JP7405319B1 - プレス成形品の製造方法 - Google Patents

プレス成形品の製造方法 Download PDF

Info

Publication number
JP7405319B1
JP7405319B1 JP2023562315A JP2023562315A JP7405319B1 JP 7405319 B1 JP7405319 B1 JP 7405319B1 JP 2023562315 A JP2023562315 A JP 2023562315A JP 2023562315 A JP2023562315 A JP 2023562315A JP 7405319 B1 JP7405319 B1 JP 7405319B1
Authority
JP
Japan
Prior art keywords
press
blank
actual
formed product
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023562315A
Other languages
English (en)
Inventor
剛史 小川
豊久 新宮
智史 澄川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2023/029453 external-priority patent/WO2024038850A1/ja
Application granted granted Critical
Publication of JP7405319B1 publication Critical patent/JP7405319B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

ブランクの形状変動による影響を低減するプレス成形品の製造方法を提供する。プレス成形品の製造方法は、基準プレス成形品形状(5)を取得する基準プレス成形品形状取得ステップと、第1実ブランクプレス成形品形状(13)を取得する第1実ブランクプレス成形品形状取得ステップと、基準プレス成形品形状(5)と第1実ブランクプレス成形品形状(13)の第1実乖離量を求める第1実乖離量取得ステップと、第2実ブランクプレス成形品形状(23)を取得する第2実ブランクプレス成形品形状取得ステップと、基準プレス成形品形状(5)と第2実ブランクプレス成形品形状(23)の第2実乖離量を求める第2実乖離量取得ステップと、要対策部位を特定する要対策部位特定ステップと、実金型にビードを付与するビード付与ステップと、ビードを付与した実金型を用いてプレス成形する実プレス成形ステップと、を備える。

Description

本発明は、形状変動のある金属板から採取したブランクをプレス成形してプレス成形品を製造する技術に関する。本発明は、前記ブランクの形状変動の影響を低減可能なプレス成形品の製造方法に関する。
自動車の衝突安全性基準の厳格化により自動車車体への衝突安全性の向上の要求が高くなっている。その要求と共に、昨今の二酸化炭素排出規制を受けて自動車の燃費向上を図るため、車体の軽量化も必要とされている。これら衝突安全性能と車体の軽量化を両立するために、従来に比べてさらに高強度な金属板が車体に採用される傾向にある。
プレス成形品は、ブランクをプレス成形して製造される。そのプレス成形品用のブランクを採取する実際の金属板は、必ずしも、面が完全に平坦なものはなく、従来から、面に沿った波形状(形状変動)を有している場合がある。
したがって、金属板から採取した実際のブランクもまた、必ずしも平坦であるとは限らず、形状変動を有する場合がある。
このような形状変動を有するブランクを、車体部品にプレス成形した場合、プレス成形後に得られたプレス成形品は、その形状変動が影響して、目標となる寸法精度から外れることが危惧される。
プレス成形した後のプレス成形品について、目標となる寸法精度から外れたものを選別する技術として、例えば特許文献1、2が開示されている。
また、特許文献5には、クラッシュボックスのプレス成形を行うにあたり、展開ブランクを用いることが記載されている。
また、特許文献3には、プレス成形品に生じたスプリングバックの抑制を目的としてプレス成形品の残留応力を平準化するため、フランジ部にビードを付与する技術が開示されている。さらに、特許文献4には、ドロー成形の際に、金型にビードを付与してプレス成形中の材料流れを制御し、スプリングバックを抑制する技術が開示されている。
特開昭62-047504号公報 特開2019-002834号公報 特開2009-255117号公報 特開2012-166225号公報 再公表2015-053075号公報
特許文献1または特許文献2に開示の技術は、プレス成形後の成形品同士の形状を比較するものであって、プレス成形前のブランクの形状変動による影響を低減するものではない。
また、従来は、プレス成形品のどの部位がブランクの形状変動による影響を受けやすいかを特定することも行われておらず、対策を講じることが難しかった。
さらに、プレス成形に用いるブランクは、鋼板などの金属板から打ち抜きやせん断によって採取される。したがって、形状変動のある金属板から複数のブランクを採取すると、採取位置が異なることで、同じ金属板から採取したブランクであっても、個々のブランクで凹凸を呈する部位が異なる。
したがって、ブランクの形状変動による影響を低減するには、個々のブランクの形状変動に相違があることも考慮して対策を講じる必要がある。
また、プレス成形品のプレス成形を行うために、従来から例えば特許文献5に開示されるように、プレス成形品を平面に展開した形状を有する展開ブランクを用いていた。しかし、プレス成形後のプレス成形品の寸法精度に影響を及ぼすプレス成形前のブランクの形状変動部位を特定して、該部位へ対策を取るものではない。
また、特許文献3、4には、ビードを付与することでスプリングバックを抑制する技術が開示されている。しかし、該ビードは、プレス成形中に加えられたひずみによってプレス成形後に離型したプレス成形品に残留する応力を平準化または低減するものである。したがって、特許文献3、4に開示の技術は、プレス成形中の材料流れを制御することを目的としたものであり、本発明が対象とするブランクの形状変動による影響を低減することを目的としたものではなかった。
本発明は、かかる課題を解決するためになされたものである。本発明は、形状変動のある金属板から採取したブランクを用いてプレス成形して製造されるプレス成形品の寸法精度における、ブランクの形状変動の影響を低減することを目的としている。
課題解決のために、本発明の一態様は、形状変動のある金属板から採取したブランクを、プレス金型を用いてプレス成形することでプレス成形品を製造するプレス成形品の製造方法であって、平坦な形状の平坦ブランクモデルを用いて、目標とするプレス成形品の形状に基づき設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、前記形状変動のある金属板から採取した第1実ブランクを測定した測定データに基づいて、第1実ブランクモデルを生成し、該生成した第1実ブランクモデルを用いて、前記所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を第1実ブランクプレス成形品形状として取得する第1実ブランクプレス成形品形状取得ステップと、前記基準プレス成形品形状と前記第1実ブランクプレス成形品形状とを比較し、両形状の乖離する部位と、その乖離量である第1実乖離量とを求める第1実乖離量取得ステップと、前記形状変動のある金属板から前記第1実ブランクとは異なる部位で採取した第2実ブランクを測定した測定データに基づいて、第2実ブランクモデルを一種類または複数種類生成し、該生成した第2実ブランクモデルを用いて、前記設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を第2実ブランクプレス成形品形状として取得する第2実ブランクプレス成形品形状取得ステップと、前記基準プレス成形品形状と一種類または複数種類の前記第2実ブランクプレス成形品形状とを比較し、両形状の乖離する部位と、その乖離量である第2実乖離量を求める第2実乖離量取得ステップと、前記第1実乖離量のうちの予め設定した閾値を超える乖離量が生じた部位および前記第2実乖離量のうちの予め設定した閾値を超える乖離量が生じた部位に相当する前記プレス成形品の部位を、要対策部位として特定する要対策部位特定ステップと、前記要対策部位特定ステップで特定した要対策部位での前記乖離量が小さくなるように、前記プレス成形品の製造で使用するプレス金型である実金型の成形面、及び、前記プレス成形品の製造で使用する前記ブランクである実ブランクから選択した少なくとも一方の形状を補正する成形精度向上ステップと、を備える。
本発明の態様によれば、個々のブランクにおける形状変動の相違も考慮した上で、プレス成形品におけるブランクの形状変動による影響が大きい部位を特定する。そして、当該部位に対応した対策を講じることで、ブランクの形状変動による影響を低減することができる。
これにより、本発明の態様によれば、寸法精度の良好なプレス成形品の製造が可能となって、形状変動を有する金属板から採取したブランクを用いても良好な寸法精度のプレス成形品を歩留まり良く生産できる。
第1実施形態に係るプレス成形品の製造方法の各ステップの説明図である。 第1実施形態で対象とした部品の外観図である。 平坦ブランクモデルの説明図である。 図3の平坦ブランクモデルを用いてプレス成形(ドロー成形)解析した基準プレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 第1実施形態に係る第1実ブランクモデルの説明図である。 図5の第1実ブランクモデルを用いてプレス成形(ドロー成形)解析した第1実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図4の基準プレス成形品形状と図6の第1実ブランクプレス成形品形状とを比較したときの第1実乖離量を示した図である。 第1実施形態における第2実ブランクモデルの説明図である。 図8の第2実ブランクモデルを用いてプレス成形(ドロー成形)解析した第2実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図4の基準プレス成形品形状と図9の第2実ブランクプレス成形品形状とを比較したときの第2実乖離量を示した図である。 図7と図10に示した第1実乖離量と第2実乖離量の範囲を目標形状に対応させて示した図である。 ビードを付与した金型モデルを用いてプレス成形(ドロー成形)解析した基準プレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 ビードを付与した金型モデルを用いてプレス成形(ドロー成形)解析した第1実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図12の基準プレス成形品形状と図13の第1実ブランクプレス成形品形状とを比較したときの第1実乖離量を示した図である。 