JP7408764B2 - Mems素子およびmemsモジュール - Google Patents

Mems素子およびmemsモジュール Download PDF

Info

Publication number
JP7408764B2
JP7408764B2 JP2022199549A JP2022199549A JP7408764B2 JP 7408764 B2 JP7408764 B2 JP 7408764B2 JP 2022199549 A JP2022199549 A JP 2022199549A JP 2022199549 A JP2022199549 A JP 2022199549A JP 7408764 B2 JP7408764 B2 JP 7408764B2
Authority
JP
Japan
Prior art keywords
layer
insulating layer
mems
outer peripheral
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022199549A
Other languages
English (en)
Other versions
JP2023036718A (ja
Inventor
正広 櫻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018085230A external-priority patent/JP2018205304A/ja
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of JP2023036718A publication Critical patent/JP2023036718A/ja
Application granted granted Critical
Publication of JP7408764B2 publication Critical patent/JP7408764B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0116Thermal treatment for structural rearrangement of substrate atoms, e.g. for making buried cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/05Temporary protection of devices or parts of the devices during manufacturing
    • B81C2201/053Depositing a protective layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • G01L19/143Two part housings

Description

本発明は、MEMS素子およびMEMSモジュールに関する。
半導体集積回路の製造に用いられる微細加工技術を利用して、機械要素部品と電子回路とを集積化したデバイスであるMEMS(Micro Electro Mechanical System)素子が知られている。特許文献1には、MEMS素子の一例であるMEMS素子が記載されている。
前記MEMS素子は、空洞部と当該空洞部を塞ぐ可動部とを有する。特許文献1に開示された構成においては、凹部が形成されたSi基板の裏側にガラス基板を接合することにより、空洞部が形成されている。この接合は、空洞部が密閉される場合、微細な隙間が生じないようにすることが求められる。また、可動部が比較的薄肉の部位として仕上げる場合、前記凹部を形成するためにSi基板を深く掘り込む必要がある。
再表2011-010571号公報
本開示の一実施形態は、上記した事情のもとで考え出されたものであって、空洞部を形成するための接合処理が不要であるMEMS素子の製造方法、MEMS素子およびMEMSモジュールを提供することをその課題とする。
本開示の第1の側面によって提供されるMEMS素子の製造方法は、半導体を含む基板材料に、主面から凹む複数の穴部を形成する穴部形成工程と、前記複数の穴部を連結する連結空洞部を形成する連結空洞部形成工程と、前記複数の穴部の少なくとも一部を塞ぐように前記基板材料の前記半導体を部分的に移動させることにより、前記基板材料の内部に存在する空洞部および前記基板材料の厚さ方向視において前記空洞部と重なる可動部とを形成する可動部形成工程と、を備えることを特徴としている。
本開示の好ましい実施の形態においては、前記半導体は、Siである。
本開示の好ましい実施の形態においては、前記可動部形成工程においては、前記基板材料を加熱することにより前記半導体を部分的に移動させる。
本開示の好ましい実施の形態においては、前記可動部形成工程においては、前記複数の穴部のすべてを塞ぐことにより、前記空洞部を密閉状態とする。
本開示の好ましい実施の形態においては、前記MEMS素子は、MEMS素子として構成されている。
本開示の好ましい実施の形態においては、前記基板材料は、前記半導体のみからなる。
本開示の好ましい実施の形態においては、前記穴部形成工程においては、前記厚さ方向奥側に向かうほど前記厚さ方向と直角である断面積が大となるような深掘りエッチングにより前記複数の穴部を形成し、前記連結空洞部形成工程においては、前記深掘りエッチングを継続することで、隣り合う前記穴部どうしを繋げることにより前記連結空洞部を形成する。
本開示の好ましい実施の形態においては、前記穴部形成工程の後、前記可動部形成工程の前に、前記主面と前記複数の穴部の内側面および底面を覆う保護膜を形成する保護膜形成工程と、前記保護膜のうち前記複数の穴部の底面を覆う部分のみを除去することにより、前記保護膜に複数の貫通孔を形成する貫通孔形成工程と、をさらに備え、前記連結空洞部形成工程においては、前記保護膜の複数の前記貫通孔を通じてエッチングを行うことにより、前記連結空洞部を形成する。
本開示の好ましい実施の形態においては、前記連結空洞部形成工程の後、前記可動部形成工程の前に、前記保護膜をすべて除去する保護膜除去工程をさらに備える。
本開示の好ましい実施の形態においては、前記穴部形成工程においては、前記厚さ方向と直角である断面積が一定となるように前記複数の穴部を形成する。
本開示の好ましい実施の形態においては、前記穴部形成工程においては、半導体からなり前記主面を構成する第1層および半導体からなる第3層と、これらの第1層および第3層の間に介在する半導体とは異なる材質からなる第2層とを具備する前記基板材料を用いて、前記第1層を貫通し且つ前記第2層を底面とする前記複数の穴部を形成し、前記穴部形成工程の後、前記連結空洞部形成工程の前に、前記主面と前記複数の穴部の内側面および底面を覆う保護膜を形成する保護膜形成工程と、前記保護膜のうち前記複数の穴部の底面を覆う部分のみと前記第2層のうち前記底面を構成する部分とを除去することにより、前記保護膜および前記第2層を貫通する複数の貫通孔を形成する貫通孔形成工程と、をさらに備え、前記連結空洞部形成工程においては、複数の前記貫通孔を通じてエッチングを行うことにより、前記連結空洞部を形成する。
本開示の好ましい実施の形態においては、前記第1層および第3層は、Siからなり、前記第2層は、SiOからなる。
本開示の好ましい実施の形態においては、前記穴部形成工程においては、前記厚さ方向と直角である断面積が一定となるように前記複数の穴部を形成する。
本開示の第2の側面によって提供されるMEMS素子は、厚さ方向視において互いに重なる可動部および空洞部と、前記可動部を支持する固定部と、を有する基板を備えるMEMS素子であって、前記可動部と前記固定部とは、互いの境界に接合部を有さない、同一且つ単一の半導体からなることを特徴としている。
本開示の好ましい実施の形態においては、前記半導体は、Siである。
本開示の好ましい実施の形態においては、前記基板は、前記可動部の表面を含む主面を有し、前記主面は、前記厚さ方向視において前記可動部と重なる凹部を有する。
本開示の好ましい実施の形態においては、前記空洞部は、前記厚さ方向に起立する側面、側面と交差する方向に広がる底面、および前記側面および前記底面を繋ぐ曲面を有する。
本開示の好ましい実施の形態においては、前記空洞部は、密閉されている。
本開示の好ましい実施の形態においては、MEMS素子として構成されている。
本開示の第3の側面によって提供されるMEMSモジュールは、本開示の第2の側面によって提供されるMEMS素子と、前記MEMS素子からの電気信号を処理する電子部品と、を備えることを特徴としている。
本開示の一実施形態によれば、空洞部を形成するための接合処理が不要である。
本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
