運動と連携せず全体に重畳された減速成分を含んでいる。したがって図9の走行軌道の開始時点においては、横加速度が0で前後加速度が減速側に生じる。その後、前半の右旋回区間においては、右向きの横加速度が増すとともにG-Vectoring制御の作用によって減速度も増していく(A)。右旋回から操舵を切り戻していく過程においては、右向きの横加速度が減少するとともにG-Vectoring制御の作用によって減速度が減少していく(B)。
後半の左旋回区間においては、左向きの横加速度が増すとともにG-Vectoring制御の作用によって減速度が増していくことは右旋回区間と同様であるが、右旋回区間より車速が低下している分、横加速度が小さく、その増加も相対的に緩やかである。したがって右旋回区間よりも減速度が小さい(C)。左旋回から操舵を切り戻していく過程においても、横加速度は、前半よりも小さい値から前半よりも時間をかけて0に戻るので、やはり減速度の変化は右旋回区間よりも小さい(D)。
後半の左旋回区間C~Dの前後・横合成加速度が小さいにもかかわらず、前半の右旋回区間A~Bの前後・横合成加速度が大きいということは、後半の余裕が過剰であり前半の前後・横合成加速度が過大となっていることを意味する。前後・横合成加速度は乗員に作用する慣性力に対応するので、この過大な慣性力は乗り心地の面で改善の余地がある。また、前後・横合成加速度は車両に作用する力にも対応する。その力はほぼ全て路面とタイヤとの間で生じるものである。したがって、車両がこの軌道を走行可能な路面μ(摩擦係数)の下限値は、前後・横合成加速度が相対的に大きい右旋回区間のピーク値によって定まる。
図11は、本発明における操舵プロファイルの例である。本発明は、レーンチェンジにともなって右旋回区間の次に左旋回区間が発生する走行軌道において、右旋回区間A~Bの操舵角の最大値を左旋回区間C~Dの操舵角の最大値よりも小さくする。具体的には、図8のような正弦波状の操舵プロファイルを基にして左右の操舵角を変更するとともに、右旋回区間A~Bの操舵速度を左旋回区間C~Dの操舵速度よりも遅くする。
図12は、図11の操舵プロファイルによって得られる走行軌道を図9の点対称軌道に重ねて示す図である。ここでは図9と同様に減速しながら右にレーンチェンジすることを前提とする。
本発明における走行軌道は点対称形ではなく、走行軌道の曲率のピーク値は右旋回区間A~Bの方が左旋回区間C~Dよりも小さくなる。これにより、曲率が小さい区間の車速が高く、曲率が大きい区間の車速が低くなるので、曲率と車速を適切に調整することにより、前後・横合成加速度のピーク値が右旋回区間A~Bと左旋回区間C~Dとで等しくすることができる。
図13は、図12に示す軌道を走行したときの“g-g”ダイアグラムの原理的な試算結果を、図10の点対称な軌道を走行した場合の試算結果と重ねて示したグラフである。
いずれの走行軌道においても、減速しながら右にレーンチェンジすること、およびG-Vectoring制御を実施することは共通である。
いずれの走行軌道においても、減速しながら右にレーンチェンジすること、およびG-Vectoring制御を実施することは共通である。
本発明においては、右旋回区間A~Bでは横加速度と前後加速度がいずれも点対称軌道と比較して小さくなり、左旋回区間C~Dでは横加速度と前後加速度がいずれも点対称軌道と比較して大きくなっている。その結果として、前後・横合成加速度のピーク値が右旋回区間A~Bと左旋回区間C~Dとで略等しくなっている。これにより、右旋回区間と左旋回区間の前後・横合成加速度のピーク値が互いに異なる走行軌道と比較して、乗り心地が改善される。また、車両がこの軌道を走行可能な路面μ(摩擦係数)の下限値は、上記合成加速度のピーク値によって定まるので、より小さい路面μでも安定したレーンチェンジが可能となる。
前後加速度と横加速度は、時間に対して走行軌道上のどの位置まで進行するかによって定まる。したがって、加速度を適切に制御するためには、設定した軌道どおりに走行することが肝要である。軌道生成部151は、操舵プロファイルと速度プロファイルに基づいて走行軌道を算出するので、車両運動モデルが十分正確であれば操舵と加減速のフィードフォワード制御のみで目標軌道に沿って走行できる。しかし実際にはずれが生じるので、純粋なフィードフォワード制御では目標軌道を必要な追従精度で走行させることができるとは限らない。そこで目標軌道を正確に追従するためには、フィードバック制御を併用する必要がある。
図14は、車両を走行軌道に対して追従させるための制御ブロック図である。本制御ブロックは、例えば走行制御部152によって実装することができる。本制御ブロックは、既定の操舵プロファイルで操舵するフィードフォワード制御に対して、横方向位置偏差と角度偏差を抑制するフィードバック制御を加えたものである。
本制御ブロックにおいて、操舵プロファイルによるフィードフォワード制御を省いて、一般的な前方注視モデルを用いてもよい。ただしその場合は、操舵プロファイルの情報を用いない分、軌道追従性を確保するためには詳細な調整を要する可能性がある。
図15は、軌道生成部151の内部構成図である。レーンチェンジ判断部1511は、自車周辺情報/位置/進行方向/速度を入力として受け取り、回避距離と横移動量を算出して現在車速とともにレーンチェンジ軌道生成部1512に対して出力する。レーンチェンジ軌道生成部1512はこれら情報を用いて、操舵プロファイル/目標軌道/速度プロファイルを算出する。
図16は、レーンチェンジ軌道生成部1512による処理を説明するフローチャートである。以下図16の各ステップについて説明する。
(図16:ステップS101)
レーンチェンジ軌道生成部1512は、横運動とは独立して必要な加減速の程度に基づいてレーンチェンジ終点の車速を設定するとともに、左右の操舵角の最大値が均等な暫定操舵プロファイルを設定する。この暫定操舵プロファイルは、例えば図8で例示したようなものである。