ビードを付与した金型モデルを用いてプレス成形(ドロー成形)解析した第2実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図12の基準プレス成形品形状と図15の第2実ブランクプレス成形品形状とを比較したときの第2実乖離量を示した図である。 図14と図16に示した第1実乖離量と第2実乖離量の範囲を目標形状に対応させて示した図である。 図3の平坦ブランクモデルを用いてプレス成形(フォーム成形)解析した基準プレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図5の第1実ブランクモデルを用いてプレス成形(フォーム成形)解析した第1実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図18の基準プレス成形品形状と図19の第1実ブランクプレス成形品形状とを比較したときの第1実乖離量を示した図である。 実施例における第2実ブランクモデルの説明図である。 図21の第2実ブランクモデルを用いてプレス成形(フォーム成形)解析した第2実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図18の基準プレス成形品形状と図22の第2実ブランクプレス成形品形状とを比較したときの第2実乖離量を示した図である。 図20と図23に示した第1実乖離量と第2実乖離量の範囲を目標形状に対応させて示した図である。 ビードを付与した金型モデルを用いてプレス成形(フォーム成形)解析した基準プレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 ビードを付与した金型モデルを用いてプレス成形(フォーム成形)解析した第1実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図25の基準プレス成形品形状と図26の第1実ブランクプレス成形品形状とを比較したときの第1実乖離量を示した図である。 ビードを付与した金型モデルを用いてプレス成形(フォーム成形)解析した第2実ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図25の基準プレス成形品形状と図28の第2実ブランクプレス成形品形状とを比較したときの第2実乖離量を示した図である。 図27と図29に示した第1実乖離量と第2実乖離量の範囲を目標形状に対応させて示した図である。 第2実施形態に係るプレス成形品の製造方法の各ステップの説明図である。 第2実施形態が対象とする目標形状の外観図の例である。 第2実施形態に係る平坦ブランクモデルの説明図である。 図33の平坦ブランクモデルを用いてプレス成形解析した基準プレス成形品形状と、成形下死点からの変化量を示した図である。 第1実ブランクモデルの説明図である。 図35の第1実ブランクモデルを用いてプレス成形解析した第1実ブランクプレス成形品形状と、成形下死点からの変化量を示した図である。 図34の基準プレス成形品形状と図36の第1実ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。 第2実ブランクモデルの説明図である。 図38の第2実ブランクモデルを用いてプレス成形解析した第2実ブランクプレス成形品形状と、成形下死点からの変化量を示した図である。 図34の基準プレス成形品形状と図39の第2実ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。 図37と図40における乖離量の範囲を目標形状に対応させて示した図である。 図41で特定された要対策部位に対応するブランクモデルの部位にビードを付与した図である。 図33の平坦ブランクモデルにビードを付与してからプレス成形解析したビード付与の基準プレス成形品形状と、成形下死点からの変化量を示した図である。 図35の第1実ブランクモデルにビードを付与してからプレス成形解析したビード付与の第1実ブランクプレス成形品形状と、成形下死点からの変化量を示した図である。 図43のビード付与の基準プレス成形品形状と図44のビード付与の第1実ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。 図38の第2実ブランクモデルにビードを付与してからプレス成形解析したビード付与の第2実ブランクプレス成形品形状と、成形下死点からの変化量を示した図である。 図43のビード付与の基準プレス成形品形状と図46のビード付与の第2実ブランクプレス成形品形状とを比較したときの乖離量を説明する図である。 図45と図47における乖離量の範囲を目標形状に対応させて示した図である。
次に、本発明の実施形態について図面を参照して説明する。
「第1実施形態」
本実施形態に係るプレス成形品の製造方法は、形状変動(凹凸)のある金属板から採取したブランクを用いる。本実施形態では、そのブランクに対し、目標とするプレス成形品形状に対応するプレス金型によって、フォーム成形やドロー成形などのプレス成形を行ってプレス成形品を製造する。本発明では、そのプレス成形品の製造の際に、製造されるプレス成形品に対する、ブランクの形状変動による影響を低減して、より寸法精度の高いプレス成形品を製造する。
ここで、金属板が有する形状変動とは、例えば、所定方向に沿って凹凸が連続して形成されるような形状変動である。
また、対象とする金属板の材料としては、鋼材やアルミ合金などが例示できるが、それに限定されない。本発明は、引張強度980MPa以上の高強度鋼板、特に引張強度1470MPa以上の超高強度鋼板に好適な技術である。金属板の引張強度が高い場合、引張強度が低い場合に比べて、寸法精度に対する、金属板やブランクの形状変動の影響が大きくなる。
図1に示すように、本実施形態に係るプレス成形品の製造方法は、基準プレス成形品形状取得ステップS1、第1実ブランクプレス成形品形状取得ステップS3、第1実乖離量取得ステップS5、第2実ブランクプレス成形品形状取得ステップS7、第2実乖離量取得ステップS9、要対策部位特定ステップS11、成形精度向上ステップS13、及び実プレス成形ステップS15を備えている。
図2に示すプレス成形品1を目標形状としてプレス成形する場合を例に挙げて、以下、各構成を詳細に説明する。なお、本実施形態では、板厚1.2mmの1.5GPa級鋼板からなるブランクを用いた場合を例示する。ただし、本発明は、これにこだわるものではない。
<基準プレス成形品形状取得ステップ>
基準プレス成形品形状取得ステップS1は、図3に示すような平坦ブランクモデル3を用いる。そして、所定の金型モデルでプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得するステップである。
所定の金型モデルは、平坦形状のブランクを目標とする目標プレス成形品形状にプレス成形する実金型の成形面形状に基づき設定する。例えば、目標プレス成形品形状に倣った形状の金型モデルを所定の金型モデルとする。ただし、離型後のスプリングバック分だけ補正した金型モデルが、所定の金型モデルとして好ましい。
なお、本説明の「プレス成形解析」とは、成形下死点の形状を取得する解析と、離型後、即ちスプリングバックした後の形状を取得する解析とを含むものとする。
平坦ブランクモデル3とは、従来、一般的にプレス成形解析で用いられるブランクモデルであり、凹凸のない平らな形状のものである。
プレス成形解析は、通常、有限要素法(FEM)などのCAE解析で行われる。すなわち、プレス成形解析は、コンピュータを用いた構造解析、例えば公知のCAE解析などで行えば良い。プレス成形には、フォーム成形、ドロー成形等があるが、本発明は、いずれのプレス成形にも適用できる。本実施形態では、ドロー成形の場合を例に挙げて説明する。
プレス成形解析によって求めた、離型後の基準プレス成形品形状5を、図4に示す。図4では、成形下死点からの、離型による変化量を色の濃淡で示している。
変化量とは、プレス成形方向において、プレス成形後に離型しスプリングバックした後のプレス成形品形状の各部位の高さから、成形下死点の形状の対応する部位の高さを差し引いた値である。このため、変化量は、プレス成形方向のスプリングバック量に相当する値である。高さの差(変化量)が+(プラス)の場合は、離型後の形状が、成形下死点形状より凸状となる。一方、高さの差(変化量)が-(マイナス)の場合は、離型後の形状が、成形下死点形状より凹み状となる。
図4では、成形下死点よりも凹み状になる部位の色を薄くし、凸状になる部位の色を濃くしている。また、図4中に表示した数字は、+が凸方向(紙面手前)への変化量、-が凹方向(紙面奥)への変化量で、単位はmmである。以下の他の図に表示した数字等についても同様である。
本例においては、図4に示すような変化量であった。すなわち、基準プレス成形品形状5の変化量は、左端部(部位A)で-1.22mmであった。また、天板部の左端(部位B)で-0.17mm、長手方向中央部(部位C)で5.55mm、下フランジ部の右端(部位D)で2.47mm、右端部(部位E)で0.07mmであった。
<第1実ブランクプレス成形品形状取得ステップ>
第1実ブランクプレス成形品形状取得ステップS3は、金属板の形状変動に対応したブランクモデルを用いる。そして、基準プレス成形品形状取得ステップS1と同じプレス成形解析を行い、離型後のプレス成形品形状を取得するステップである。
第1実ブランクプレス成形品形状取得ステップS3では、まず、金属板の形状変動に基づき、金属板の形状変動に対応した形状の第1実ブランクモデル11を生成する。第1実ブランクモデル11の一例を図5に示し、以下、具体的に説明する。
第1実ブランクモデル11は、形状変動のある金属板の所定位置から採取した実ブランク(第1実ブランク)の形状を測定した測定データに基づいて生成したブランクモデルである。具体的には、第1実ブランクの形状を、例えばレーザ距離計による3次元形状測定器などによって測定し、測定結果に基づいて第1実ブランクモデル11を生成する。
図5(a)が、第1実ブランクモデル11を平面視した図であり、図5(b)が、図5(a)のA-A断面図であり、その図は凹凸を色の濃淡で表現している。また、図5(c)には、図5(b)の凹凸高さをグラフ化して示した。
図5に示すように、第1実ブランクモデル11は、形状変動のある金属板から採取した第1実ブランクと同様の形状変動を有するブランクモデルであり、不規則な凹凸形状を有している。
次に、第1実ブランクモデル11を用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形するプレス成形解析を行う。そして、解析結果に基づき、離型後のプレス成形品形状を第1実ブランクプレス成形品形状13として取得する。プレス成形解析した第1実ブランクプレス成形品形状13を、図6に示す。図6に示す色や数値は、図4と同様である。