本発明の第1実施形態に基づくMEMSモジュールを示す斜視図である。 本発明の第1実施形態に基づくMEMSモジュールを示す要部斜視図である。 本発明の第1実施形態に基づくMEMSモジュールを示す要部平面図である。 本発明の第1実施形態に基づくMEMSモジュールを示す要部平面図である。 図1のV-V線に沿う断面図である。 図1のMEMSモジュールのブロック図である。 図1のMEMSモジュールのMEMS素子の一例を示す平面図である。 図7のVIII-VIII線に沿う要部拡大断面図である。 本発明の第1実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第1実施形態に基づくMEMS素子の製造方法を示す要部平面図である。 本発明の第1実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 発明の第1実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第1実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第1実施形態に基づくMEMS素子の製造方法の変形例を示す要部断面図である。 本発明の第2実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第2実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第2実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第2実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第2実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第2実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第3実施形態に基づくMEMS素子を示す要部拡大断面図である。 本発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第3実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第4実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第4実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 本発明の第4実施形態に基づくMEMS素子の製造方法を示す要部断面図である。 電極パッドの構造(第1形態)を説明するための要部平面図である。 図32のXXXIII-XXXIII断面を示す断面図である。 電極パッドの外周部を示す要部断面図である。 電極パッドの形成に関連する工程を説明するための図である。 図35Aの次の工程を示す図である。 図35Bの次の工程を示す図である。 図35Cの次の工程を示す図である。 図35Dの次の工程を示す図である。 図35Eの次の工程を示す図である。 電極パッドの構造(第2形態)を説明するための要部断面図である。 電極パッドの構造(第3形態)を説明するための要部断面図である。 電極パッドの形成に関連する工程を説明するための図である。 図38Aの次の工程を示す図である。 図38Bの次の工程を示す図である。 図38Cの次の工程を示す図である。 図38Dの次の工程を示す図である。
以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。
図1~図8に基づき、本発明の第1実施形態に基づくMEMSモジュールA1について説明する。MEMSモジュールA1は、基板1、電子部品2、MEMS素子3、複数のボンディングワイヤ4、カバー6および接合材7を備えている。本実施形態のMEMSモジュールA1は、気圧を検出するものであり、例えば携帯端末などの各種電子機器の回路基板に表面実装される。例えば携帯端末においては、MEMSモジュールA1は大気圧を検出する。検出された大気圧は、高度を演算するための情報として用いられる。なお、本発明にかかるMEMSモジュールの用途は、気圧検出に限定されない。
図1は、MEMSモジュールA1を示す斜視図である。図2は、カバー6、接合材7および後述する配線部1Bおよび絶縁層1Cを省略した要部斜視図である。図3は、カバー6を省略したMEMSモジュールA1を示す要部平面図であり、図4は、さらに接合材7を省略した要部平面図である。図5は、図1のV-V線に沿う断面図である。図6は、MEMSモジュールA1のブロック図である。図7は、MEMSモジュールA1のMEMS素子3の一例を示す平面図である。図8は、図7のVIII-VIII線に沿う要部拡大断面図である。
これらの図において、MEMSモジュールA1の厚さ方向(平面視方向)をz方向(z1-z2方向)とし、z方向に直交するMEMSモジュールA1の一方の辺に沿う方向をx方向(x1-X2方向)、z方向およびx方向に直交する方向をy方向(y1-y2方向)として説明する(以下の図においても同様)。本実施形態においては、MEMSモジュールA1は、x方向およびy方向寸法が例えば2mm程度、z方向寸法が0.8mm~1mm程度とされる。
基板1は、図1~図5に示すように、電子部品2を搭載し、MEMSモジュールA1を各種電子機器の回路基板に実装するための部材である。本実施形態においては、基材1A、配線部1Bおよび絶縁層1Cを有する。なお、本発明の基板1の具体的構成は、本実施形態の構成に限定されず、電子部品2およびMEMS素子3等の電子素子を適切に支持しうるものであればよい。
基材1Aは、電気絶縁体からなり、基板1の主要構成部材である。基材1Aは、例えばガラスエポキシ樹脂、ポリイミド樹脂、フェノール樹脂、セラミックスなどであり限定されない。基材1Aは、例えば平面視矩形状の板状であり、搭載面1a、実装面1bおよび側面1cを有する。搭載面1aおよび実装面1bは、基板1の厚さ方向(z方向)において互いに反対側を向いている。搭載面1aは、z1方向を向く面であり、電子部品2が搭載される面である。実装面1bは、z2方向を向く面であり、MEMSモジュールA1を各種電子機器の回路基板に実装する際に利用される面である。側面1cは、搭載面1aおよび実装面1bを繋ぐ面であり、x方向またはy方向を向いており、z方向に平行である。本実施形態においては、基板1のz方向の寸法は100~200μm程度であり、x方向およびy方向の寸法はそれぞれ2mm程度である。
配線部1Bは、電子部品2およびMEMS素子3とMEMSモジュールA1外の回路等とを導通させるための導通経路をなすものである。配線部1Bは、例えばCu、Ni、Ti、Au等の単種類または複数種類の金属からなり、例えばメッキによって形成される。本実施形態においては、配線部1Bは、複数の搭載面部100および裏面パッド19を有するが、これは配線部1Bの具体的構成の一例であり、その具体的構成は特に限定されない。
図3および図4に示すように、複数の搭載面部100は、基材1Aの搭載面1aに形成されており、互いに離間した複数の独立領域である。本実施形態においては、複数の搭載面部100は、複数の第1搭載面部101、第2搭載面部102および第3搭載面部103を含む。
第1搭載面部101は、図3および図4に示すように、電極パッド11のみからなるものであり、図示された様に例えば楕円形状、矩形状等の形状とされる。電極パッド11は、ボンディングワイヤ4の端部がボンディングされるものである。本実施形態においては、複数の第1搭載面部101が、y方向に沿って配置されている。また、複数の第1搭載面部101が、第2搭載面部102および第3搭載面部103とともに、x方向に沿って配置されている。
第2搭載面部102は、図3および図4に示すように、電極パッド11および延出部12を有する。電極パッド11は、上述した通りボンディングワイヤ4の端部がボンディングされるものである。延出部12は、電極パッド11から延出しており基材1Aの外端縁に到達している。本実施形態においては、x方向に沿って2つの第2搭載面部102が配置されている。延出部12は、y方向に沿って延びている。延出部12は、例えば、MEMSモジュールA1の製造方法において基板材料を用いて複数の基板1を一括して形成する際に、配線部1Bとなる導電膜を電解めっきによって形成するための導通経路であった部位が残存したものである。
第3搭載面部103は、図3および図4に示すように、電極パッド11、連結部13および枝部14を有する。電極パッド11は、上述した通りボンディングワイヤ4の端部がボンディングされるものである。連結部13は、電極パッド11から外方に向かって延出している。枝部14は、連結部13に繋がっており、連結部13とは異なる方向に延びている。本実施形態においては、連結部13は、電極パッド11からy2方向に延びている。枝部14は、連結部13のy2方向の端部からx方向に沿って延びている。図示された例においては、枝部14は、連結部13のy2方向の端部からx1方向およびx2方向の双方に延びている。また、枝部14の長さは、x方向に並べられた複数の第1搭載面部101と、y方向視において重なる程度の長さとされている。枝部14は、基材1Aの外端縁に沿って延びており、基材1Aの外端縁からy1方向に離間している。
裏面パッド19は、実装面1bに設けられており、MEMSモジュールA1を回路基板等に実装する際に、導通接合される電極として用いられるものである。裏面パッド19は、搭載面部100の適所と導通している。
絶縁層1Cは、配線部1Bの適所を覆うことにより、当該部位を絶縁保護するためのものである。絶縁層1Cは、絶縁材料からなるものであり、例えばレジスト樹脂によって構成される。図3および図4に示すように、本実施形態においては、絶縁層1Cは、平面視矩形環状に形成されている。
絶縁層1Cは、絶縁層内側端縁111および開口112を有する。絶縁層内側端縁111は、矩形環状とされた絶縁層1Cの内側の端縁であり、電子部品2およびMEMS素子3を囲んでいる。開口112は、貫通孔であり、平面視において第3搭載面部103の枝部14の一部と重なっている。図示された例においては、絶縁層1Cの外端縁は、基材1Aの外端縁と一致している。
接合材7は、基板1とカバー6とを接合するものであり、例えばAg等の金属を含むペースト接合材からなる。本実施形態においては、接合材7は、平面視において矩形環状に設けられており、そのすべてが絶縁層1Cと重なる領域に形成されている。接合材7は、接合材内側端縁71を有する。接合材内側端縁71は、矩形環状とされた接合材7の内側の端縁である。図示された例においては、接合材7の外端縁は、絶縁層1Cおよび基材1Aの外端縁と概ね一致しているが、絶縁層1Cおよび基材1Aの外端縁とずれたものであってもよい。
図3および図4に示すように、電極パッド11のみからなる第1搭載面部101は、絶縁層1Cの絶縁層内側端縁111および接合材7の接合材内側端縁71から平面視において内側に離間している。また、絶縁層1Cおよび接合材7のうち第1搭載面部101と対向する部位においては、平面視において絶縁層内側端縁111と接合材内側端縁71とが一致している。