レーンチェンジ軌道生成部1512は、横運動とは独立して必要な加減速の程度に基づいてレーンチェンジ終点の車速を設定するとともに、左右の操舵角の最大値が均等な暫定操舵プロファイルを設定する。この暫定操舵プロファイルは、例えば図8で例示したようなものである。
(図16:ステップS102)
レーンチェンジ軌道生成部1512は、レーンチェンジ始点における車速と連チェンジ終点における車速が異なるか否かを判定する。終点の車速が始点の車速と異なる場合はステップS103へ進み、同じである場合はステップS104へスキップする。車速が同じである場合は合成加速度のピークが左右で均等になるので、後述のステップS103を実施する必要はないからである。
レーンチェンジ軌道生成部1512は、レーンチェンジ始点における車速と連チェンジ終点における車速が異なるか否かを判定する。終点の車速が始点の車速と異なる場合はステップS103へ進み、同じである場合はステップS104へスキップする。車速が同じである場合は合成加速度のピークが左右で均等になるので、後述のステップS103を実施する必要はないからである。
(図16:ステップS103)
レーンチェンジ軌道生成部1512は、暫定操舵プロファイルの左右の操舵角の最大値を変更する。例えば図12に例示するように、走行軌道のうち車速が大きい区間の曲率が小さくなるように、操舵角最大値を変更する。
レーンチェンジ軌道生成部1512は、暫定操舵プロファイルの左右の操舵角の最大値を変更する。例えば図12に例示するように、走行軌道のうち車速が大きい区間の曲率が小さくなるように、操舵角最大値を変更する。
(図16:ステップS104)
レーンチェンジ軌道生成部1512は、暫定操舵プロファイルと式1に基づき、G-Vectoring制御を作用させた場合の走行軌道と速度プロファイルを算出する。
レーンチェンジ軌道生成部1512は、暫定操舵プロファイルと式1に基づき、G-Vectoring制御を作用させた場合の走行軌道と速度プロファイルを算出する。
(図16:ステップS105)
レーンチェンジ軌道生成部1512は、左旋回区間における前後・横合成加速度と右旋回区間における前後・横合成加速度が平準化されるか否かを判定する。平準化される場合はステップS106へ進み、平準化されない場合はステップS103に戻って同様の処理を繰り返す。
レーンチェンジ軌道生成部1512は、左旋回区間における前後・横合成加速度と右旋回区間における前後・横合成加速度が平準化されるか否かを判定する。平準化される場合はステップS106へ進み、平準化されない場合はステップS103に戻って同様の処理を繰り返す。
(図16:ステップS105:補足その1)
本ステップにおいて、必ずしも前後・横合成加速度のピーク値が左右の旋回区間で等しくなくても、左右旋回区間が点対称軌道である場合と比較して、左右旋回区間間の前後・横合成加速度の差分が小さくなるのであれば、平準化されたとみなすことができる。差分がどの程度まで小さくなれば平準化されたとみなすかについては、適当な閾値を用いて判定すればよい。
本ステップにおいて、必ずしも前後・横合成加速度のピーク値が左右の旋回区間で等しくなくても、左右旋回区間が点対称軌道である場合と比較して、左右旋回区間間の前後・横合成加速度の差分が小さくなるのであれば、平準化されたとみなすことができる。差分がどの程度まで小さくなれば平準化されたとみなすかについては、適当な閾値を用いて判定すればよい。
(図16:ステップS105:補足その2)
ステップS102において、レーンチェンジ始点の車速と終点の車速が等しいと判断した場合、本ステップにおいて前後・横合成加速度のピーク値は既に平準化されているとみなされることになる。
ステップS102において、レーンチェンジ始点の車速と終点の車速が等しいと判断した場合、本ステップにおいて前後・横合成加速度のピーク値は既に平準化されているとみなされることになる。
(図16:ステップS106)
レーンチェンジ軌道生成部1512は、操舵プロファイルとしてその時点の暫定操舵プロファイルを採用し、走行軌道と速度プロファイルについてはステップS104において算出したものを採用する。レーンチェンジ軌道生成部1512は、これらを制御目標として用いる。
レーンチェンジ軌道生成部1512は、操舵プロファイルとしてその時点の暫定操舵プロファイルを採用し、走行軌道と速度プロファイルについてはステップS104において算出したものを採用する。レーンチェンジ軌道生成部1512は、これらを制御目標として用いる。
図17は、G-Vectoring制御によって算出した速度プロファイルの例を示すグラフである。2段目は車両の横運動に応じて算出する加減速成分に基づく速度であり、G-Vectoring制御ゲインによって定まる。3段目は横運動と連携しない加減速成分に基づく速度であり、レーンチェンジの始点と終点の速度差を与えるために設定するものである。1段目は最終的に用いる速度プロファイルであり、これらを合成することにより得られる。
3段目の加減速成分は必ずしも一定でなくてもよい。ただし3段目の加減速度を変化させる場合は、G-Vectoring制御による横運動と前後運動の連携を損なわないように、左右操舵の周期よりも長い周期の加減速度変化とする。このとき、レーンチェンジ終点の車速を設定してその車速を実現するように加減速度を定めてもよい。あるいは加減速の程度を設定した結果としてレーンチェンジ終点の車速を定めてもよい。