図6に示すように、第1実ブランクプレス成形品形状13の変化量は、左端部(部位A)で-1.06mmであった。また、天板部の左端(部位B)で-0.12mm、長手方向中央部(部位C)で5.57mm、下フランジ部の右端(部位D)で2.55mm、右端部(部位E)で0.23mmであった。
<第1実乖離量取得ステップ>
第1実乖離量取得ステップS5では、基準プレス成形品形状5(図4)と第1実ブランクプレス成形品形状13(図6)を比較する。そして、両形状の乖離する部位と、乖離量(第1実乖離量)とを求める。
例えば、プレス成形品の形状に対し、複数の領域を設定し、各領域の代表箇所を乖離量を求める部位とする。領域は、例えば、離型後にスプリングバックが発生しやすいと推定される領域を代表して設定しても良い。また、例えば、乖離する部位と第1乖離量とを組としてデータを記憶しても良い。
本実施形態では、成形下死点におけるプレス成形品形状を基準形状とし、基準形状からの離型後のプレス成形品形状の各部位における変化量(スプリングバック量)を求めた。そして、二つのプレス成形品形状の変化量の差を乖離量として求める。
すなわち、第1実乖離量取得ステップS5で求める第1実乖離量とは、第1実ブランクプレス成形品形状13の変化量(図6)から、基準プレス成形品形状5の変化量(図4)を差し引いた値となる。第1実ブランクプレス成形品形状13の変化量(図6)は、形状変動のある実ブランクを用いた変化量である。基準プレス成形品形状5の変化量(図4)は、平坦なブランクモデルを用いた変化量である。したがって、第1実乖離量が+(プラス)の場合は、第1実ブランクプレス成形品形状13の当該部位は、基準プレス成形品形状5に比べて凸形状となる。また、第1実乖離量が-(マイナス)の場合は、第1実ブランクプレス成形品形状13の当該部位は、基準プレス成形品形状5に比べて凹み形状となる。
上記のように求めた第1実乖離量を図7に示す。
図7に示すように、第1実ブランクプレス成形品形状13と基準プレス成形品形状5との第1実乖離量は、次の値であった。すなわち、部位Aで0.16mm、部位Bで0.05mm、部位Cで0.02mm、部位Dで0.08mm、部位Eで0.16mmであった。
<第2実ブランクプレス成形品形状取得ステップ>
第2実ブランクプレス成形品形状取得ステップS7は、第1実ブランクモデル11とは異なる実ブランクモデルを用いる。そして、基準プレス成形品形状取得ステップS1と同じプレス成形解析を行い、離型後のプレス成形品形状を取得するステップである。
第2実ブランクプレス成形品形状取得ステップS7では、まず、第1実ブランクとは異なる実ブランクを用いて第2実ブランクモデル21を生成する。第2実ブランクモデル21の一例を図8に示し、以下、具体的に説明する。
第2実ブランクモデル21は、形状変動のある金属板の第1実ブランクとは異なる部位から採取した実ブランク(第2実ブランク)の形状を測定した測定データに基づいて生成したブランクモデルである。第1実ブランクモデル11と同様に、第2実ブランクの形状を、例えばレーザ距離計による3次元形状測定器などによって測定し、測定結果に基づいて第2実ブランクモデル21を生成する。
図8(a)が第2実ブランクモデル21を平面視した図、図8(b)が図8(a)のB-B断面図であり、凹凸を色の濃淡で表現している。また、図8(c)には、図8(b)の凹凸高さをグラフ化して示した。
図8に示すように、第2実ブランクモデル21は、形状変動のある金属板から採取した第2実ブランクと同様の形状変動を有するブランクモデルである。第2実ブランクモデル21は、第1実ブランクモデル11とは異なる不規則な凹凸形状を有している。
次に、第2実ブランクモデル21を用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行う。そして、離型後のプレス成形品形状を第2実ブランクプレス成形品形状23として取得する。第2実ブランクプレス成形品形状23を図9に示す。図9に示す色や数値の意味は、図4、図6と同様である。
本例においては、図9に示すような変化量であった。つまり、第2実ブランクプレス成形品形状23の変化量は、部位Aで-0.85mmであった。また、部位Bで0.21mm、部位Cで5.63mm、部位Dで2.62mm、部位Eで-0.21mmであった。
<第2実乖離量取得ステップ>
第2実乖離量取得ステップS9は、基準プレス成形品形状5と第2実ブランクプレス成形品形状23を比較し、両形状の乖離する部位と、その乖離量(第2実乖離量)とを求めるステップである。第2実乖離量の求め方は第1実乖離量取得ステップS5で説明した方法と同様であるので説明を省略する。
基準プレス成形品形状5(図4)と第2実ブランクプレス成形品形状23(図9)とを比較したときの第2実乖離量を図10に示す。
図10に示すように、第2実ブランクプレス成形品形状23と基準プレス成形品形状5との第2実乖離量は、次の値であった。すなわち、部位Aで0.37mm、部位Bで0.38mm、部位Cで0.08mm、部位Dで0.15mm、部位Eで-0.28mmであった。
<要対策部位特定ステップ>
要対策部位特定ステップS11は、第1実乖離量取得ステップS5で閾値を超える第1実乖離量が生じた部位および第2実乖離量取得ステップS9で閾値を超える第2実乖離量が生じた部位に相当するプレス成形品1の部位を要対策部位として特定するステップである。
例えば、複数のプレス成形品を重ね合わせて接合して車体のメンバー類に組み立てる場合など、プレス成形品の形状(特にフランジ部分など)に乖離が大きいとプレス成形品同士の接合が困難となる。このような場合に、対策を要する場合がある。そこで、本実施形態では、ブランクの形状変動による影響が大きい、つまり乖離が大きいと想定される部位を、要対策部位として特定する。そして、ブランクの形状変動による影響を低減するための対策をとれるようにした。
第1実乖離量取得ステップS5で求めた第1実乖離量(図7参照)と第2実乖離量取得ステップS9で求めた第2実乖離量(図10参照)の両方を目標形状に対応させて図11に示す。
図11に示すように、第1実乖離量と第2実乖離量は、次の通りであった。部位Aで0.16mm~0.37mm、部位Bで0.05mm~0.38mm、部位Cで0.02mm~0.08mm、部位Dで0.08mm~0.15mm、部位Eで-0.28mm~0.16mmであった。
図11では、各部位毎に、第1実乖離量と第2実乖離量を含む最小の範囲を、各部位で発生しうる乖離量の範囲として図示している。本例では、各部位毎に一つの第2実乖離量を求める例である。しかし、2以上の第2実乖離量を求める場合には、各部位毎に、1つの第1実乖離量と2以上の第2実乖離量を含む最小の範囲を、各部位で発生しうると推定される乖離量の範囲とすれば良い。
例えば、要対策部位特定ステップS11における閾値を±0.15mmとすると、閾値を超える乖離量が生じた部位は、部位A、部位B、部位D、部位Eとなる。そして、部位A、B、D、Eを要対策部位として特定する。
本実施形態では、ブランクの形状変動による影響を低減するための対策として、実金型表面における前記要対策部位に対応する部位にビードを付与する処理を行う。ブランクの形状変動による影響を低減するための対策は、成形精度向上ステップS13に相当する。そして、ビード付与後の実金型を用いてプレス成形を行う。
<成形精度向上ステップS13>
成形精度向上ステップS13では、要対策部位特定ステップS11で特定した要対策部位での前記乖離量が小さくなるように補正処理を行う。すなわち、プレス成形品の製造で使用するプレス金型である実金型の成形面、及び、プレス成形品の製造で使用するブランクである実ブランクから選択した少なくとも一方の形状を補正する処理を実行する。
本実施形態の成形精度向上ステップでは、ブランクの形状変動による影響を低減するために、プレス成形に使用する実金型の成形面に対し補正を行う。このため、本実施形態の成形精度向上ステップS13は、ビード付与ステップS13Aを備える。
ビード付与ステップS13Aは、上述したようなビードを実金型に付与するステップである。ビードは、実金型表面における要対策部位、または、要対策部位とその周囲を成形する部位に付与する。
なお、プレス成形品にビード痕32を形成する際には、図12~図16の部位B、部位D、部位Eに形成したビード痕32のように、ビードを実金型に付与するとよい。また、ビード痕32の長手方向がプレス成形品の端辺に交差する方向となるように、ビードを実金型に付与するとよい。または、図12~図16の部位Aに形成したビード痕32のように、ビード痕32の長手方向がプレス成形品の端辺に平行な方向となるように、ビードを実金型に付与してもよい。このようなビード痕32を形成することで、プレス成形品の端部の剛性を向上させて、プレス成形前の実ブランクからプレス成形品にまで残留する実波形状(形状変動)を押さえることができて、寸法精度をさらに向上できる。
ビード付与ステップS13Aでは、ビード痕32の長手方向がプレス成形品1における要対策部位に一番近い端辺と交差する方向となるようにビードを実金型に付与するとよい。ただし、部品の設計等の理由で、要対策部位に一番近い端辺にビードを設定することができない場合は、例えば、要対策部位近傍などの設定可能な近傍に設定する。
また、本実施形態のように、凹凸が連続する形状変動を有するブランクをプレス成形する場合には、ビード痕32の長手方向が要対策部位またはその近傍の部位における形状変動の凹凸が連続する方向に沿うように実金型にビードを付与してもよい。このようなビードを実金型に付与することで、プレス成形時の成形下死点近傍において、実金型のビードによりブランクの形状変動(実波形状)を押さえ込むことが可能になる。その結果、形状変動を押さえたままプレス成形品を得ることができて、寸法精度を向上できる。
ビード付与ステップS13Aでは、次のように、ビードを実金型に付与するとよい。すなわち、上記のようにビード痕の長手方向がプレス成形品の要対策部位又はその近傍の部位におけるブランクの形状変動の凹凸が連続する方向に沿うように、ビードを実金型に付与するとよい。ここで、ビード痕の長手方向が、プレス成形品の要対策部位におけるブランクの形状変動の凹凸が連続する方向に沿うように付与することが好ましい。ただし、部品の設計等の理由から要対策部位に付与出来ない場合には、例えば、ビード痕の長手方向が、プレス成形品の要対策部位の近傍の部位におけるブランクの形状変動の凹凸が連続する方向に沿うように付与しても良い。
また、要対策部位に形成するビード痕は凸形状でも凹形状でもよい。ビード痕の長さ、幅、高さは、プレス成形品に残留する実波形状(形状変動)の許容される高さやピッチを考慮して、目標とするプレス成形品に要求される形状からの許容度合いに合わせて適宜決定するとよい。
また、ビード痕形状として、上面視で円、楕円、長円、正方形、長方形、三角形、菱形等、いずれも適用できる。さらに、側面視で、山形、台形、半円、半楕円等、いずれも適用できる。
ここで、ビード痕形状は、実金型に付与するビード形状と同様な形状となる。
<実プレス成形ステップ>
実プレス成形ステップS15は、ビード付与ステップS13Aでビードを付与した実金型を用いて、実ブランクをプレス成形するステップである。
<ビード形成の効果確認について>