図3および図4に示すように、電極パッド11および延出部12を有する第2搭載面部102は、電極パッド11が絶縁層1Cの絶縁層内側端縁111および接合材7の接合材内側端縁71から平面視において内側に離間しており、延出部12の少なくとも一部が絶縁層1Cおよび接合材7によって覆われている。また、絶縁層1Cおよび接合材7のうち第2搭載面部102と対向する部位においては、平面視において絶縁層内側端縁111が接合材内側端縁71よりも第2搭載面部102側の内側に位置している。
図3および図4に示すように、電極パッド11、連結部13および枝部14を有する第3搭載面部103は、電極パッド11が絶縁層1Cの絶縁層内側端縁111および接合材7の接合材内側端縁71から平面視において内側に離間している。一方、連結部13および枝部14は、少なくとも一部ずつが、絶縁層1Cおよび接合材7によって覆われている。図示された例においては、連結部13の一部が、絶縁層1Cおよび接合材7によって覆われており、枝部14のすべてが、絶縁層1Cおよび接合材7によって覆われている。また、絶縁層1Cおよび接合材7のうち第3搭載面部103と対向する部位においては、平面視において絶縁層内側端縁111が接合材内側端縁71よりも第3搭載面部103側の内側に位置している。
また、絶縁層1Cの開口112が枝部14の一部と平面視において重なっていることにより、枝部14と接合材7とが、開口112を通じて互いに接している。すなわち、第3搭載面部103と接合材7とは、互いに導通している。
電子部品2は、センサが検出した電気信号を処理するものであり、いわゆるASIC(Application Specific Integrated Circuit)素子として構成されている。図12に示すように、本実施形態においては、電子部品2は、温度センサ22を備えており、当該温度センサ22が検出した電気信号、および、MEMS素子3が検出した電気信号の処理を行う。電子部品2は、温度センサ22が検出した電気信号とMEMS素子3が検出した電気信号とをマルチプレクサ23で多重化して、アナログ/デジタル変換回路24でをデジタル信号に変換する。そして、信号処理部25が、クロック26のクロック信号に基づいて、記憶部27の記憶領域を利用しながら、増幅やフィルタリング、論理演算などの処理を行う。信号処理後の信号は、インターフェイス28を介して出力される。これにより、MEMSモジュールA1は、気圧および気温を検出した信号を適切な信号処理を行った上で、出力することができる。
電子部品2は、基板上に各種素子を搭載してパッケージングした制御のためのものである。電子部品2は、平面視矩形状の板状であり、搭載面2a、実装面2bおよび側面2cを有する。搭載面2aおよび実装面2bは、電子部品2の厚さ方向(z方向)において互いに反対側を向いている。搭載面2aは、z1方向を向く面であり、MEMS素子3が搭載される面である。実装面2bは、z2方向を向く面であり、電子部品2を基板1の搭載面1aに実装する際に利用される面である。側面2cは、搭載面2aおよび実装面2bを繋ぐ面であり、x方向またはy方向を向いており、z方向に平行である。本実施形態においては、電子部品2のz方向の寸法は80μm程度であり、x方向およびy方向の寸法はそれぞれ1~1.2mm程度である。
電子部品2は、基板1の搭載面1aのx1方向およびy1方向寄りに搭載されている。電子部品2と基板1とは、図示しないダイアタッチフィルムなどによって接合されている。
電子部品2の搭載面2aには、複数の電極パッド21が設けられている。電極パッド21は、基板1の電極パッド11に導通接合される電極として用いられるものである。電極パッド21には、ボンディングワイヤ4がボンディングされる。電極パッド21は、例えばAlやアルミ合金などの金属からなり、例えばメッキによって形成される。電極パッド21は、搭載面2aの配線パターンに接続しており、MEMS素子3が搭載される領域を囲むように配置されている。
MEMS素子3は、本発明の第1実施形態に基づくMEMS素子である。本発明に係るMEMS素子の機能は特に限定されず、本実施形態においては、MEMS素子3は、気圧を検出するための気圧センサとして構成されている。MEMS素子3は、気圧を検出し、その検出結果を電気信号として電子部品2に出力する。図5、図7および図8に示すように、MEMS素子3は、立方体形状であり、主面310、実装面3bおよび側面3cを有する基板30を具備する。主面310および実装面3bは、MEMS素子3の厚さ方向(z方向)において互いに反対側を向いている。主面310は、z1方向を向く面である。実装面3bは、z2方向を向く面であり、MEMS素子3を電子部品2に実装する際に利用される面である。側面3cは、主面310および実装面3bを繋ぐ面であり、x方向またはy方向を向いており、z方向に平行である。本実施形態においては、MEMS素子3のz方向の寸法は200~300μm程度であり、x方向およびy方向の寸法はそれぞれ0.7~1.0mm程度である。
基板30は、半導体からなり、本実施形態においては、Siからなる。基板30は、空洞部340、可動部360および固定部370を有する。空洞部340は、基板30内に形成された空洞であり、本実施形態においては、密閉されている。本実施形態においては、空洞部340は、絶対真空に近い真空とされている。また、本実施形態においては、空洞部340は、z方向視矩形状である。空洞部340のz方向寸法は、例えば5μm~10μmである。
可動部360は、z方向視において空洞部340と重なる部位であり、気圧を検出すべくz方向に可動とされている。本実施形態においては、可動部360は、z方向視矩形状である。可動部360の厚さは、例えば5μm~10μmである。
固定部370は、可動部360を支持する部位であり、可動部360が動作する際に、基板1や電子部品2に対して固定された部位である。本実施形態においては、基板30のうち空洞部340および可動部360以外の部分が、固定部370とされている。
本実施形態においては、可動部360と固定部370とは、互いの境界に接合部を有さない、同一且つ単一の半導体からなる。本実施形態においては、可動部360および固定部370(基板30)は、Siからなる。
主面310は、凹部311を有している。凹部311は、主面310のうちz方向視において空洞部340と重なる領域に位置し、z方向になだらかに凹んでいる。
また、本実施形態においては、図8に示すように、空洞部340は、z方向に起立する側面とz方向と交差する方向(x方向およびy方向)に広がる底面を有する。また、空洞部340は、前記側面と前記底面とを繋ぐ曲面を有する。
なお、可動部360および空洞部340の形状は限定されない。例えば、可動部360を平面視円形状としてもよい。この場合、空洞部340は円柱形状になる。
MEMS素子3は、空洞部340内の気圧と空洞部340外部の気圧との差で変形する可動部360の形状(歪み具合)に応じた電気信号を生成して、電子部品2に出力する。
図7および図8に示すように、基板30の主面310には、不純物の拡散によって拡散抵抗37が形成され、不純物の拡散によって拡散配線36が形成されている。拡散抵抗37は、可動部360の主面310に形成されており、可動部360の変形に応じて抵抗値が変化するゲージ抵抗である。また、固定部370の主面310には、スパッタにより金属配線35が形成され、金属配線35の所定の位置に、電極パッド34が形成されている。図7においては、拡散抵抗37および拡散配線36を破線で示している。
図7に示すように、MEMS素子3の可動部360内には、4つの拡散抵抗37a,37b,37c,37dが配置されている。4つの拡散抵抗37a,37b,37c,37dは、金属配線35および拡散配線36によって接続されて、ブリッジ回路を構成している。また、MEMS素子3の可動部360を囲む固定部370には、4つの電極パッド34a,34b,34c,34dが配置されている。
電極パッド34aは、拡散抵抗37aと拡散抵抗37cとを接続する金属配線35に接続されている。電極パッド34bは、拡散抵抗37aと拡散抵抗37bとを接続する金属配線35に接続されている。電極パッド34cは、拡散抵抗37cと拡散抵抗37dとを接続する金属配線35に接続されている。電極パッド34dは、拡散抵抗37bと拡散抵抗37dとを接続する金属配線35に接続されている。電極パッド34aと電極パッド34dとの間には、例えば5Vの基準電圧が印加され、電極パッド34bと電極パッド34cとの間の電圧が電気信号として、電子部品2に出力される。拡散抵抗37bおよび拡散抵抗37cは、可動部360が歪むことによって、電流の流れる方向(図7では長手方向)に延びるので、抵抗値が大きくなる。一方、拡散抵抗37aおよび拡散抵抗37dは、可動部360が歪むことによって、電流の流れる方向に直交する方向(図7では短手方向)に延びるので、抵抗値が小さくなる。これにより、可動部360の歪み具合に応じて、電極パッド34bと電極パッド34cとの間の電圧が変化する。なお、図7は、配線パターンの一例であり、電極パッド34a,34b,34c,34d、拡散抵抗37a,37b,37c,37d、拡散配線36および金属配線35の配置位置および接続方法は限定されない。
図3および図4に示すように、MEMS素子3は、電子部品2の搭載面2aのx1方向およびy1方向寄りに搭載されている。MEMS素子3と電子部品2とは、図示しないシリコーン樹脂などの接合部材によって接合されている。MEMS素子3の電極パッド34(34a,34b,34c,34d)は、基板1の電極パッド11に導通接合されている。電極パッド34には、ボンディングワイヤ4がボンディングされる。電極パッド34は、例えばAlやアルミ合金などの金属からなる。各電極パッド34は、基板1の電極パッド11および配線パターンを介して、電子部品2の電極パッド21と電気的に接続されている。なお、MEMS素子3の電極パッド34と電子部品2の電極パッド21とを、ボンディングワイヤ4で接続してもよい。