車両運動モデルを用いることにより、所定の加減速、正弦波状の操舵、G-Vectoring制御に起因する加減速、をパラメータとして、車両の走行軌道と前後・横合成加速度を算出することができる。このことを利用して、レーンチェンジ終点において車両の位置とヨー角が合致し、なおかつ前後・横合成加速度が前後半間で平準化されるような左右の操舵角の最大値(すなわち正弦波状の操舵角変化の振幅)と操舵周波数を逆問題として求め、その際の操舵プロファイルと走行軌道を制御目標として設定することができる。
実際にはこの逆問題を解析的に解くことは難しいので、順問題として軌道を算出し、条件を満たすものを探索して目標軌道として採用するのが現実的である。探索方針は、車両を加速しながらレーンチェンジする場合は、前半の旋回操舵角の最大値を、前半とは逆方向の後半の旋回操舵角の最大値よりも大きくすることを繰り返し、減速しながらレーンチェンジする場合は、前半の旋回操舵角の最大値を、前半とは逆方向の後半の旋回操舵角の最大値よりも小さくすることを繰り返せばよい。この探索にあたって、目標軌道を簡易的な車両運動モデルを用いて算出する方法について、以下説明する。
図18は、レーンチェンジ中のヨー角の変化とタイヤ横すべり角が十分小さいとして近似した車両運動モデルを示す。このモデルにおいては、操舵角の走行距離による積分値がヨー角となり、ヨー角の走行距離による積分値が横方向位置となる。したがって、操舵角の走行距離による2階積分値が横方向位置となる簡潔な関係とみなすことができ、演算負荷が最低限に抑えられる。
簡易的なモデルであるので、目標軌道に追従するための修正舵や切り増しによって、実際の操舵角の推移は必ずしも正弦波状にならない可能性がある。しかし、軌道追従のフィードバック制御によって実軌道が目標軌道に十分追従できれば、前後・横合成加速度の推移は目標値からさほど乖離しないと考えられる。
制御装置の演算性能に応じてより詳細な車両運動モデルを用いることもできる。例えばタイヤ横すべり角を考慮した平面2輪モデルや、さらに精緻に上下運動の影響まで加味した多自由度モデルなどを用いることができる。モデルの精度が高いほど事前の予測とのずれが小さく、フィードバック制御による修正舵が少なくなるので、実際に走行した結果としての操舵プロファイルがより正弦波状に近くなり、スムーズな操舵となる。
<実施の形態2>
実施形態1においては、オンラインで目標軌道を探索することが必要である。本発明の実施形態2では、オフラインの計算に基づいてあらかじめマップ化しておいた対応関係を参照することにより、目標軌道を算出する手順を説明する。その他構成は実施形態1と同様である。
実施形態1においては、オンラインで目標軌道を探索することが必要である。本発明の実施形態2では、オフラインの計算に基づいてあらかじめマップ化しておいた対応関係を参照することにより、目標軌道を算出する手順を説明する。その他構成は実施形態1と同様である。
本発明はレーンチェンジ様態の車両運動を対象としており、操舵プロファイルを定めるために必要な入力パラメータ数が限られている。そこで本実施形態2においては、その操舵プロファイルに対する最終的な横方向位置とヨー角を、あらかじめ作成したマップを参照することにより求める。
具体的には、例えば、回避距離と横移動量とレーンチェンジ軌道の始点終点それぞれの車速の4つの入力パラメータの組み合わせを離散値で複数パターン設定し、前後・横合成加速度のピーク値を小さくする正弦波状の操舵プロファイルを、設定した全ての組み合わせについてあらかじめ求めておく。実際には各入力パラメータは連続した値をとるので、離散値として設定した近傍の値に基づいてデータ点を補間することにより、連続的な4次元マップを作成する。このマップから操舵プロファイルと走行軌道を求め、操舵プロファイルに基づくフィードフォワード制御をフィードバック制御で補う。
目標軌道は、途中の通過点を設定することによって算出することもできる。前後・横合成加速度のピーク値が平準化されるようにレーンチェンジ軌道を設定すると、減速しながらレーンチェンジする場合は目標軌道が点対称軌道と比較して外側にずれ、加速しながらレーンチェンジする場合は内側にずれる。この特徴を利用して、レーンチェンジ軌道の中点における目標通過点を、点対称軌道よりも外側か内側に設定し、その点を通過するように操舵を制御することができる。
図19は、レーンチェンジ軌道の通過点位置と曲率との間の関係を示す図である。左旋回と右旋回が一度ずつである走行軌道においては、目標通過点を外側に設定すると前半の曲率のピーク値が後半のそれよりも小さくなり、内側に設定すると後半の曲率のピーク値が前半のそれよりも小さくなる。
(1)始点の位置、(2)始点における走行方向、(3)通過点の位置、(4)終点の位置、(5)終点における走行方向、を入力パラメータとして定め、例えば軌道の前後方向位置xを引数とした関数によって軌道の横方向位置yを表すことができる。例えば当該関数を4次関数y=ax4+bx3+cx2+dx+eとして定義することにより、上記5つの入力パラメータを満たす4次関数を一意に求めることができるので、計算負荷を抑制することができる。さらに、始点における走行方向をその直前までの既定軌道の走行方向と一致させるとともに、終点における走行方向をその直後からの既定軌道の走行方向と一致させることにより、曲率の連続性を保つことができる。
さらに、(6)始点における軌道の曲率の変化率をその直前までの既定軌道の曲率の変化率と一致させ、(7)終点における軌道の曲率の変化率をその直後からの既定軌道の曲率の変化率と一致させる場合は、これら7つの入力パラメータを満たす6次関数形状の走行軌道を一意に求めることができる。これにより曲率の変化が連続となり、G-Vectoring制御を適用することにより前後・横合成加速度が滑らかに推移するので、乗り心地が向上する。
点対称軌道と比較して目標通過点を外側もしくは内側へどの程度ずらすかについては、回避距離と横移動量とレーンチェンジ軌道の始点終点それぞれの車速の4つの入力パラメータに対して目標通過点を定義したマップをあらかじめ用意しておき、このマップを参照することによって定めることができる。