ビードを付与した実金型を用いてプレス成形した場合の効果をプレス成形解析によって確認した。その確認内容について、以下に説明する。
ここでは、前述のプレス成形解析に用いた所定の金型モデルの要対策部位に対応する部位にビードを付与した。そして、ビードを付与した実金型に基づく金型モデル(以下、「ビード付与金型モデル」という)を用いて基準プレス成形品形状取得ステップS1~第2実乖離量取得ステップS9と同様の解析を行った。なお、下記の説明における変化量及び乖離量は、図4~図11に示したものと同様の方法で求めたものである。
ビード付与金型モデルを用いて平坦ブランクモデル3(図3参照)をプレス成形解析して取得した基準プレス成形品形状31を図12に示す。
図12に示すように、基準プレス成形品形状31には、ビード付与金型モデルのビード形状が転写されて、ビード痕32が形成されている。図12の拡大図に示すように、部位Aに対応する金型モデルの部位には、ビードを付与した。具体的には、プレス成形品形状に転写されるビード痕32の長手方向がプレス成形品形状の左側端辺と平行となるようにビードを付与した。
また、部位B、部位D、部位Eに対応する金型モデルの部位には、ビード痕32の長手方向がプレス成形品形状における当該部位一番近い端辺と交差する方向となるようにビードを付与した。
図12に示すように、変化量を次の通りであった。すなわち、ビード付与金型モデルを用いてプレス成形解析した場合の基準プレス成形品形状31の部位Aの変化量は0.07mmであった。また、部位Bは-0.04mm、部位Cは5.50mm、部位Dは2.52mm、部位Eは-1.02mmであった。
次に、ビード付与金型モデルを用いて第1実ブランクモデル11(図5参照)をプレス成形解析して取得した第1実ブランクプレス成形品形状33を、図13に示す。
図13に示すように、変化量を次の通りであった。すなわち、第1実ブランクプレス成形品形状33の部位Aの変化量は0.13mmであった。また、部位Bは-0.05mm、部位Cは5.51mm、部位Dは2.56mm、部位Eは-0.93mmであった。
基準プレス成形品形状31(図12)と、第1実ブランクプレス成形品形状33(図13)とを比較して求めた第1実乖離量を図14に示す。
図14に示すように、ビード付与金型モデルを用いてプレス成形解析した場合の基準プレス成形品形状31と第1実ブランクプレス成形品形状33との第1実乖離量は、次の通りであった。すなわち、部位Aで0.06mm、部位Bで-0.01mm、部位Cで0.01mm、部位Dで0.04mm、部位Eで0.09mmであった。
次に、ビード付与金型モデルを用いて第2実ブランクモデル21(図8参照)をプレス成形解析して取得した第2実ブランクプレス成形品形状41を、図15に示す。
図15に示すように、変化量は次の通りであった。すなわち、第2実ブランクプレス成形品形状41の部位Aの変化量は0.11mmであった。部位Bは-0.07mm、部位Cは5.53mm、部位Dは2.50mm、部位Eは-0.97mmであった。
基準プレス成形品形状31(図12)と、第2実ブランクプレス成形品形状41(図15)とを比較して求めた第2実乖離量を、図16に示す。
図16に示すように、基準プレス成形品形状31と第2実ブランクプレス成形品形状41との第2実乖離量は、次の通りであった。すなわち、部位Aで0.04mm、部位Bで-0.03mm、部位Cで0.03mm、部位Dで-0.02mm、部位Eで0.05mmであった。
図14の第1実乖離量と図16の第2実乖離量の両方を目標形状に対応させて図17に示す。
図17に示すように、第1実乖離量と第2実乖離量は、次の通りであった。すなわち、部位Aで0.04~0.06mm、部位Bで-0.03~-0.01mm、部位Cで0.01~0.03mm、部位Dで-0.02~0.04mm、部位Eで0.05~0.09mmであった。
図17の乖離量は、図11に示した対策前の乖離量と比べて著しく小さくなっている。具体的には、対策後の乖離量は、各部位で前述した要対策部位特定ステップS11における閾値±0.15mm未満の乖離量となった。
したがって、要対策部位特定ステップS11で特定された要対策部位に対応する金型の部位にビードを付与することにより、ブランクの形状変動による影響を低減する効果があることが確認できた。
このように、ビードを付与した補正後の実金型を用いて形状変動のある実ブランクをプレス成形すると、プレス成形後のプレス成形品の形状は、図17の解析結果と同様な結果を得た。すなわち、ブランクの形状変動による影響が小さくなり、良好な寸法精度を得た。
以上、本実施形態によれば、ブランクの形状変動による影響が大きい部位を特定し、適切な対策をとることができる。したがって、良好な寸法精度のプレス成形品を安定して得ることができる。
なお、本実施形態では、形状変動のあるブランクを想定したブランクモデルを複数パターン生成し、それぞれの場合の乖離量を求めて要対策部位を特定している。したがって、個々の実ブランクの間で生じる形状変動の相違を考慮したものとなっている。
なお、上記は第2実ブランクモデルを一種類だけ生成したものであったが、第2実ブランクモデルを複数種類生成してもよい。その場合、形状変動のある金属板の異なる部位から複数の第2実ブランクを採取して、複数種類の第2実ブランクモデルを生成する。
形状変動のある実ブランクに対応したブランクモデルのパターンを増やすことで、個々の実ブランクの間で生じる形状変動の相違をより具体的に考慮できる。
また、上記の説明では、二つのプレス成形品形状の乖離量を求めるにあたり、プレス成形方向における成形下死点からの変化量(スプリングバック量)の差を乖離量とした。しかし、本発明は、これに限らない。
例えば、プレス成形方向において、一方のプレス成形品形状における離型後(スプリングバック後)の各部位の高さを取得する。そして、その各部位の高さから、他方のプレス成形品形状における離型後(スプリングバック後)の各部位の高さを差し引いた差を乖離量としてもよい。
もっとも、この場合は、二つのプレス成形品形状に共通する固定点を設定する必要があり、固定点の選び方によって、乖離量が変動する場合がある。
この点、本実施形態のように、プレス成形品形状によらず一定である成形下死点での形状を基準とした変化量同士を比較するようにすれば、正確かつ容易に乖離量を求めることができて好ましい。
また、実プレス成形ステップS15は、補正後の実金型でプレス成形した際に、次のリストライク工程S15Aをさらに備えてもよい。すなわち、ビードを付与した実金型からビード痕32が転写されたプレス成形品を再プレスしてビード痕32を潰すリストライク工程S15Aをさらに備えてもよい。リストライク工程でビード痕32を潰すことで、ビード痕32を付与した部位とその周辺にひずみが加わって加工硬化し、プレス成形品の剛性がさらに向上する。そして、プレス成形前の実ブランクからプレス成形品にまで残留する実波形状(形状変動)を押さえることができて、寸法精度をさらに向上できる。
なお、プレス成形後にビード痕32を残留させたくない場合も、上述のリストライク工程でビード痕32を潰して平坦化するとよい。
なお、本発明においては、プレス成形品に明確なビード痕を形成することは必須ではない。例えば実金型に付与したビードの高さが低い場合などはプレス成形品に明確なビード痕が転写されない場合があるが、その場合にも実金型のビードがブランクの形状変動を押さえ込んだ状態でプレス成形できるので、ブランクの形状変動による影響を低減できる。
第1実施形態の効果を確認するために、図1で説明したプレス成形品の製造方法を実施した。本実施例では実施形態と同様に図2のプレス成形品1を目標形状とした。また、プレス成形解析における成形は、上記実施形態がドロー成形であったのに対して、本実施例ではフォーム成形を行った。また、本実施例における変化量及び乖離量は、実施形態と同様の方法で求めた。
まず、基準プレス成形品形状取得ステップS1において、所定の金型モデルを用いて平坦ブランクモデル3(図3参照)をプレス成形解析した。そして、離型後のプレス成形品形状を基準プレス成形品形状51として取得した。これを図18に示す。
図18に示すように、所定の金型モデルでプレス成形解析した場合の基準プレス成形品形状51の部位Aの変化量は1.06mmであった。また、部位Bは0.63mm、部位Cは6.02mm、部位Dは1.10mm、部位Eは-2.61mmであった。
次に、第1実ブランクプレス成形品形状取得ステップS3において、上記と同様の所定の金型モデルを用いて図5の第1実ブランクモデル11をプレス成形解析した。離型後のプレス成形品形状である第1実ブランクプレス成形品形状53を、図19に示す。
図19に示すように、所定の金型モデルでプレス成形解析した場合の第1実ブランクプレス成形品形状53の部位Aの変化量は1.20mmであった。また、部位Bは0.89mm、部位Cは6.04mm、部位Dは0.78mm、部位Eは-2.17mmであった。
さらに、第1実乖離量取得ステップS5において、基準プレス成形品形状51(図18)と第1実ブランクプレス成形品形状53(図19)を比較した。そして、両形状の乖離量(第1実乖離量)を求めた。
図20に示すように、第1実ブランクプレス成形品形状53と基準プレス成形品形状51との第1実乖離量は、次の通りであった。すなわち、部位Aで0.14mm、部位Bで0.26mm、部位Cで0.02mm、部位Dで-0.32mm、部位Eで0.44mmであった。
続いて、第2実ブランクプレス成形品形状取得ステップS7において、第1実ブランクモデル11とは異なる実ブランクモデルを生成した。そして、上記と同様の所定の金型モデルを用いてプレス成形解析を行い、離型後のプレス成形品形状を取得した。
第1実ブランクモデル11とは異なる実ブランクモデルとして、実施形態では図8で説明した第2実ブランクモデル21を用いた。しかし、本実施例では図21に示す第2実ブランクモデル61を用いた。
第2実ブランクモデル61は、形状変動のある金属板の第1実ブランク及び実施形態の第2実ブランクとは異なる部位から採取した実ブランクの形状を測定した測定データに基づいて生成したブランクモデルである。
第1実ブランクモデル11と同様に、上記実ブランクの形状を、例えばレーザ距離計による3次元形状測定器などによって測定し、測定結果に基づいて第2実ブランクモデル61を生成する。
図21(a)が、第2実ブランクモデル61を平面視した図である。図21(b)が、図21(a)のC-C断面図であり、凹凸を色の濃淡で表現している。また、図21(c)には、図21(b)の凹凸高さをグラフ化して示した。
第2実ブランクモデル61は、形状変動のある金属板から採取した実ブランクと同様の形状変動を有するブランクモデルである。そして、図21に示すように、第2実ブランクモデル61は、第1実ブランクモデル11及び実施形態の第2実ブランクモデル21とは異なる不規則な凹凸形状を有している。
図21の第2実ブランクモデル61を所定の金型モデルでプレス成形解析した場合の第2実ブランクプレス成形品形状63を、図22に示す。