ボンディングワイヤ4は、基板1の電極パッド11と、電子部品2の電極パッド21またはMEMS素子3の電極パッド34とを導通させるためのものであり、例えばAu等の金属からなる。なお、ボンディングワイヤ4の素材は限定されず、例えばAl,Cuなどであってもよい。ボンディングワイヤ4の一端は電極パッド11にボンディングされており、他端は電極パッド21または電極パッド34にボンディングされている。
カバー6は、金属製の箱形状の部材であり、電子部品2、MEMS素子3およびボンディングワイヤ4を囲うようにして、基板1の搭載面1aに接合材7によって接合されている。図示された例においては、カバー6は、平面視矩形状である。なお、カバー6は金属以外の素材であってもよい。また、カバー6の製造方法は限定されない。カバー6と基板1の間の空間は、樹脂が充填されているのではなく、中空になっている。
カバー6は、図1および図5に示すように、開口部61および延出部62を有する。開口部61は、内部に外気を取り入れるためのものである。開口部61が設けられ、中空になっていることで、MEMS素子3はMEMSモジュールA1の周囲の気圧(例えば大気圧)を検出することができ、電子部品2の温度センサはMEMSモジュールA1の周囲の気温を検出することができる。本実施形態では、開口部61は、電子部品2の電極パッド21のz1方向側の位置に1つだけ配置されている(図1参照)。なお、開口部61の数は限定されない。延出部62は、開口部61の端縁から延出しており、平面視において開口部61の少なくとも一部と重なる。延出部62は、先端に向かうほどz2方向に位置しており、先端に向かうほど基板1に近づくように傾斜している。また、図示された構成においては、延出部62の先端は、平面視において電子部品2およびMEMS素子3を回避した位置に設けられている。また、延出部62の根元は、電子部品2およびMEMS素子3と重なる位置に設けられている。
次に、MEMS素子3の製造方法について、図9~図13を参照しつつ以下に説明する。
まず、図9に示すように、基板材料300を用意する。基板材料300は、基板30を形成するための材料であり、例えば複数の基板30を形成可能なウエハである。以降の図においては、基板材料300のうち1つの基板30に対応する領域が示されている。基板材料300の厚さは、例えば725μm程度である。
次に、穴部形成工程を行う。基板材料300の主面310にボッシュ法等の深掘りエッチングを施す。これにより、図10および図11に示す複数の穴部320を形成する。複数の穴部320の配置は特に限定されず、本実施形態においては、図10に示すように、平面視矩形状の領域にマトリクス状に形成されている。また、本実施形態においては、図11に示すように、穴部320のz方向に直角である断面積が、z方向奥側に向かうほど大となるような深掘りエッチング(ボッシュ法等)を行う。なお、複数の穴部320の寸法等の一例を挙げると、z方向視円形状とされた穴部320の主面310における直径が0.2μm~0.8μm、隣り合う穴部320のピッチ(中心間距離)が0.4μm~1.4μmである。また、本実施形態においては、複数の穴部320のz方向視寸法は、略同一である。
次に、連結空洞部形成工程を行う。本実施形態においては、上述した穴部形成工程において行った深掘りエッチング(ボッシュ法等)をさらに継続することにより、連結空洞部形成工程を行う。すなわち、図11に示す状態から、さらに断面積を拡大する深掘りエッチング(ボッシュ法等)を継続する。図12に示すように、断面積の直径が隣り合う穴部320のピッチ(中心間距離)以上となると、隣り合う穴部320の底部分どうしが互いに繋がる。これにより、複数の穴部320を互いに連結する連結空洞部330が形成される。
次に、可動部形成工程を行う。本工程においては、基板30のうち複数の穴部320を構成する部分の半導体を移動させることにより、図13に示すように、複数の穴部320を塞ぐ。この半導体(Si)を移動させる手法としては、例えば、基板30を加熱することにより、Siにいわゆる熱マイグレーション現象を生じさせる手法が挙げられる。この手法においては、基板30を例えば1100℃~1200℃に加熱する。Siの移動により、複数の穴部320が埋められると、可動部360が形成される。また、連結空洞部330が密閉され、空洞部340となる。なお、本手法においては、複数の穴部320を埋めるために、他の材料を追加する等の処理を行っていない。このため、図12に示す穴部320のz方向寸法よりも、図13における可動部360のz方向寸法が小となる。これにより、主面310には、凹部311が形成される。
この後は、拡散配線36、拡散抵抗37、金属配線35および電極パッド34等の形成を行い、基板材料300を適宜分割することにより、基板30を有するMEMS素子3が得られる。なお、基板材料300を主面310とは反対側から研削することにより、基板材料300の厚さを減じた後に、基板30を形成してもよい。
そして、基板1への電子部品2の搭載、電子部品2へのMEMS素子3の搭載、ボンディングワイヤ4のボンディングおよびカバー6の基板1への接合等を経ることにより、MEMSモジュールA1が得られる。
次に、MEMS素子3の製造方法、MEMS素子3およびMEMSモジュールA1の作用について説明する。
本実施形態によれば、図11に示す穴部形成工程および図12に示す連結空洞部形成工程を経て、複数の穴部320を塞ぐことにより可動部形成工程を行う。このため、可動部360や空洞部340を形成するために、異なる複数の部材を接合する工程が不要である。これにより、接合箇所において密閉性が低下するおそれがないという利点がある。また、空洞部340を形成するために、例えば基板材料300を貫通するような過大な穴部を設ける必要がないという利点がある。
可動部形成工程においては、熱マイグレーションを用いて半導体であるSiを部分的に移動させることにより複数の穴部320を塞ぐ。このため、形成された可動部360は、Siのみからなる部位であり、同じくSiからなる固定部370と、接合部を介することなく一体的に繋がった構成となる。これは、空洞部340の密閉性を高めるのに好ましい。また、Siのみからなる可動部360は、拡散抵抗37や拡散配線36を形成するのに適している。
穴部形成工程においては、z方向と直角である断面積が徐々に大きくなるように深掘りエッチング(ボッシュ法等)を行う。そして、この深堀りエッチングを継続することにより、連結空洞部形成工程を行い、連結空洞部330を形成する。これにより、穴部形成工程と連結空洞部形成工程とを同一の処理によって連続して行うことが可能であり、効率向上に好ましい。また、深堀りエッチングによれば、アスペクト比(深さと直径の比)が顕著に大である穴部320を形成可能である。このアスペクト比が大きいほど、可動部360の厚さを厚くするのに有利である。可動部360が厚ければ、気圧の大きさと気圧による撓み量がより線形的な関係となり、気圧センサとして好ましい。
なお、図13に示す工程の後に、図14に示す変形例ように、主面310に追加層380を積層させる手法を採用してもよい。追加層380は、例えばSiからなる層であり、具体的な積層手法は、例えばEPI成長等様々な手法を採用可能である。これにより、可動部360の厚さを調整することができる。このような変形例は、後述の実施形態においても適宜採用できる。
図15~図31は、本発明の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。
図15~図20は、本発明の第2実施形態に基づくMEMS素子の製造方法を示している。
図9に示す基板材料300を用意した後に、図15に示すように穴部形成工程を行う。本実施形態においては、複数の穴部320のz方向と直角である断面積が一定となるように深堀りエッチング(ボッシュ法等)を行う。
次いで、図16に示すように、保護膜形成工程を行う。例えば、CVD等の手法により、基板材料300の主面310と複数の穴部320の内側面および底面をSiOによって覆う。これにより、SiOからなる保護膜350を形成する。
次いで、図17に示すように貫通孔形成工程を行う。例えば、エッチング等の手法により、保護膜350のうち複数の穴部320の底面を覆う部分のみを除去する。これにより、複数の貫通孔351が形成される。
次いで、図18に示すように、連結空洞部形成工程を行う。本実施形態においては、例えば等方性エッチングの手法を用いて、エッチングガスを複数の貫通孔351を通じて基板材料300の露出部分に作用させる。これにより、連結空洞部330が得られる。なお、等方性エッチングの手法を用いる場合、連結空洞部330のz方向上端は、保護膜350のz方向下端よりも若干上方に位置する。
次いで、図19に示すように、保護膜除去工程を行う。この工程は、例えば、SiOを選択的に除去しうるエッチングを施すことによって行う。これにより、SiOからなる保護膜350のすべてが除去される。
次いで、図20に示すように、可動部形成工程を行う。この工程は、上述した実施形態と同様に、熱マイグレーションの現象を利用した手法によって行う。これにより、空洞部340および可動部360が得られる。
この後は、上述した実施形態と同様に工程を経ることにより、MEMS素子3が得られ、さらにはMEMSモジュールA1が得られる。
本実施形態によっても、空洞部340や可動部360を形成するために異なる部材を接合する必要がないという利点がある。また、複数の穴部320の断面積が一定であることから、例えば上述した実施形態と比べて穴部320の断面積を小さくすることが可能である。これは、空洞部340を確実に密閉するのに好ましい。また、本実施形態において形成されうる凹部311の深さを上述した実施形態における凹部311の深さよりも浅くすることができる。