<実施の形態3>
以上の実施形態において説明した走行軌道は、レーンチェンジ様態以外の動的軌道生成と組み合わせることもできる。本発明の実施形態3では、その組み合わせの1例について説明する。
以上の実施形態において説明した走行軌道は、レーンチェンジ様態以外の動的軌道生成と組み合わせることもできる。本発明の実施形態3では、その組み合わせの1例について説明する。
本発明により設定したレーンチェンジ軌道の終点が既定の走行軌道上にある場合は、レーンチェンジの終点に達した時点でレーンチェンジ制御を終了し、既定軌道に追従する走行制御に復帰する。本発明により設定したレーンチェンジ軌道の終点が既定の走行軌道上にない場合は、さらにその前方の軌道を生成する必要がある。この場合、車両運動制御装置15は、周囲の状況に基づいて、レーンチェンジ様態の走行が必要か否かを改めて判断する。このとき、レーンチェンジ様態の走行軌道を用いて既定軌道に戻るのであれば、レーンチェンジの終点を既定軌道上に設定すればよい。
レーンチェンジ様態でない操舵を要する場合には、左右いずれか一方向のみにカーブを描く軌道を用いて走行し、既定の静的な走行軌道上に復帰する。あるいは、レーンチェンジ様態が適する状況になるまで、直進か左右いずれかへの旋回状態を継続させる。一方向への旋回状態においてもG-Vectoring制御を適用する場合、レーンチェンジ様態の区間と同様に、操舵に応じた前後加速度の変化がスムーズになるよう、望ましくは操舵速度を連続とする。
<本発明の変形例について>
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
以上の実施形態においては、図9(点対称軌道)と図12(本発明)のいずれの軌道を走行する場合でも、G-Vectoring制御を作用させることにより乗り心地と車両運動性能を向上させることを説明した。これに代えて式1におけるGx_DCのみを与える場合は、横運動によらず前後加速度は一定であるので、“g-g”ダイアグラムは図10や図13とは異なり偏平形状となる。この場合であっても、点対称軌道は前後・横合成加速度ピーク値が左右旋回間で異なることに変わりはないので、本発明を適用することにより左右旋回間の合成加速度ピーク値を平準化して乗り心地を向上させることができる。
以上の実施形態において、多項式を用いて走行軌道を求める例を説明したが、これに限らず例えば正弦波その他の一般的な関数の組み合わせに対して必要十分な拘束条件を設定することにより、走行軌道を求めることもできる。
本発明に係る車両運動制御装置15が生成する走行軌道は、レーンチェンジ前の時点でレーンチェンジの終点まで生成した軌道であるので、回避対象が予測と異なる運動をして接触の恐れが生じた場合などには、あらかじめ算出した走行軌道の途中で軌道を変更しなければならない。この場合、必ずしも前後・横合成加速度のピーク値が最小化されるとは限らない。これは、加減速の程度や操舵角を増すと、前後・横合成加速度が増すことになるからである。しかし、前後・横合成加速度のピーク値を抑えるようにあらかじめ走行軌道を生成しておくことにより、タイヤと路面の摩擦限界までの余裕が充分に確保されているので、たとえ前後・横合成加速度が増したとしても、軌道からの逸脱や車両挙動が不安定となるリスクは、本発明を適用しない場合よりも低減されると考えられる。
以上の実施形態において、正弦波状の操舵プロファイルや4次・6次関数形状の走行軌道を用いることを説明した。これらプロファイルを用いることにより、レーンチェンジ始点から終点までの縦走行距離(回避距離)が長いほど操舵角の最大値や操舵速度の最大値が小さくなり、レーンチェンジ始点から終点までの横移動量が小さいほど操舵角の最大値や操舵速度の最大値が小さくなる。これにより、前後・横合成加速度のピーク値そのものが小さくなるので、乗員に対して与える負担を軽減することができる。前後・横合成加速度のピーク値そのものを小さくできるのであれば、その他操舵プロファイルや走行軌道を用いてもよい。
上記各構成、機能、処理部、処理手段等は、それらの一部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記録装置、ICカード、SDカード、DVD等の記録媒体に格納することができる。
1 車両
11 左前輪
12 右前輪
13 左後輪
14 右後輪
15 車両運動制御装置
16 慣性センサ
17 GNSSセンサ
18 操舵装置
19 駆動装置
20 制動制御装置
21 制動装置(左前輪)
22 制動装置(右前輪)
23 制動装置(左後輪)
24 制動装置(右後輪)
25 減速機
26 ドライブシャフト
27 操舵角センサ
28 カメラ
29 側方画像センサ
30 レーザースキャナ
31 車輪速センサ(左前輪)
32 車輪速センサ(右前輪)
33 車輪速センサ(左後輪)
34 車輪速センサ(右後輪)
11 左前輪
12 右前輪
13 左後輪
14 右後輪
15 車両運動制御装置
16 慣性センサ
17 GNSSセンサ
18 操舵装置
19 駆動装置
20 制動制御装置
21 制動装置(左前輪)
22 制動装置(右前輪)
23 制動装置(左後輪)
24 制動装置(右後輪)
25 減速機
26 ドライブシャフト
27 操舵角センサ
28 カメラ
29 側方画像センサ
30 レーザースキャナ
31 車輪速センサ(左前輪)
32 車輪速センサ(右前輪)
33 車輪速センサ(左後輪)
34 車輪速センサ(右後輪)
Claims (12)
- 車両の操舵と加減速を制御する車両運動制御装置であって、
前記車両の走行軌道を算出する軌道生成部、
前記走行軌道にしたがって前記車両の操舵角を制御する操舵角制御部、
前記走行軌道にしたがって前記車両の加速度を制御する加速度制御部、