図22に示すように、所定の金型モデルでプレス成形解析した場合の第2実ブランクプレス成形品形状63の部位Aの変化量は0.80mmであった。また、部位Bは0.65mm、部位Cは5.88mm、部位Dは0.90mm、部位Eは-2.58mmであった。
さらに、第2実乖離量取得ステップS9において、基準プレス成形品形状51(図18)と第2実ブランクプレス成形品形状63(図22)を比較した。そして、乖離量(第2実乖離量)を求めた。
図23に示すように、第2実ブランクプレス成形品形状63と基準プレス成形品形状51との第2実乖離量は、次の通りであった。すなわち、部位Aで-0.26mm、部位Bで0.02mm、部位Cで-0.14mm、部位Dで-0.20mm、部位Eで0.03mmであった。
第1実乖離量取得ステップS5で求めた第1実乖離量(図20)と第2実乖離量取得ステップS9で求めた第2実乖離量(図23)の両方を、目標形状に対応させて図24に示す。
図24に示すように、対策前の乖離量は、次の通りであった。すなわち、部位Aで-0.26mm~0.14mm、部位Bで0.02mm~0.26mm、部位Cで-0.14mm~0.02mm、部位Dで-0.32mm~-0.20mm、部位Eで0.03mm~0.44mmであった。
ここで、例えば、要対策部位特定ステップS11における閾値を±0.15mmとする。この場合には、閾値を超える乖離量が生じた部位は、部位A、部位B、部位D、部位Eとなる。よって、これらの部位を要対策部位として特定した。
本実施例においても、ブランクの形状変動による影響を低減するための対策として、上記要対策部位に対応する実金型の表面に実施形態と同様のビードを付与することとした。本実施例において、その効果をプレス成形解析によって確認したので、以下に説明する。
ここでは所定の金型モデルに実施形態と同様のビードを付与し、当該金型モデル(ビード付与金型モデル)を用いた。そして、基準プレス成形品形状取得ステップS1~第2実乖離量取得ステップS9と同様の解析を実施した。
ビード付与金型モデルを用いて平坦ブランクモデル3(図3参照)をプレス成形解析して取得した基準プレス成形品形状71を図25に示す。
図25に示すように、ビード付与金型モデルを用いた場合の基準プレス成形品形状71の部位Aの変化量は1.29mmであった。また、部位Bは0.07mm、部位Cは6.50mm、部位Dは2.10mm、部位Eは1.80mmであった。
次に、ビード付与金型モデルを用いて第1実ブランクモデル11(図5参照)をプレス成形解析して取得した第1実ブランクプレス成形品形状73を、図26に示す。
図26に示すように、ビード付与金型モデルを用いた場合の第1実ブランクプレス成形品形状73の部位Aの変化量は1.34mmであった。また、部位Bは0.11mm、部位Cは6.48mm、部位Dは2.03mm、部位Eは1.86mmであった。
基準プレス成形品形状71(図25)と、第1実ブランクプレス成形品形状73(図26)とを比較して求めた第1実乖離量を、図27に示す。
図27に示すように、ビード付与金型モデルを用いた場合の基準プレス成形品形状71と第1実ブランクプレス成形品形状73との第1実乖離量は、次の通りである。すなわち、部位Aで0.05mm、部位Bで0.04mm、部位Cで-0.02mm、部位Dで-0.07mm、部位Eで0.06mmであった。
次に、ビード付与金型モデルを用いて第2実ブランクモデル61(図21参照)をプレス成形解析して取得した第2実ブランクプレス成形品形状75を図28に示す。
図28に示すように、ビード付与金型モデルを用いた場合の第2実ブランクプレス成形品形状75の部位Aの変化量は1.19mmであった。また、部位Bは0.04mm、部位Cは6.45mm、部位Dは1.99mm、部位Eは1.92mmであった。
基準プレス成形品形状71(図25)と、第2実ブランクプレス成形品形状75(図28)とを比較して求めた第2実乖離量を図29に示す。
図29に示すように、ビード付与金型モデルを用いた場合の基準プレス成形品形状71と第2実ブランクプレス成形品形状75との第2実乖離量は、次の通りであった。すなわち、部位Aで-0.10mm、部位Bで-0.03mm、部位Cで-0.05mm、部位Dで-0.11mm、部位Eで0.12mmであった。
図27の第1実乖離量と図29の第2実乖離量の両方を、目標形状に対応させて図30に示す。
図30に示すように、ビード付与金型モデルを用いた場合の乖離量は、次の通りであった。すなわち、部位Aで-0.10~0.05mm、部位Bで-0.03~0.04mm、部位Cで-0.05~-0.02mm、部位Dで-0.11~-0.07mm、部位Eで0.06~0.12mmであった。図30の乖離量は、図24に示した対策前の乖離量と比べて著しく小さくなっており、各部位で前述した要対策部位特定ステップS11における閾値±0.15mm未満の乖離量となった。したがって、要対策部位に対応する金型の部位にビードを付与することで、フォーム成形の場合にもブランクの形状変動による影響を低減する効果があることが確認できた。
そこで、ビード付与ステップS13Aにおいて、上記ビード付与金型モデルと同様のビードを実金型表面に付与した。具体的には、本実施例における要対策部位、または、要対策部位とその周囲を成形する金型の部位にビードを付与した。
そして、実プレス成形ステップS15において、上記ビードを付与した実金型を用いて、形状変動のある実ブランクをプレス成形した。なお、実ブランクは、上述のブランクモデルに相当する板厚1.2mmの1.5GPa級鋼板を用いた。
本実施例において、実プレス成形ステップS15でプレス成形したプレス成形品の形状は、図30の解析結果と同様に、ブランクの形状変動による影響が小さくなり、良好な寸法精度のプレス成形品を得ることができた。
「第2実施形態」
次に、本発明に基づく第2実施形態について図面を参照して説明する。
なお、第2実施形態において、第1実施形態と同様な構成や部材については、同一の符号を付して説明する。
本実施形態に係るプレス成形品の製造方法は、形状変動(凹凸)のある金属板から採取したブランクを用いた。そして、所定の金型によりフォーム成形やドロー成形などのプレス成形した際のプレス成形前のブランクの形状変動によるプレス成形品の寸法精度への影響を低減する方法である。
具体的には、図31に示すように、本実施形態に係るプレス成形品の製造方法は、基準プレス成形品形状取得ステップS1、第1実ブランクプレス成形品形状取得ステップS3、第1実乖離量取得ステップS5、第2実ブランクプレス成形品形状取得ステップS7、第2実乖離量取得ステップS9、要対策部位特定ステップS11、成形精度向上ステップS13、及びビード付与実ブランクプレス成形ステップS25を備えている。
基準プレス成形品形状取得ステップS1、第1実ブランクプレス成形品形状取得ステップS3、第1実乖離量取得ステップS5、第2実ブランクプレス成形品形状取得ステップS7、第2実乖離量取得ステップS9、及び要対策部位特定ステップS11の構成は、それぞれ第1実施形態で説明したステップと同様な構成となっている。
本例では、図32に示すプレス成形品1を目標形状としてプレス成形する場合を例に挙げて、以下、各ステップを詳細に説明する。なお、本実施形態では板厚1.2mmの1.5GPa級鋼板からなるブランク及びこれに対応するブランクモデルを用いたが、これにこだわるものではない。
<基準プレス成形品形状取得ステップ>
基準プレス成形品形状取得ステップS1は、図33に示すような、平坦ブランクモデル3を用いて、金型モデルでプレス成形解析を行う。そして、離型後のプレス成形品形状を平坦ブランクプレス成形品形状として取得するステップである。
なお、「プレス成形解析」とは、プレス成形下死点の形状を取得する解析と、離型後、即ちスプリングバックした後の形状を取得する解析とを含むものとする。
平坦ブランクモデル3とは、従来、一般的にプレス成形解析で用いられるブランクモデルであり、凹凸のない平坦な形状のものである。
プレス成形解析は、通常、有限要素法(FEM)などのCAE解析で行われる。プレス成形は、フォーム成形やドロー成形等、特に限定されない。本実施形態では、プレス成形がフォーム成形の場合を例に挙げて説明する。なお、プレス成形解析に用いる金型モデルは、実際のプレス成形の際に使用する所定の金型をモデル化したものである。
プレス成形解析による離型後の基準プレス成形品形状5を、図34に示す。図34では、形状に加えて成形下死点からの変化量を色の濃淡で示している。
変化量とは、プレス成形方向において、プレス成形後に離型しスプリングバックした後のプレス成形品形状の各部位の高さから、成形下死点の形状に対応する部位の高さを差し引いた値である。これは、プレス成形方向のスプリングバック量に相当する。高さの差(変化量)が+(プラス)の場合は、成形下死点の形状より凸状となる。また、高さの差(変化量)が-(マイナス)の場合は、成形下死点の形状より凹み状となる。
図34においては、成形下死点よりも凹み状になる部位の色を薄くし、凸状になる部位の色を濃くしている。また、図中に表示した数字は、+が凸方向(紙面手前)への変化量、-が凹方向(紙面奥)への変化量で、単位はmmである。
また、本説明では、プレス成形解析後の形状における左端部を部位A、天板部の左端を部位B、長手方向中央部を部位C、下フランジ部の右端を部位D、右端部を部位E、左側天板部を部位Fとする。
本例において、基準プレス成形品形状5の変化量は、図34に示す通りであった。すなわち、部位Aで1.06mm、部位Bで0.63mm、部位Cで6.02mm、部位Dで1.10mm、部位Eで-2.61mm、部位Fで0.37mmであった。
<第1実ブランクプレス成形品形状取得ステップ>
第1実ブランクプレス成形品形状取得ステップS3は、実ブランクの形状変動に対応したブランクモデルを用いてプレス成形解析を行う。そして、離型後のプレス成形品形状を取得するステップである。
第1実ブランクプレス成形品形状取得ステップS3では、まず、実ブランクの形状変動に対応した形状の第1実ブランクモデル11を生成する。第1実ブランクモデル11の一例を図35に示し、以下、具体的に説明する。
第1実ブランクモデル11は、形状変動のある金属板の所定位置から採取した実ブランク(第1実ブランク)の形状を測定した測定データに基づいて生成したブランクモデルである。具体的には、第1実ブランクの形状を、例えばレーザ距離計による3次元形状測定器などによって測定し、測定結果に基づいて第1実ブランクモデル11を生成する。
図35(a)は第1実ブランクモデル11を平面視した図、図35(b)は図35(a)のA-A断面図である。図35(a)、図35(b)では、凹凸を色の濃淡で表現している。なお、色の濃い部分が紙面手前に凸形状、色の淡い部分が紙面奥に凹む形状である。また、図35(c)には、図35(b)の凹凸高さをグラフ化して示した。
図35に示すように、第1実ブランクモデル11は、形状変動のある金属板から採取した第1実ブランクと同様の形状変動を有するブランクモデルであり、不規則な凹凸形状を有している。