図21は、本発明の第3実施形態に基づくMEMS素子3を示している。本実施形態においては、基板30は、第1層301、第2層302および第3層303からなる。第1層301は、Siからなる層であり、厚さが例えば5μm~10μmである。第2層302は、第1層301と第3層303との間に介在しており、例えばSiOからなる層である。第2層302の厚さは例えば0.5μm~1.5μmである。第3層303は、第1層301と同様にSiからなる層であり、厚さが例えば725μmである。
本実施形態においては、第1層301によって可動部360が形成されている。また、固定部370は、第1層301の一部、第2層302および第3層303によって形成されている。空洞部340は、第3層303の凹部が第1層301によって塞がれた格好となっている。
図22~図28は、本実施形態におけるMEMS素子3の製造方法を示している。
まず、図22に示す基板材料300を用意する。基板材料300は、上述した第1層301、第2層302および第3層303からなる。
次いで、図23に示すように、穴部形成工程を行う。本実施形態においては、深堀りエッチング(ボッシュ法等)によって、第1層301に複数の穴部320を形成する。本実施形態の穴部320は、第1層301を貫通する一方、第2層302を貫通していない。このため、穴部320の内側面は、第1層301からなり、穴部320の底面は、第2層302からなる。
次いで、図24に示すように、保護膜形成工程を行う。本工程においては、CVD等の手法により、第1層301の主面310、複数の穴部320の内側面および底面をSiOによって覆う。これにより、SiOからなる保護膜350を形成する。
次いで、図25に示すように、貫通孔形成工程を行う。例えば、エッチング等の手法により、保護膜350のうち複数の穴部320の底面を覆う部分のみと、第2層302のうち穴部320の底面を構成する部分のみと、を除去する。これにより、複数の貫通孔351が形成される。
次いで、図26に示すように、連結空洞部形成工程を行う。本実施形態においては、例えば等方性エッチングの手法を用いて、エッチングガスを複数の貫通孔351を通じて基板材料300の露出部分に作用させる。これにより、連結空洞部330が得られる。なお、本実施形態においては、複数の貫通孔351以外の領域の第1層301は、第2層302によって覆われている。このため、連結空洞部330のz方向上端は、第2層302の下面によって規定される。
次いで、図27に示すように、保護膜除去工程を行う。この工程は、例えば、SiOを選択的に除去しうるエッチングを施すことによって行う。これにより、SiOからなる保護膜350のすべてが除去される。また、第2層302のうち第1層301および第3層303から露出する部分が除去される。
次いで、図28に示すように、可動部形成工程を行う。この工程は、上述した実施形態と同様に、熱マイグレーションの現象を利用した手法によって行う。これにより、空洞部340および可動部360が得られる。
この後は、上述した実施形態と同様に工程を経ることにより、MEMS素子3が得られ、さらにはMEMSモジュールA1が得られる。
本実施形態によっても、空洞部340や可動部360を形成するために異なる部材を接合する必要がないという利点がある。また、穴部形成工程や連結空洞部形成工程において、第2層302がエッチングストッパ層として機能する。これにより、穴部320や連結空洞部330(空洞部340)の深さをより正確に設定することができる。
図29~図31は、本発明の第4実施形態に基づくMEMS素子の製造方法を示している。本実施形態においては、上述した第1実施形態の製造方法と類似の方法を採用しているが、第2実施形態および第3実施形態と類似の方法を採用してもよい。
図29は、本実施形態における穴部形成工程を示している。本実施形態においては、複数の穴部320に加えて複数の穴部321を形成する。穴部321は、断面積(z方向視円形状の場合は直径)が穴部320の断面積(z方向視円形状の場合は直径)よりも大である。
図30は、連結空洞部形成工程を示している。本工程により、複数の穴部320と複数の穴部321とが、連結空洞部330によって互いに連結される。
図31は、本実施形態の可動部形成工程を示している。本実施形態においても、上述した熱マイグレーションを利用した手法により、複数の穴部320を塞ぐ。ただし、穴部321の断面積(直径)が穴部320の断面積(直径)よりも大であることから、複数の穴部321は、熱マイグレーションによって塞がれず残存している。このため、本実施形態においては、空洞部340は、穴部321を通じて外部と繋がっている。
このような実施形態によっても、異なる部材を接合する工程が不要であるという利点がある。また、本実施形態によって形成されるMEMS素子3は、可動部360が外力や慣性力等によって動かされることによって機能する各種センサ素子として用いることができる。
図32は、電極パッド34の構造(第1形態)を説明するための要部平面図である。図33は、図32のXXXIII-XXXIII断面を示す断面図であり、電極パッド34を斜め上方から見た図である。図34は、電極パッド34の外周部を示す要部断面図である。なお、図32では、構造を明瞭化するため、第1金属層46のパッド部48および外周部49にクロスハッチングを付している。
次に、図8に示した電極パッド34およびその周辺部の構造を、図32~図37Eを参照して、より具体的に説明する。
図32~図34を参照して、基板30上には、第1絶縁層41が形成されている。この実施形態では、第1絶縁層41は、基板30の主面310に接するように形成されている。第1絶縁層41は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)等の絶縁材料からなっていてもよい。この実施形態では、第1絶縁層41は、酸化シリコンからなる。また、第1絶縁層41の厚さは、例えば、1000Å~5000Åであってもよい。
第1絶縁層41上には、金属配線35が形成されている。金属配線35は、第1絶縁層41上に所定パターンで形成されていてもよい。金属配線35は、例えばAlやアルミ合金などの金属からなっていてもよい。
金属配線35を覆うように、第1絶縁層41上には、第2絶縁層42が形成されている。第2絶縁層42は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)等の絶縁材料からなっていてもよい。この実施形態では、第2絶縁層42は、窒化シリコンからなる。また、第2絶縁層42の厚さは、第1絶縁層41よりも厚くてもよく、例えば、5000Å~20000Åであってもよい。また、第2絶縁層42は、この実施形態では、MEMS素子3の最表面に露出する絶縁膜であることから、表面絶縁膜と称してもよい。
第2絶縁層42には、コンタクト孔43が形成されている。コンタクト孔43から、金属配線35の一部が、露出している。金属配線35の露出した部分は、露出部44と称してもよく、金属配線35の露出部44以外の、第2絶縁層42で覆われた部分は、被覆部45と称してもよい。
第2絶縁層42上には、電極パッド34が形成されている。電極パッド34は、第1金属層46と、第1金属層46を覆うように形成された第2金属層47とを含む。
第1金属層46は、例えばAl、アルミ合金(例えば、AlSi、AlSiCu、AlCu等)、Cuなどの金属からなっていてもよい。
第1金属層46は、パッド部48と、パッド部48を取り囲む外周部49とを含む。
パッド部48は、コンタクト孔43上に形成され、コンタクト孔43内で金属配線35(露出部44)に接続されている。また、パッド部48は、コンタクト孔43から外側に張り出し、第2絶縁層42上に配置された部分50を有している。部分50は、この実施形態では、図32を参照して、コンタクト孔43の周縁から均等に張り出した鍔状の部分である。
外周部49は、パッド部48の部分50から外側に間隔を空けた位置に、パッド部48から独立して(物理的に分離されて)形成されている。ただし、外周部49は、第2金属層47を介して、パッド部48に電気的に接続されている。
外周部49は、この実施形態では、図32に示すように、パッド部48を取り囲む環状(より具体的には、四角環状)に形成されているが、パッド部48を取り囲み、後述するパッド部48の腐食を防止する効果を奏することができるのであれば、一部に分断された領域を有していてもよい。
また、外周部49は、図33および図34を参照して、第2絶縁層42を挟んで、金属配線35の被覆部45に対向していてもよい。
ここで、パッド部48および外周部49の寸法を説明する。まず、外周部49の外径W1は、例えば、90μm程度であってもよい。外周部49の幅W2は、例えば、8μm程度であってもよい。また、外周部49とパッド部48との間隔W3(例えば、外周部49の内周とパッド部48の外周との距離)は、幅W2よりも狭く、例えば、2μm程度であってもよい。また、パッド部48の部分50の幅W4(コンタクト孔43からの張り出し量)は、例えば、5μm程度であってもよい。また、コンタクト孔43の径(パッド部48と金属配線35との接続領域の幅)W5は、例えば、60μm程度であってもよい。
第2金属層47は、第1金属層46のパッド部48および外周部49を一括して覆うように形成されている。これにより、第2金属層47は、パッド部48と外周部49との間の領域51に入り込み、パッド部48の外周縁および外周部49の内周縁を覆う部分53と、外周部49よりも外側の領域52に配置され、外周部49の外周縁を覆う部分54とを有している。第2金属層47の部分53および部分54は、いずれも、領域51および領域52において第2絶縁層42に接触している。
また、第2金属層47は、第2金属層47の下方の構造に形成された段差に応じた部分に、複数の凹部を有している。この実施形態では、第2金属層47は、コンタクト孔43の高低差に応じた凹部55、領域51における第2絶縁層42と第1金属層46との高低差に応じた凹部56、および領域52における第2絶縁層42と第1金属層46との高低差に応じた凹部57を有している。
図33を参照して、凹部55は、電極パッド34の中央部に形成され、凹部56は、凹部55を取り囲む環状(この実施形態では、四角環状)に形成され、凹部57は、さらに凹部56を取り囲む環状(この実施形態では、四角環状)に形成されている。