を備え、
前記軌道生成部は、前記車両を左右一方へ旋回させた後に連続して他方へ旋回させる前記走行軌道を算出する場合は、前記走行軌道のうち前記車両の車速が高い部分ほど前記走行軌道の曲率のピーク値が小さくなるように、前記走行軌道を算出する ことを特徴とする車両運動制御装置。 - 前記加速度制御部は、前記走行軌道において前記車両が左右一方へ旋回するときとその後に連続して他方へ旋回するときとの間で、前記車両の車速が互いに異なるように、前記車両の前後加速度を制御し、
前記軌道生成部は、前記車両が左右一方へ旋回している間における前記車両の前後・横合成加速度の最大値と他方へ旋回している間における前記車両の前後・横合成加速度の最大値との間の差分を算出し、
前記軌道生成部は、前記車両が点対称な軌道に沿って左右へ旋回する場合よりも前記差分が小さくなるように、前記走行軌道を算出する
ことを特徴とする請求項1記載の車両運動制御装置。 - 前記軌道生成部は、前記走行軌道において前記車両が左右一方へ旋回し始めた後に連続して他方へ旋回し終えるまでの間に前記車両が走行する縦移動距離が長いほど、前記走行軌道を前記車両が走行している間の操舵角の最大値または操舵速度の最大値が小さくなるように、前記走行軌道を算出する
ことを特徴とする請求項1記載の車両運動制御装置。 - 前記軌道生成部は、前記走行軌道において前記車両が左右一方へ旋回し始めた後に連続して他方へ旋回し終えるまでの間における前記車両の横移動量が小さいほど、前記走行軌道を前記車両が走行している間の操舵角の最大値または操舵速度の最大値が小さくなるように、前記走行軌道を算出する
ことを特徴とする請求項1記載の車両運動制御装置。 - 前記軌道生成部は、前記走行軌道において前記車両が左右一方へ旋回する間とその後に連続して他方へ旋回する間のいずれにおいても、前記車両の操舵角が正弦波状に変化するように、前記走行軌道を算出する
ことを特徴とする請求項1記載の車両運動制御装置。 - 前記軌道生成部は、4次関数によって表される曲線を用いて、前記車両を左右一方へ旋回させた後に連続して他方へ旋回させる前記走行軌道を算出する
ことを特徴とする請求項1記載の車両運動制御装置。 - 前記加速度制御部は、前記車両の横運動に応じて前記車両の前後加速度を制御する
ことを特徴とする請求項1記載の車両運動制御装置。 - 前記軌道生成部は、前記走行軌道の曲率の変化率が連続となるように前記走行軌道を算出する
ことを特徴とする請求項7記載の車両運動制御装置。 - 前記軌道生成部は、6次関数によって表される曲線を用いて、前記車両を左右一方へ旋回させた後に連続して他方へ旋回させる前記走行軌道を算出する
ことを特徴とする請求項8記載の車両運動制御装置。 - 前記加速度制御部は、前記車両に作用する横加速度絶対値が増える際には前記車両を減速させ、減る際には加速させる
ことを特徴とする請求項7記載の車両運動制御装置。 - 車両の操舵と加減速を制御する車両運動制御方法であって、
前記車両の走行軌道を算出する軌道生成ステップ、
前記走行軌道にしたがって前記車両の操舵角を制御する操舵角制御ステップ、
前記走行軌道にしたがって前記車両の加速度を制御する加速度制御ステップ、
を有し、
前記軌道生成ステップにおいて、前記車両を左右一方へ旋回させた後に連続して他方へ旋回させる前記走行軌道を算出する場合は、前記走行軌道のうち前記車両の車速が高い部分ほど前記走行軌道の曲率のピーク値が小さくなるように、前記走行軌道を算出する ことを特徴とする車両運動制御方法。 - 車両の操舵と加減速を制御する制御演算を車両運動制御装置に実行させる車両運動制御プログラムであって、前記車両運動制御装置に、
前記車両の走行軌道を算出する軌道生成ステップ、
前記走行軌道にしたがって前記車両の操舵角を制御する制御指令値を算出する操舵角制御ステップ、
前記走行軌道にしたがって前記車両の加速度を制御する制御指令値を算出する加速度制御ステップ、
を実行させ、
前記軌道生成ステップにおいて、前記車両運動制御装置に、前記車両を左右一方へ旋回させた後に連続して他方へ旋回させる前記走行軌道を算出させる場合は、前記走行軌道のうち前記車両の車速が高い部分ほど前記走行軌道の曲率のピーク値が小さくなるように、前記走行軌道を算出させる
ことを特徴とする車両運動制御プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/325,367 US11092967B2 (en) | 2016-09-23 | 2017-07-31 | Vehicle movement control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016185433A JP6654121B2 (ja) | 2016-09-23 | 2016-09-23 | 車両運動制御装置 |
JP2016-185433 | 2016-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018055916A1 true WO2018055916A1 (ja) | 2018-03-29 |
Family
ID=61690241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027611 WO2018055916A1 (ja) | 2016-09-23 | 2017-07-31 | 車両運動制御装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11092967B2 (ja) |
JP (1) | JP6654121B2 (ja) |