次に、第1実ブランクモデル11を用いて、基準プレス成形品形状取得ステップS1と同じ金型モデルでプレス成形解析を行う。そして、離型後のプレス成形品形状を第1実ブランクプレス成形品形状13として取得する。第1実ブランクモデル11をプレス成形解析した第1実ブランクプレス成形品形状13を、図36に示す。図36に示す色や数値は、図34と同様である。
本例においては、図36に示すように、第1実ブランクプレス成形品形状13の変化量は、次の通りであった。すなわち、部位Aで1.20mm、部位Bで0.89mm、部位Cで6.04mm、部位Dで0.78mm、部位Eで-2.17mm、部位Fで0.32mmであった。
<第1実乖離量取得ステップ>
第1実乖離量取得ステップS5は、基準プレス成形品形状5(図34)と第1実ブランクプレス成形品形状13(図36)を比較する。そして、両形状の乖離する部位と乖離量とを求めるステップである。
本実施形態では、成形下死点におけるプレス成形品形状を基準形状とし、離型後のプレス成形品形状の各部位における基準形状からの変化量(スプリングバック量)を求める。そして、二つのプレス成形品形状の変化量の差を乖離量として求めた。
すなわち、第1実乖離量取得ステップS5で求める乖離量とは、第1実ブランクプレス成形品形状13の変化量(図36)から、基準プレス成形品形状5の変化量(図34)を差し引いた値となる。したがって、変化量の差(乖離量)が+(プラス)の場合は、第1実ブランクプレス成形品形状13の当該部位は、基準プレス成形品形状5に比べて凸形状となる。また、変化量の差(乖離量)が-(マイナス)の場合は、第1実ブランクプレス成形品形状13の当該部位は、基準プレス成形品形状5に比べて凹み形状となる。
上記のように求めた乖離量を、第1実ブランクプレス成形品形状13に対応させて図37に示す。
図37に示されるように、第1実ブランクプレス成形品形状13と基準プレス成形品形状5との乖離量は、次の通りであった。すなわち、部位Aで0.14mm、部位Bで0.26mm、部位Cで0.02mm、部位Dで-0.32mm、部位Eで0.44mm、部位Fで-0.05mmであった。
<第2実ブランクプレス成形品形状取得ステップ>
第2実ブランクプレス成形品形状取得ステップS7は、第1実ブランクモデル11とは異なる実ブランクモデルを用いてプレス成形解析を行う。そして、離型後のプレス成形品形状を取得するステップである。
第2実ブランクプレス成形品形状取得ステップS7では、まず、第1実ブランクとは異なる実ブランクを用いて第2実ブランクモデル21を生成する。第2実ブランクモデル21の一例を図38に示す。以下、具体的に説明する。
第2実ブランクモデル21は、形状変動のある金属板の第1実ブランクとは異なる部位から採取した実ブランク(第2実ブランク)の形状を測定した測定データに基づいて生成したブランクモデルである。第1実ブランクモデル11と同様に、第2実ブランクの形状を、例えばレーザ距離計による3次元形状測定器などによって測定し、測定結果に基づいて第2実ブランクモデル21を生成する。
図38(a)は第2実ブランクモデル21を平面視した図、図38(b)は図38(a)のB-B断面図である。図38(a)、図38(b)では凹凸を色の濃淡で表現しており、色の濃い部分が紙面手前に凸形状、色の淡い部分が紙面奥に凹む形状である。また、図38(c)には、図38(b)の凹凸高さをグラフ化して示した。
第2実ブランクモデル21は、形状変動のある金属板から採取した第2実ブランクと同様の形状変動を有するブランクモデルである。図38に示すように、第2実ブランクモデル21は、第1実ブランクモデル11とは異なる不規則な凹凸形状を有している。
次に、第2実ブランクモデル21を用いて、基準プレス成形品形状取得ステップS1と同じ金型モデルでプレス成形したときのプレス成形解析を行う。そして、離型後のプレス成形品形状を第2実ブランクプレス成形品形状23として取得する。第2実ブランクプレス成形品形状23を、図39に示す。図39に示す色や数値の意味は、図34、図36と同様である。
本例においては、図39に示すように、第2実ブランクプレス成形品形状23の変化量は、次の通りであった。すなわち、部位Aで0.80mm、部位Bで0.65mm、部位Cで5.88mm、部位Dで0.90mm、部位Eで-2.58mm、部位Fで0.21mmであった。
<第2実乖離量取得ステップ>
第2実乖離量取得ステップS9は、基準プレス成形品形状5と第2実ブランクプレス成形品形状23とを比較し、両形状の乖離する部位と乖離量とを求めるステップである。乖離量の求め方は、第1実乖離量取得ステップS5で説明した方法と同様であるので説明を省略する。
基準プレス成形品形状5(図34)と第2実ブランクプレス成形品形状23(図39)とを比較する。そのときの両者の乖離量を、第2実ブランクプレス成形品形状23に対応させて図40に示す。
図40に示すように、第2実ブランクプレス成形品形状23と基準プレス成形品形状5との乖離量は、次の通りであった。すなわち、部位Aで-0.26mm、部位Bで0.02mm、部位Cで-0.14mm、部位Dで-0.20mm、部位Eで0.03mm、部位Fで-0.16mmであった。
<要対策部位特定ステップ>
要対策部位特定ステップS11は、第1実乖離量取得ステップS5および第2実乖離量取得ステップS9で得られた乖離量のうち、閾値を超える乖離量が生じた部位を要対策部位として特定するステップである。
例えば、複数のプレス成形品を重ね合わせて接合して車体のメンバー類に組み立てる場合など、プレス成形品の形状(特にフランジ部分など)に乖離が大きいとプレス成形品同士の接合が困難となる。その場合には、対策を要する場合がある。そこで、本実施形態では、実ブランクの形状変動による影響が大きい(乖離が大きい)と想定される部位を要対策部位として特定し、影響を低減するための対策をとることができるようにした。
第1実乖離量取得ステップS5で求めた乖離量(図37参照)と第2実乖離量取得ステップS9で求めた乖離量(図40参照)の両方を目標形状(プレス成形品1)に対応させて、図41に示す。
図41に示すように、乖離量は、次の通りであった。すなわち、部位Aで-0.26mm~0.14mm、部位Bで0.02mm~0.26mm、部位Cで-0.14mm~0.02mm、部位Dで-0.32mm~-0.20mm、部位Eで0.03mm~0.44mm、部位Fで-0.16mm~-0.05mmであった。
例えば、要対策部位特定ステップS11における閾値を±0.20mmとする。この場合、閾値を超える乖離量が生じた部位は、部位A、部位B、部位D、部位Eとなる。よって、これらの部位をプレス成形品形状における要対策部位として特定する。
<成形精度向上ステップ>
成形精度向上ステップS23では、要対策部位特定ステップS11で特定した要対策部位での前記乖離量が小さくなるように、補正処理を行うステップである。具体的には、プレス成形品の製造で使用するプレス金型である実金型の成形面、及び、プレス成形品の製造で使用するブランクである実ブランクから選択した少なくとも一方の形状を補正する処理を実行する。
本実施形態の成形精度向上ステップS23では、ブランクの形状変動による影響を低減するために、プレス成形に使用する実ブランクに対し補正を行う。このため、本実施形態の成形精度向上ステップS23は、展開ブランクモデル要対策部位特定ステップS23A及びブランクビード付与ステップS23Bを備える。
[展開ブランクモデル要対策部位特定ステップ]
展開ブランクモデル要対策部位特定ステップS23Aは、プレス成形品形状における要対策部位に対応するブランクモデル上の部位を特定するステップである。
本例では、プレス成形解析したプレス成形品形状において要対策部位を特定したあと、該プレス成形品形状を逆成形解析してブランクモデルに展開する。これによって、プレス成形品形状における要対策部位がブランクモデル上のどの部位に相当するかを算出できる。
本例では、第1実ブランクプレス成形品形状13において閾値を超える乖離量が生じた部位は、部位B、D、Eであった(図37参照)。また、第2実ブランクプレス成形品形状23において閾値を超える乖離量が生じた部位は、部位A、Dであった(図40参照)。
そのため、前述した要対策部位特定ステップS11では、部位A、B、D、Eをプレス成形品形状における要対策部位として特定した。
展開ブランクモデル要対策部位特定ステップS23Aでは、まず、特定した各要対策部位を一つのプレス成形品形状上に設定する。本例の要対策部位は、部位A、B、D、Eである。
要対策部位を設定するプレス成形品形状は、前述した基準プレス成形品形状5、第1実ブランクプレス成形品形状13、第2実ブランクプレス成形品形状23のいずれでもよい。
次に、上記要対策部位を設定したプレス成形品形状を逆成形解析してブランクモデルに展開する。要対策部位を設定したプレス成形品形状をブランクモデルに展開することで、ブランクモデル上の要対策部位を特定することができる。
ブランクモデル上の要対策部位を特定することで、プレス成形前のブランクに対してブランクの形状変動による影響を低減するための対策をとることができる。その対策として、本実施形態では、上記ブランクモデル上の要対策部位に対応する実ブランクの部位にビードを付与する。そこで、ビードを付与した実ブランクを用いてプレス成形した場合の効果をプレス成形解析によって確認したので、以下に説明する。
ブランクに付与するビードの例を図42に示す。本実施形態では、要対策部位(部位A、B、D、E)を基準プレス成形品形状5に設定する。そして、該基準プレス成形品形状5を展開して平坦ブランクモデル3上の要対策部位を特定する。そして、該平坦ブランクモデル3上の要対策部位にビードを付与した。
なお、図42には基準プレス成形品形状5の部位Aから部位Eに対応する部位と、各部位で生じる乖離量の幅(図41と同じ)も示している。
図42に示すように、プレス成形品形状における要対策部位、即ち、部位A、B、D、Eに対応するブランクモデル上の部位をブランクモデルにおける要対策部位として設定する。そして、ブランクモデルにおける部位A、B、D、Eにビード15を付与した。図42の例は、長手方向がブランクモデルの端辺に交差する方向又は平行となる方向にビード15を付与したものである。しかし、本発明のビードはこれに限らない。例えば、第1実ブランクモデル11又は第2実ブランクモデル21の波形状の進行方向(凹凸のピッチの方向)に沿う方向に付与してもよい。
本例では、第1実ブランクモデル11、第2実ブランクモデル21にも同様にビード15を付与した。そして、ビード15を付与した各ブランクモデルを用いて基準プレス成形品形状取得ステップS1から第2実乖離量取得ステップS9まで同様の解析を行った。
なお、下記の説明における変化量及び乖離量は、図34~図41に示したものと同様の方法で求めたものである。
図42に示すビード15を付与した平坦ブランクモデル3をプレス成形解析して取得したビード付与の基準プレス成形品形状81を図43に示す。
図43に示すように、ビード付与の基準プレス成形品形状81の変化量は、次の通りであった。すなわち、部位Aで2.65mm、部位Bで0.20mm、部位Cで7.59mm、部位Dで-1.60mm、部位Eで-1.71mm、部位Fで0.13mmであった。