また、第2金属層47は、この実施形態では、後述するように、めっき成長によって形成されていてもよい。この場合、第2金属層47は、例えば、めっき層と称してもよいく、図34を参照して、第1金属層46側から順に、Ni層58、Pd層59およびAu層60を有していてもよい。例えば、Ni層58の厚さは3μm程度であり、Pd層59の厚さは0.1μm程度であり、Au層60の厚さは0.03μm程度であってもよい。むろん、第2金属層47は、めっき成長によって形成される必要はなく、例えば、スパッタ法等の成膜技術によって形成されていてもよい。例えば、Au等の耐食性を有する金属をスパッタ法で形成する方法が例示できる。
図35A~図35Fは、電極パッド34の形成に関連する工程を説明するための図である。図35A~図35Fに示す工程は、例えば、前述の図13に示す工程の後、拡散配線36および拡散抵抗37が形成された後に行われてもよい。
例えば、まず、図35Aに示すように、基板材料300の主面310に、第1絶縁層41が形成される。第1絶縁層41は、例えば、半導体結晶表面の熱酸化やCVD法によって形成されてもよい。
次に、図35Bに示すように、第1絶縁層41上に、金属配線35が形成される。金属配線35は、例えば、スパッタ法によって第1絶縁層41上に金属膜を形成した後、パターニングすることによって形成されてもよい。
次に、図35Cに示すように、金属配線35を覆うように、第1絶縁層41上に第2絶縁層42が形成される。第2絶縁層42は、例えば、CVD法によって形成されてもよい。
次に、図35Dに示すように、第2絶縁層42にコンタクト孔43が形成される。コンタクト孔43は、例えば、ドライエッチング等のエッチングによって形成されてもよい。
次に、図35Eに示すように、第2絶縁層42上に、第1金属層46が形成される。第1金属層46は、例えば、スパッタ法によって第2絶縁層42およびコンタクト孔43内の金属配線35上に金属膜を形成した後、パターニングすることによって形成されてもよい。このパターニングによって、パッド部48と外周部49とに分離されてもよい。
次に、図35Fに示すように、第1金属層46を覆うように、第2絶縁層42上に第2金属層47が形成される。これにより、図32~図34に示す電極パッド34が形成される。第2金属層47は、例えば、第1金属層46からのめっき成長(例えば、無電解めっき)によって形成されてもよい。
ここで、図34を参照して、電極パッド34の外周において第2金属層47(この実施形態では、めっき層)と第2絶縁層42との間には、隙間40が生じることがある。隙間40が生じる要因の一つは、例えば、第2金属層47が、めっき成長によって形成されることである。第2金属層47(この実施形態では、Ni層58)は、前述のように、第1金属層46のパッド部48および外周部49を核として、第2絶縁層42の厚さ方向(縦方向、この実施形態では上方向)およびその方向に直交する方向(横方向)にめっき成長する。横方向においては、単に第2絶縁層42の表面に沿ってめっきが進行していくだけであるため、第2金属層47と第2絶縁層42との間に接合が形成されるわけではない。そのため、例えば、Ni層58上にPd層59やAu60が形成された後、Ni層58に応力(層間応力等)が加わると、Ni層58に反り等が発生し、隙間40が生じるというメカニズムである。
一方、第1金属層46と第2金属層47との間は、金属同士によって接合されているため、隙間が生じることはない。したがって、領域51では、第2金属層47と第2絶縁層42との界面が存在するが、領域51内の第2金属層47は、領域51の内側および外側の両側に形成された金属-金属接合(第2金属層47とパッド部48との接合、および第2金属層47と外周部49との接合)によって支持されるため、当該界面に隙間が生じることを防止することもできる。
そし、第2金属層47の外周部に上記のような隙間40が形成されていると、当該隙間40を介して、電極パッド34の内部に水分や塩分(例えば、塩水)が侵入するおそれがある。特に、MEMS素子3(気圧センサ)の他、圧力センサ、湿度センサおよびこれらの集積化されたデバイス等、外気に晒される形態で使用される製品では、水分等の侵入の課題が顕著になる。
しかしながら、この実施形態の電極パッド34の構造であれば、MEMS素子3の内部配線である金属配線35に直接接続される第1金属層46のパッド部48の周囲に、パッド部48から物理的に分離された外周部49が設けられている。
そのため、第2金属層47と第2絶縁層42との間に隙間40が生じ、隙間40を介して電極パッド34の内部へ水分や塩分(例えば、塩水)が侵入しても、ガードリングとしての外周部49でブロックすることができる。すなわち、当該水分等で外周部49が腐食しても、外周部49とパッド部48とが物理的に分離されているので、その腐食がパッド部48に伝播することを防止することができる。その結果、内部配線に繋がるパッド部48を、水分や塩分から守ることができる。
なお、図36を参照して、第1金属層46と第2絶縁層42との間には、例えば、Ti等からなるバリア層39が形成されていてもよい。バリア層39は、例えば、図35Eの工程において、第1金属層46の形成に先立って、例えばスパッタ法でバリア層39の材料膜を形成し、その後、第1金属層46と同じパターニング工程でパターニングされることによって形成されてもよい。また、以上説明した電極パッド34の構造は、MEMS素子以外の半導体装置に設けられた各種電極パッドに適用することもできる。
図37は、電極パッド34の構造(第3形態)を説明するための要部断面図である。
この第3形態では、金属配線35は、第2絶縁層42のコンタクト孔43の内方領域に、コンタクト孔43の内面から内側に間隔を隔てて形成されている。これにより、金属配線35とコンタクト孔43の内面との間には、第1絶縁層41の一部からなる領域38が露出している。
第1金属層46は、金属配線35を取り囲むように、第1絶縁層41の領域38に形成されている。この実施形態では、第1金属層46は、コンタクト孔43の内外に跨って形成され、コンタクト孔43の内方領域へ延びる第1部分63と、コンタクト孔43の外方領域へ延び、第2絶縁層42で覆われた第2部分64とを一体的に有している。
第2金属層47は、第1金属層46および金属配線35を一括して覆うように形成されている。これにより、第2金属層47は、コンタクト孔43内で、第1金属層46および金属配線35に接続されている。
この構造においても、第2金属層47と第2絶縁層42との間の隙間40(図34参照)を介して電極パッド34の内部へ水分や塩分(例えば、塩水)が侵入しても、コンタクト孔43内において、ガードリングとしての第1金属層46でブロックすることができる。すなわち、当該水分等で第1金属層46が腐食しても、第1金属層46と金属配線35とが物理的に分離されているので、その腐食が金属配線35に伝播することを防止することができる。その結果、金属配線35を、水分や塩分から守ることができる。
図38A~図38Eは、図37の電極パッド34の形成に関連する工程を説明するための図である。図38A~図38Eに示す工程は、例えば、前述の図13に示す工程の後、拡散配線36および拡散抵抗37が形成された後に行われてもよい。
例えば、まず、図38Aに示すように、基板材料300の主面310に、第1絶縁層41が形成される。第1絶縁層41は、例えば、半導体結晶表面の熱酸化やCVD法によって形成されてもよい。
次に、図38Bに示すように、第1絶縁層41上に、金属配線35および第1金属層46が形成される。金属配線35および第1金属層46は、例えば、スパッタ法によって第1絶縁層41上に金属膜を形成した後、パターニングすることによって形成されてもよい。
次に、図38Cに示すように、金属配線35および第1金属層46を覆うように、第1絶縁層41上に第2絶縁層42が形成される。第2絶縁層42は、例えば、CVD法によって形成されてもよい。
次に、図38Dに示すように、第2絶縁層42にコンタクト孔43が形成される。コンタクト孔43は、例えば、ドライエッチング等のエッチングによって形成されてもよい。
次に、図38Eに示すように、金属配線35および第1金属層46を覆うように、第2絶縁層42上に第2金属層47が形成される。これにより、図37に示す電極パッド34が形成される。
本開示に係るMEMS素子の製造方法、MEMS素子およびMEMSモジュールは、上述した実施形態に限定されるものではない。本開示に係るMEMS素子の製造方法、MEMS素子およびMEMSモジュールの具体的な構成は、種々に設計変更自在である。
A1 :MEMSモジュール
1 :基板
1A :基材
1B :配線部
1C :絶縁層
1a :搭載面
1b :実装面
1c :側面
2 :電子部品
2a :搭載面
2b :実装面
2c :側面
3 :MEMS素子
3b :実装面
3c :側面
4 :ボンディングワイヤ
6 :カバー
7 :接合材
11 :電極パッド
12 :延出部
13 :連結部
14 :枝部
19 :裏面パッド
21 :電極パッド
22 :温度センサ
23 :マルチプレクサ
24 :デジタル変換回路
25 :信号処理部
26 :クロック
27 :記憶部
28 :インターフェイス
30 :基板
34 :電極パッド
34a,34b,34c,34d:電極パッド
35 :金属配線
36 :拡散配線
37,37a,37b,37c,37d:拡散抵抗
61 :開口部
62 :延出部
71 :接合材内側端縁
100 :搭載面部
101 :第1搭載面部
102 :第2搭載面部
103 :第3搭載面部
111 :絶縁層内側端縁
112 :開口
300 :基板材料
301 :第1層
302 :第2層
303 :第3層
310 :主面
311 :凹部
320,321:穴部
330 :連結空洞部
340 :空洞部
350 :保護膜
351 :貫通孔
360 :可動部
370 :固定部
380 :追加層