WO (1) | WO2018055916A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217315A1 (ja) * | 2019-04-23 | 2020-10-29 | 三菱電機株式会社 | 駐車支援装置および駐車支援方法 |
US11008039B2 (en) * | 2017-04-12 | 2021-05-18 | Toyota Jidosha Kabushiki Kaisha | Lane change assist apparatus for vehicle |
CN113682322A (zh) * | 2021-08-26 | 2021-11-23 | 北京京东乾石科技有限公司 | 一种车辆行驶路径的确定方法和装置 |
US20230331231A1 (en) * | 2022-04-19 | 2023-10-19 | Aptiv Technologies Limited | Dynamically Calculating Lane Change Trajectories |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6642413B2 (ja) * | 2016-12-27 | 2020-02-05 | トヨタ自動車株式会社 | 車両走行制御装置 |
DE102017212355B4 (de) * | 2017-07-19 | 2019-12-24 | Volkswagen Aktiengesellschaft | Verfahren zur Erkennung und zur Charakterisierung eines Fahrverhaltens eines Fahrers oder eines Autopiloten in einem Kraftfahrzeug, Steuereinheit und Kraftfahrzeug |
JP6596772B2 (ja) * | 2017-09-01 | 2019-10-30 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
JP6976142B2 (ja) * | 2017-11-09 | 2021-12-08 | 日立Astemo株式会社 | 車両運動制御装置、その方法、そのプログラム、及びそのシステム、並びに、目標軌道生成装置、その方法、そのプログラム、及びそのシステム |
US11273836B2 (en) * | 2017-12-18 | 2022-03-15 | Plusai, Inc. | Method and system for human-like driving lane planning in autonomous driving vehicles |
EP3769038A1 (en) | 2018-03-19 | 2021-01-27 | Ricoh Company, Ltd. | Information processing apparatus, image capture apparatus, image processing system, and method of processing information |
US10909866B2 (en) * | 2018-07-20 | 2021-02-02 | Cybernet Systems Corp. | Autonomous transportation system and methods |
US20200049511A1 (en) * | 2018-08-07 | 2020-02-13 | Ford Global Technologies, Llc | Sensor fusion |
JP6628843B1 (ja) * | 2018-09-05 | 2020-01-15 | 三菱電機株式会社 | 障害物回避装置および障害物回避経路生成装置 |
JP6715899B2 (ja) * | 2018-09-05 | 2020-07-01 | 三菱電機株式会社 | 衝突回避装置 |
US11079761B2 (en) * | 2018-12-12 | 2021-08-03 | Ford Global Technologies, Llc | Vehicle path processing |
JP7243227B2 (ja) * | 2019-01-29 | 2023-03-22 | トヨタ自動車株式会社 | 車両制御装置 |
CN112414419A (zh) * | 2019-08-23 | 2021-02-26 | 上海汽车集团股份有限公司 | 一种车辆变道路径规划的方法及相关装置 |
US11273837B2 (en) * | 2019-09-24 | 2022-03-15 | Baidu Usa Llc | Variable boundary estimation for path planning for autonomous driving vehicles |
CN110920616A (zh) * | 2019-12-24 | 2020-03-27 | 吉林大学 | 一种智能车换道轨迹及换道轨迹跟随控制方法 |
JP7120260B2 (ja) | 2020-01-30 | 2022-08-17 | トヨタ自動車株式会社 | 車両制御装置 |
JP7327223B2 (ja) * | 2020-03-12 | 2023-08-16 | いすゞ自動車株式会社 | 自動操舵制御装置、自動操舵制御方法、および自動操舵プログラム |
JP7484317B2 (ja) * | 2020-03-27 | 2024-05-16 | 株式会社アイシン | 運転支援装置及びコンピュータプログラム |
JP7061148B2 (ja) | 2020-03-31 | 2022-04-27 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