次に、図42と同様のビード15を図35の第1実ブランクモデル11に付与した。該ビード15を付与した第1実ブランクモデル11をプレス成形解析して取得したビード付与の第1実ブランクプレス成形品形状82を、図44に示す。
図44に示すように、ビード付与の第1実ブランクプレス成形品形状82の変化量は、次の通りであった。すなわち、部位Aで2.74mm、部位Bで0.11mm、部位Cで7.55mm、部位Dで-1.68mm、部位Eで-1.75mm、部位Fで0.06mmであった。
また、第1実乖離量取得ステップS5と同様に、ビード付与の基準プレス成形品形状81(図43)と、ビード付与の第1実ブランクプレス成形品形状82(図44)を比較して求めた乖離量を、図45に示す。
図45に示されるように、ビード付与の第1実ブランクプレス成形品形状82とビード付与の基準プレス成形品形状81との乖離量は、次の通りであった。すなわち、部位Aで0.09mm、部位Bで-0.09mm、部位Cで-0.04mm、部位Dで-0.08mm、部位Eで-0.04mm、部位Fで-0.07mmであった。
上記のように、ブランクモデルにビード15を付与した場合の乖離量は、ビード15を付与しなかった場合の乖離量(図37参照)と比べて著しく低減している。したがって、ブランクモデルに付与したビード15によって、プレス成形前のブランクの形状変動によるプレス成形品の寸法精度への影響を低減していることがわかる。
次に、図42と同様のビード15を図38の第2実ブランクモデル21に付与した。該ビード15を付与した第2実ブランクモデル21をプレス成形解析して取得したビード付与の第2実ブランクプレス成形品形状83を、図46に示す。
図46に示すように、ビード付与の第2実ブランクプレス成形品形状83の変化量は、次の通りであった。すなわち、部位Aで2.79mm、部位Bで0.17mm、部位Cで7.57mm、部位Dで-1.64mm、部位Eで-1.77mm、部位Fで0.12mmであった。
また、第2実乖離量取得ステップS9と同様に、ビード付与の基準プレス成形品形状81(図43)と、ビード付与の第2実ブランクプレス成形品形状83(図46)を比較した。比較して求めた乖離量を図47に示す。
図47に示されるように、ビード付与の第2実ブランクプレス成形品25とビード付与の基準プレス成形品形状81との乖離量は、次の通りであった。すなわち、部位Aで0.14mm、部位Bで-0.03mm、部位Cで-0.02mm、部位Dで-0.04mm、部位Eで-0.06mm、部位Fで-0.01mmであった。
第2実ブランクモデルの場合も、ブランクモデルにビード15を付与した場合の乖離量は、ビード15を付与しなかった場合の乖離量(図40参照)と比べて著しく低減している。すなわち、ブランクの形状変動による影響を低減していることがわかる。
第1実乖離量取得ステップS5で求めた乖離量(図45参照)と第2実乖離量取得ステップS9で求めた乖離量(図47参照)の両方を、目標形状に対応させて図48に示す。
図48に示されるように、ブランクモデルにビード15を付与した場合の乖離量は、次の通りであった。すなわち、部位Aで0.09~0.14mm、部位Bで-0.09~-0.03mm、部位Cで-0.04~-0.02mm、部位Dで-0.08~-0.04mm、部位Eで-0.06~-0.04mm、部位Fで-0.07~-0.01mmであり、図41に示した対策前の乖離量と比べて著しく小さくなっている。
上記解析の結果、展開ブランクモデル要対策部位特定ステップS23Aで特定したブランクモデル上の要対策部位にビード15を付与する。これにより、ブランクの形状変動による影響を緩和し、プレス成形品形状の寸法精度を向上することが確認できた。
[ブランクビード付与ステップ]
ブランクビード付与ステップS23Bは、展開ブランクモデル要対策部位特定ステップS23Aで特定した要対策部位に対応する実ブランクの部位にビード15を付与するステップである。
まず、展開ブランクモデル要対策部位特定ステップS23Aで特定した要対策部位(図42の部位A、B、D、E)に対応する実ブランクの部位を、実ブランク上の要対策部位として設定する。
次に、該設定した実ブランクの要対策部位に、図42と同様のビード15を付与する予備成形を行う。
なお、実ブランクにビードを付与する際には、図42の部位B、部位D、部位Eに形成したビード15のように、ビードを付与するとよい。すなわち、長手方向が実ブランクにおける要対策部位に一番近い端辺に交差する方向となるように、ビードを付与するとよい。ただし、部品の設計等の理由で、要対策部位に一番近い端辺にビードを設定することができない場合は、例えば、要対策部位近傍などの設定可能な近傍に設定する。
プレス成形品の寸法精度が不良となる実ブランクの端部にビードを付与することにより、プレス成形品端部の剛性を向上させて、プレス成形前の実ブランクからプレス成形品にまで残留する実ブランクの波形状を押さえることができて、寸法精度を向上できる。
また、凹凸が連続するような形状変動を有する実ブランクをプレス成形する場合には、次のようにしても良い。すなわち、ビードの長手方向が実ブランクの要対策部位またはその近傍の部位における実ブランクの形状変動の凹凸が連続する方向に沿うように、ビード15を実ブランクに付与してもよい。ここで、長手方向が実ブランクの要対策部位における実ブランクの形状変動の凹凸が連続する方向に沿うように付与することが好ましい。ただし、部品の設計等の理由から要対策部位に付与出来ない場合には、例えば、長手方向が実ブランクの要対策部位の近傍の部位における実ブランクの形状変動の凹凸が連続する方向に沿うように付与しても良い。
なお、ビードは凸形状でも凹形状でもよい。ビードの長さ、幅、高さは、プレス成形品に残留する波形状(形状変動)の許容される高さやピッチを考慮して、目標とするプレス成形品に要求される形状からの許容度合いに合わせて適宜決定するとよい。
また、ビード形状として、上面視で円、楕円、長円、正方形、長方形、三角形、菱形等、いずれも適用できる。さらに、側面視で、山形、台形、半円、半楕円等、いずれも適用できる。
<ビード付与実ブランクプレス成形ステップ>
ビード付与実ブランクプレス成形ステップS25は、展開ブランクモデル要対策部位特定ステップS23Aで特定した要対策部位に対応する部位にビード15を付与した実ブランクをプレス成形するステップである。ビード付与実ブランクプレス成形ステップS25は、成形ステップに対応する。
すなわち、上記ビード15を付与した実ブランクを、前述したプレス成形解析における所定の金型モデルと同型の実金型によりプレス成形する。
すなわち、上記ビード15を付与した実ブランクを、前述したプレス成形解析における金型モデルと同型の実金型によりプレス成形する。
形状変動のある実ブランクにビード15を付与してからプレス成形すると、プレス成形後のプレス成形品の形状は、図48の解析結果のように、ブランクの形状変動による影響を低減できる。したがって、平坦ブランクモデルをプレス成形解析したプレス成形品形状と比較しても、その乖離量は±0.20mm未満となって良好な寸法精度のプレス成形品を得ることができる。
このように、実ブランクの波形状を押さえ込むことが可能になり、実ブランクの波形状を押さえたままプレス成形して、寸法精度の良好なプレス成形品を得ることができる。
さらに、実ブランクに付与したビードをプレス成形時に押し潰してもよい。これにより、ビードを付与した部位とその周辺にひずみが加わって加工硬化するため、さらに剛性が向上して、プレス成形品に残留する波形状を押さえることができて、寸法精度を向上できる。
以上、本実施形態によれば、ブランクの形状変動による影響が大きい部位を特定し、プレス成形前の実ブランクに適切な対策をとることができる。したがって、良好な寸法精度のプレス成形品を安定して得ることができる。
また、本実施形態では、形状変動のあるブランクを想定したブランクモデルを複数パターン生成し、それぞれの場合の乖離量を求めて要対策部位を特定している。したがって、個々の実ブランクの間で生じる形状変動の相違を考慮したものとなっている。
なお、上記は第2実ブランクモデルを一種類だけ生成したものであったが、第2実ブランクモデルを複数種類生成してもよい。その場合、形状変動のある金属板の異なる部位から複数の第2実ブランクを採取して、複数種類の第2実ブランクモデルを生成する。
形状変動のある実ブランクモデルのパターンを増やすことで、実ブランクの形状変動に対して精度よく対応できる。
また、上記の説明では、ブランクモデルが平坦な場合のプレス成形品形状とブランクモデルが凹凸を有する場合のプレス成形品形状を比較する。その比較にあたり、プレス成形方向における成形下死点からの変化量の差を乖離量としたが、本発明はこれに限らない。
例えば、プレス成形方向において、ブランクモデルが凹凸を有する場合の離型後(スプリングバック後)のプレス成形品形状の各部位の高さから、ブランクモデルが平坦な場合の離型後のプレス成形品形状の各部位の高さを差し引いた差を乖離量としてもよい。
もっとも、この場合は、二つのプレス成形品形状に共通する固定点を設定する必要があり、固定点の選び方によって、乖離量が変動する場合がある。
この点、本実施形態のように、ブランクの形状によらず一定である成形下死点での形状を基準とした変化量同士を比較するようにすれば、正確かつ容易に乖離量を求めることができて好ましい。
本実施形態はフォーム成形を例に行ったが、上記実施形態をドロー成形で行っても、フォーム成形と同様に良好な寸法精度を得ることができる。
また、成形精度向上ステップS23が、更に、第1実施形態のビード付与ステップS13Aを有してもよい。そして、目標精度その他の所定条件に基づき、ブランクビード付与ステップS23B及びビード付与ステップS13Aの少なくとも一方のステップを選択して実行する構成としても良い。
本開示は、次の構成も取り得る。
(1)形状変動のある金属板から採取したブランクを、プレス金型を用いてプレス成形することでプレス成形品を製造するプレス成形品の製造方法であって、
平坦な形状の平坦ブランクモデルを用いて、目標とするプレス成形品の形状に基づき設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
前記形状変動のある金属板から採取した第1実ブランクを測定した測定データに基づいて、第1実ブランクモデルを生成し、該生成した第1実ブランクモデルを用いて、前記設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を第1実ブランクプレス成形品形状として取得する第1実ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と前記第1実ブランクプレス成形品形状とを比較し、両形状の乖離する部位と、その乖離量である第1実乖離量とを求める第1実乖離量取得ステップと、
前記形状変動のある金属板から前記第1実ブランクとは異なる部位で採取した第2実ブランクを測定した測定データに基づいて、第2実ブランクモデルを一種類または複数種類生成し、該生成した第2実ブランクモデルを用いて、前記設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を第2実ブランクプレス成形品形状として取得する第2実ブランクプレス成形品形状取得ステップと、