Claims (10)

  1. 主面を有する基板と、
    前記基板の前記主面側に形成され、厚さ方向視において互いに重なる可動部および空洞部と、前記可動部を支持する固定部と、
    前記基板の前記主面に形成された金属配線と、
    前記基板の前記主面に形成され、前記金属配線を露出させるコンタクト孔を有する絶縁層と、
    記コンタクト孔から露出する前記金属配線の露出部分に電気的に接続された電極パッドとを含み、
    前記可動部と前記固定部とは、互いの境界に接合部を有さない、同一且つ単一の半導体からなり、
    前記主面は、前記厚さ方向視において前記可動部と重なる凹部を有し、
    前記空洞部は、前記厚さ方向に起立する側面、側面と交差する方向に広がる底面、および前記側面および前記底面を繋ぐ曲面を有し、前記側面が、前記厚さ方向における前記底面に向かうほど前記空洞部の外側に広がるように傾斜しており、
    前記電極パッドは、前記コンタクト孔上に形成され、前記コンタクト孔内で前記金属配線の露出部分に接続されたパッド部、および前記パッド部の外側であり、かつ前記絶縁層上において前記パッド部とは物理的に分離されて形成され、前記パッド部および前記金属配線の露出部分を取り囲む外周部を含む第1金属層と、前記パッド部および前記外周部を一括して覆うように形成された第2金属層とを含み、
    前記パッド部は、前記コンタクト孔から外側に張り出し、前記絶縁層上に配置された鍔部を有しており、
    前記第2金属層は、前記パッド部と前記外周部との間の第1領域に入り込み、前記パッド部の外周縁および前記外周部の内周縁を覆う第1部分と、前記外周部よりも外側の第2領域において前記絶縁層に接するように配置され、前記外周部の外周端面を含む前記外周部の外周縁を覆う第2部分とを有している、MEMS素子。
  2. 前記第2金属層は、前記コンタクト孔の高低差に応じた第1凹部、前記第1領域における前記絶縁層と前記第1金属層との高低差に応じた第2凹部、および前記第2領域における前記絶縁層と前記第1金属層との高低差に応じた第3凹部を有している、請求項に記載のMEMS素子。
  3. 前記第1凹部は、前記パッド部の中央部に形成され、前記第2凹部は、前記第1凹部を取り囲む環状に形成され、前記第3凹部は、さらに前記第2凹部を取り囲む環状に形成されている、請求項に記載のMEMS素子。
  4. 前記パッド部および前記外周部は、前記第2金属層を介して互いに電気的に接続されている、請求項1~3のいずれか一項に記載のMEMS素子。
  5. 前記第1金属層と前記絶縁層との間に形成されたバリア層をさらに含む、請求項1~4のいずれか一項に記載のMEMS素子。
  6. 前記第1金属層は、Al、アルミ合金またはCuからなる、請求項1~のいずれか一項に記載のMEMS素子。
  7. 前記第2金属層は、前記第1金属層側から順に、Ni層、Pd層およびAu層を含むめっき層からなる、請求項1~のいずれか一項に記載のMEMS素子。
  8. 前記半導体は、Siである、請求項1~のいずれか一項に記載のMEMS素子。
  9. 前記空洞部は、密閉されている、請求項1~のいずれか一項に記載のMEMS素子。
  10. 請求項1~のいずれか一項に記載のMEMS素子と、
    前記MEMS素子からの電気信号を処理する電子部品と、を備える、MEMSモジュール。
JP2022199549A 2017-05-30 2022-12-14 Mems素子およびmemsモジュール Active JP7408764B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017106121 2017-05-30
JP2017106121 2017-05-30
JP2018085230A JP2018205304A (ja) 2017-05-30 2018-04-26 Mems素子の製造方法、mems素子およびmemsモジュール