JP7341941B2 (ja) * | 2020-04-14 | 2023-09-11 | 日立Astemo株式会社 | 車両運動制御装置及び車両運転制御方法 |
JP7463264B2 (ja) * | 2020-12-17 | 2024-04-08 | 日立Astemo株式会社 | 車両運動制御装置、および、車両運動制御方法 |
JP7528770B2 (ja) | 2020-12-17 | 2024-08-06 | マツダ株式会社 | 自動運転制御装置 |
JP7150001B2 (ja) * | 2020-12-28 | 2022-10-07 | 本田技研工業株式会社 | 車両制御装置 |
CN112859843B (zh) * | 2020-12-31 | 2021-12-24 | 天津大学 | 无人驾驶车辆的横纵向控制方法及系统 |
CN114167406B (zh) * | 2021-11-24 | 2024-06-18 | 英博超算(南京)科技有限公司 | 一种通过融合减小雷达误报的系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10297516A (ja) * | 1997-04-28 | 1998-11-10 | Nissan Motor Co Ltd | 車両の自動操舵装置 |
JP2010076584A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Automotive Systems Ltd | 加減速制御装置 |
JP2014076689A (ja) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | 車両制御装置 |
JP2015217848A (ja) * | 2014-05-19 | 2015-12-07 | マツダ株式会社 | 車両加減速制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967806B2 (ja) * | 2007-05-22 | 2012-07-04 | 株式会社日立製作所 | 経路曲率に応じた車両の速度制御装置 |
JP2009040267A (ja) | 2007-08-09 | 2009-02-26 | Toyota Motor Corp | 走行制御装置 |
JP5137764B2 (ja) * | 2008-09-29 | 2013-02-06 | 株式会社アドヴィックス | 車両の速度制御装置 |
US8825328B2 (en) * | 2011-04-19 | 2014-09-02 | Ford Global Technologies | Detection of and counter-measures for jackknife enabling conditions during trailer backup assist |
US9073576B2 (en) * | 2011-09-02 | 2015-07-07 | GM Global Technology Operations LLC | System and method for smooth steering override transition during automated lane centering |
JP6161942B2 (ja) * | 2013-04-19 | 2017-07-12 | 株式会社デンソーアイティーラボラトリ | カーブ形状モデル化装置、車両情報処理システム、カーブ形状モデル化方法、及びカーブ形状モデル化プログラム |
JP6138655B2 (ja) * | 2013-10-10 | 2017-05-31 | 日立オートモティブシステムズ株式会社 | 車両の運動制御装置 |
EP3090907B1 (en) * | 2015-05-05 | 2020-08-12 | Volvo Car Corporation | Secondary steering system unit, secondary steering system, vehicle and a method for secondary steering |
US9849878B2 (en) * | 2016-02-26 | 2017-12-26 | GM Global Technology Operations LLC | System and method for providing a corrected lane following path through a curve for trailering vehicles |
-
2016
- 2016-09-23 JP JP2016185433A patent/JP6654121B2/ja active Active
-
2017
- 2017-07-31 WO PCT/JP2017/027611 patent/WO2018055916A1/ja active Application Filing
- 2017-07-31 US US16/325,367 patent/US11092967B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10297516A (ja) * | 1997-04-28 | 1998-11-10 | Nissan Motor Co Ltd | 車両の自動操舵装置 |
JP2010076584A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Automotive Systems Ltd | 加減速制御装置 |
JP2014076689A (ja) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | 車両制御装置 |
JP2015217848A (ja) * | 2014-05-19 | 2015-12-07 | マツダ株式会社 | 車両加減速制御装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11008039B2 (en) * | 2017-04-12 | 2021-05-18 | Toyota Jidosha Kabushiki Kaisha | Lane change assist apparatus for vehicle |
WO2020217315A1 (ja) * | 2019-04-23 | 2020-10-29 | 三菱電機株式会社 | 駐車支援装置および駐車支援方法 |
CN113710556A (zh) * | 2019-04-23 | 2021-11-26 | 三菱电机株式会社 | 停车辅助装置及停车辅助方法 |
JPWO2020217315A1 (ja) * | 2019-04-23 | 2021-12-02 | 三菱電機株式会社 | 駐車支援装置および駐車支援方法 |
US11745728B2 (en) | 2019-04-23 | 2023-09-05 | Mitsubishi Electric Corporation | Parking assistance device and parking assistance method |
CN113710556B (zh) * | 2019-04-23 | 2024-09-10 | 三菱电机株式会社 | 停车辅助装置及停车辅助方法 |
CN113682322A (zh) * | 2021-08-26 | 2021-11-23 | 北京京东乾石科技有限公司 | 一种车辆行驶路径的确定方法和装置 |
US20230331231A1 (en) * | 2022-04-19 | 2023-10-19 | Aptiv Technologies Limited | Dynamically Calculating Lane Change Trajectories |
Also Published As
Publication number | Publication date |
---|---|
US11092967B2 (en) | 2021-08-17 |
US20190196487A1 (en) | 2019-06-27 |
JP2018047828A (ja) | 2018-03-29 |
JP6654121B2 (ja) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018055916A1 (ja) | 車両運動制御装置 | |
JP6573643B2 (ja) | 車両の走行制御装置 | |
US11383698B2 (en) | Device and method for controlling vehicle movement, and device and method for generating target course | |
CN108137039B (zh) | 车辆运动控制装置及其方法 | |
JP6752875B2 (ja) | 走行制御装置 | |
WO2017183486A1 (ja) | 走行制御装置 | |
US10997862B2 (en) | Vehicle travel control method and vehicle travel control device | |
JP5527382B2 (ja) | 走行支援システム及び制御装置 | |
JP6907896B2 (ja) | 自動運転システム | |
US20210276550A1 (en) | Target vehicle speed generation method and target vehicle speed generation device for driving assisted vehicle | |
JP6825081B2 (ja) | 車両制御装置及び車両制御方法 | |
JP7185511B2 (ja) | 車両の走行制御装置 | |
CN111587199B (zh) | 驾驶辅助装置、驾驶辅助方法及驾驶辅助系统 | |
US12084109B2 (en) | Vehicle control device | |
JP2019137283A (ja) | 運転支援装置、運転支援方法及び運転支援システム | |
JP2019043395A (ja) | 運転支援車両の走行制御方法及び走行制御装置 | |
JP2003341501A (ja) | 運転支援制御システム | |
JP7488632B2 (ja) | 操舵制御装置 | |
JP7275646B2 (ja) | 車両の走行制御方法及び走行制御装置 | |
WO2022049802A1 (ja) | 車両制御装置及び障害物回避制御方法 | |
Luan et al. | Design and field testing of a lane following control system with a camera based on t&c driver model | |
JP7154340B1 (ja) | 経路生成装置及び走行支援制御装置 | |
JP2016021834A (ja) | 車両の挙動制御装置及び車両の挙動制御方法 | |
JP2023049571A (ja) | 操舵制御方法及び操舵制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17852697 Country of ref document: EP Kind code of ref document: A1 |