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018085230A Division JP2018205304A (ja) 2017-05-30 2018-04-26 Mems素子の製造方法、mems素子およびmemsモジュール

Publications (2)

Publication Number Publication Date
JP2023036718A JP2023036718A (ja) 2023-03-14
JP7408764B2 true JP7408764B2 (ja) 2024-01-05

Family

ID=64459080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022199549A Active JP7408764B2 (ja) 2017-05-30 2022-12-14 Mems素子およびmemsモジュール

Country Status (2)

Country Link
US (1) US10597288B2 (ja)
JP (1) JP7408764B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007641A1 (en) * 2016-07-08 2018-01-11 Robert Bosch Gmbh Hybrid galvanic connection system for a mems sensor device package
US11368783B2 (en) * 2019-04-12 2022-06-21 Knowles Electronics, Llc Prevention of buzz noise in smart microphones
USD1023805S1 (en) * 2022-05-12 2024-04-23 Milestone Scientific, Inc. Pressure transducer housing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168711A1 (en) 2000-07-25 2003-09-11 Stmicroelectronics S.R.I. Process for manufacturing an SOI wafer by annealing and oxidation of buried channels
JP2004228295A (ja) 2003-01-22 2004-08-12 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2006075981A (ja) 2004-09-08 2006-03-23 Robert Bosch Gmbh トレンチされたキャビティを有するセンサエレメント
JP2007335629A (ja) 2006-06-15 2007-12-27 Sony Corp 電子部品及びこれを用いた半導体装置並びに電子部品の製造方法
JP2009124099A (ja) 2007-10-24 2009-06-04 Panasonic Corp 半導体チップの電極構造
JP2009245957A (ja) 2008-03-28 2009-10-22 Panasonic Corp 半導体装置及びその製造方法
JP2013038277A (ja) 2011-08-09 2013-02-21 Semiconductor Components Industries Llc 半導体装置およびその製造方法
JP2014120729A (ja) 2012-12-19 2014-06-30 Fuji Electric Co Ltd 半導体基板の製造方法および半導体装置
US20140299948A1 (en) 2011-12-29 2014-10-09 Goertek Inc. Silicon based mems microphone, a system and a package with the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027597D1 (de) * 2004-03-19 2010-07-22 St Microelectronics Srl Halbleiterdrucksensor und Verfahren zur Herstellung
US7854497B2 (en) * 2007-10-30 2010-12-21 Hewlett-Packard Development Company, L.P. Fluid ejection device
CN103822749B (zh) 2009-07-24 2016-05-04 罗姆股份有限公司 压力传感器装置以及电子设备
US20130130502A1 (en) * 2010-05-21 2013-05-23 Sand 9, Inc. Micromechanical membranes and related structures and methods
US20120211805A1 (en) * 2011-02-22 2012-08-23 Bernhard Winkler Cavity structures for mems devices
CN106197776B (zh) * 2015-05-27 2019-11-05 意法半导体股份有限公司 压力传感器、压力测量设备、制动系统和测量压力的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168711A1 (en) 2000-07-25 2003-09-11 Stmicroelectronics S.R.I. Process for manufacturing an SOI wafer by annealing and oxidation of buried channels
JP2004228295A (ja) 2003-01-22 2004-08-12 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2006075981A (ja) 2004-09-08 2006-03-23 Robert Bosch Gmbh トレンチされたキャビティを有するセンサエレメント
JP2007335629A (ja) 2006-06-15 2007-12-27 Sony Corp 電子部品及びこれを用いた半導体装置並びに電子部品の製造方法
JP2009124099A (ja) 2007-10-24 2009-06-04 Panasonic Corp 半導体チップの電極構造
JP2009245957A (ja) 2008-03-28 2009-10-22 Panasonic Corp 半導体装置及びその製造方法
JP2013038277A (ja) 2011-08-09 2013-02-21 Semiconductor Components Industries Llc 半導体装置およびその製造方法
US20140299948A1 (en) 2011-12-29 2014-10-09 Goertek Inc. Silicon based mems microphone, a system and a package with the same
JP2014120729A (ja) 2012-12-19 2014-06-30 Fuji Electric Co Ltd 半導体基板の製造方法および半導体装置

Also Published As

Publication number Publication date
JP2023036718A (ja) 2023-03-14
US10597288B2 (en) 2020-03-24
US20180346322A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP7408764B2 (ja) Mems素子およびmemsモジュール
JP5092462B2 (ja) 力学量センサ
JP5486271B2 (ja) 加速度センサ、及び加速度センサの製造方法
JP2008046078A (ja) 微小電気機械システム素子およびその製造方法
CN102749159A (zh) 具有密封结构的传感器器件
KR100620810B1 (ko) Mems 소자 패키지 및 그 제조방법
JP5545281B2 (ja) 力学量センサ
EP3614115A1 (en) Pressure sensor
CN106098717B (zh) 高可靠性芯片封装方法及结构
JP4933934B2 (ja) 半導体装置及び半導体装置の製造方法
KR102588550B1 (ko) 미소 기계식 압력 센서 장치 및 상응하는 제조 방법
US10794784B2 (en) Sensor module and method of making the same
CN104112717A (zh) 晶片封装体及其制造方法
EP3680211B1 (en) Sensor unit and method of interconnecting a substrate and a carrier
JP5366463B2 (ja) 物理量センサ及びその製造方法、ならびに、物理量センサ実装構造
JP2018205304A (ja) Mems素子の製造方法、mems素子およびmemsモジュール
CN114789987B (zh) 用于感测的封装结构及其制作方法
JP4219876B2 (ja) 容量式湿度センサ及びその製造方法
KR20100112699A (ko) 가스 센싱 장치 및 가스 센싱 장치의 제조 방법
JP2010181243A (ja) 容量式力学量センサ装置の製造方法
JP2007311392A (ja) 電子装置
JP6923316B2 (ja) センサモジュール
JP5578803B2 (ja) ウェハパッケージおよびその製造方法
US20230016416A1 (en) Mems module and method of manufacturing mems module
JP6867796B2 (ja) センサモジュールおよびセンサモジュールの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231220

R150 Certificate of patent or registration of utility model

Ref document number: 7408764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150