前記基準プレス成形品形状と一種類または複数種類の前記第2実ブランクプレス成形品形状とを比較し、両形状の乖離する部位と、その乖離量である第2実乖離量とを求める第2実乖離量取得ステップと、
前記第1実乖離量のうちの予め設定した閾値を超える乖離量が生じた部位および前記第2実乖離量のうちの予め設定した閾値を超える乖離量が生じた部位に相当する前記プレス成形品の部位を、要対策部位として特定する要対策部位特定ステップと、
前記要対策部位特定ステップで特定した要対策部位での前記乖離量が小さくなるように、前記プレス成形品の製造で使用するプレス金型である実金型の成形面、及び、前記プレス成形品の製造で使用する前記ブランクである実ブランクから選択した少なくとも一方の形状を補正する成形精度向上ステップと、
を備えたプレス成形品の製造方法。
(2)前記第1実乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第1実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記第1実乖離量として取得し、
前記第2実乖離量取得ステップは、
前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第2実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記第2実乖離量として取得する。
(3)前記成形精度向上ステップは、前記実金型の成形面における、前記要対策部位、または、前記要対策部位とその周囲を成形する部位に対し、ビードを付与するビード付与ステップを備える。
(4)前記ビード付与ステップは、前記実金型に付与したビードによって前記プレス成形品に形成されるビード痕の長手方向が、前記プレス成形品における前記要対策部位に一番近い端辺と交差する方向または端辺に平行な方向となるように、ビードを実金型に付与する。
(5)前記実ブランクは、所定方向に沿って凹凸が連続する形状変動を有し、
前記ビード付与ステップは、前記実金型に付与したビードによって前記プレス成形品に形成されるビード痕の長手方向が、前記プレス成形品の前記要対策部位における前記ブランクの形状変動の凹凸が連続する方向に沿うようにビードを実金型に付与する。
(6)前記ビードを付与した実金型を用いて、前記ブランクをプレス成形する実プレス成形ステップと、を備え、
前記実プレス成形ステップで、前記プレス成形品の要対策部位、または、該要対策部位とその周囲を含む部位にビード痕を形成し、
さらに、該実プレス成形ステップでプレス成形したプレス成形品を再プレスして前記ビード痕を潰すリストライク工程を備える。
(7)前記成形精度向上ステップは、
前記基準プレス成形品形状、又は前記第1実ブランクプレス成形品形状、又は前記第2実ブランクプレス成形品形状のいずれかに前記要対策部位を設定してブランクモデルに展開し、該展開したブランクモデル上の要対策部位を特定する展開ブランクモデル要対策部位特定ステップと、
該展開ブランクモデル要対策部位特定ステップで特定した要対策部位に対応する実ブランクの部位にビードを付与するブランクビード付与ステップと、
を備える。
(8)前記ブランクビード付与ステップは、ビードの長手方向が前記実ブランクにおける前記要対策部位に一番近い端辺と交差する方向となるようにビードを実ブランクに付与する。
(9)前記実ブランクは、所定方向に沿って凹凸が連続する形状変動を有し、
前記ブランクビード付与ステップは、ブランクに付与するビードの長手方向が前記実ブランクの前記要対策部位における前記実ブランクの形状変動の凹凸が連続する方向に沿うように、ビードを実ブランクに付与する。
(10)該ビードを付与した実ブランクを前記実金型によりプレス成形する成形ステップを備え、
その成形ステップの後において、前記ビードを潰すプレス成形を行う工程を有する。
ここで、本願が優先権を主張する、日本国特許出願2022-130912(2022年 8月19日出願)及び日本国特許出願2022-198306(2022年12月13日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 プレス成形品(目標形状)
3 平坦ブランクモデル
5 基準プレス成形品形状
11 第1実ブランクモデル
13 第1実ブランクプレス成形品形状
15 ビード
21 第2実ブランクモデル
23 第2実ブランクプレス成形品形状
31 基準プレス成形品形状
32 ビード痕
33 第1実ブランクプレス成形品形状
41 第2実ブランクプレス成形品形状
51 基準プレス成形品形状)
53 第1実ブランクプレス成形品形状
61 第2実ブランクモデル
63 第2実ブランクプレス成形品形状
71 基準プレス成形品形状
73 第1実ブランクプレス成形品形状
75 第2実ブランクプレス成形品形状

Claims (10)

  1. 形状変動のある金属板から採取したブランクを、プレス金型を用いてプレス成形することでプレス成形品を製造するプレス成形品の製造方法であって、
    平坦な形状の平坦ブランクモデルを用いて、目標とするプレス成形品の形状に基づき設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
    前記形状変動のある金属板から採取した第1実ブランクを測定した測定データに基づいて、第1実ブランクモデルを生成し、該生成した第1実ブランクモデルを用いて、前記設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を第1実ブランクプレス成形品形状として取得する第1実ブランクプレス成形品形状取得ステップと、
    前記基準プレス成形品形状と前記第1実ブランクプレス成形品形状とを比較し、両形状の乖離する部位と、その乖離量である第1実乖離量とを求める第1実乖離量取得ステップと、
    前記形状変動のある金属板から前記第1実ブランクとは異なる部位で採取した第2実ブランクを測定した測定データに基づいて、第2実ブランクモデルを一種類または複数種類生成し、該生成した第2実ブランクモデルを用いて、前記設定した所定の金型モデルでプレス成形するプレス成形解析を行い、離型後のプレス成形品形状を第2実ブランクプレス成形品形状として取得する第2実ブランクプレス成形品形状取得ステップと、
    前記基準プレス成形品形状と一種類または複数種類の前記第2実ブランクプレス成形品形状とを比較し、両形状の乖離する部位と、その乖離量である第2実乖離量とを求める第2実乖離量取得ステップと、
    前記第1実乖離量のうちの予め設定した閾値を超える乖離量が生じた部位および前記第2実乖離量のうちの予め設定した閾値を超える乖離量が生じた部位に相当する前記プレス成形品の部位を、要対策部位として特定する要対策部位特定ステップと、
    前記要対策部位特定ステップで特定した要対策部位での前記乖離量が小さくなるように、前記プレス成形品の製造で使用するプレス金型である実金型の成形面、及び、前記プレス成形品の製造で使用する前記ブランクである実ブランクから選択した少なくとも一方の形状を補正する成形精度向上ステップと、
    を備えたプレス成形品の製造方法。
  2. 前記第1実乖離量取得ステップは、
    前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第1実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記第1実乖離量として取得し、
    前記第2実乖離量取得ステップは、
    前記基準プレス成形品形状における所定部位のスプリングバック量と、前記第2実ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記第2実乖離量として取得する、
    請求項1に記載のプレス成形品の製造方法。
  3. 前記成形精度向上ステップは、前記実金型の成形面における、前記要対策部位、または、前記要対策部位とその周囲を成形する部位に対し、ビードを付与するビード付与ステップを備える、
    請求項1に記載したプレス成形品の製造方法。
  4. 前記ビード付与ステップは、前記実金型に付与したビードによって前記プレス成形品に形成されるビード痕の長手方向が、前記プレス成形品における前記要対策部位に一番近い端辺と交差する方向または端辺に平行な方向となるように、ビードを実金型に付与する、
    請求項3に記載のプレス成形品の製造方法。
  5. 前記実ブランクは、所定方向に沿って凹凸が連続する形状変動を有し、
    前記ビード付与ステップは、前記実金型に付与したビードによって前記プレス成形品に形成されるビード痕の長手方向が、前記プレス成形品の前記要対策部位における前記ブランクの形状変動の凹凸が連続する方向に沿うようにビードを実金型に付与する、
    請求項3に記載のプレス成形品の製造方法。
  6. 前記ビードを付与した実金型を用いて、前記ブランクをプレス成形する実プレス成形ステップと、を備え、
    前記実プレス成形ステップで、前記プレス成形品の要対策部位、または、該要対策部位とその周囲を含む部位にビード痕を形成し、
    さらに、該実プレス成形ステップでプレス成形したプレス成形品を再プレスして前記ビード痕を潰すリストライク工程を備える、
    請求項3に記載のプレス成形品の製造方法。
  7. 前記成形精度向上ステップは、
    前記基準プレス成形品形状、又は前記第1実ブランクプレス成形品形状、又は前記第2実ブランクプレス成形品形状のいずれかに前記要対策部位を設定してブランクモデルに展開し、該展開したブランクモデル上の要対策部位を特定する展開ブランクモデル要対策部位特定ステップと、
    該展開ブランクモデル要対策部位特定ステップで特定した要対策部位に対応する実ブランクの部位にビードを付与するブランクビード付与ステップと、
    を備える請求項1~請求項6のいずれか1項に記載したプレス成形品の製造方法。
  8. 前記ブランクビード付与ステップは、ビードの長手方向が前記実ブランクにおける前記要対策部位に一番近い端辺と交差する方向となるようにビードを実ブランクに付与する、
    請求項7に記載のプレス成形品の製造方法。
  9. 前記実ブランクは、所定方向に沿って凹凸が連続する形状変動を有し、
    前記ブランクビード付与ステップは、ブランクに付与するビードの長手方向が前記実ブランクの前記要対策部位における前記実ブランクの形状変動の凹凸が連続する方向に沿うように、ビードを実ブランクに付与する、
    請求項7に記載のプレス成形品の製造方法。
  10. 該ビードを付与した実ブランクを前記実金型によりプレス成形する成形ステップを備え、
    その成形ステップの後において、前記ビードを潰すプレス成形を行う工程を有する、
    請求項7に記載のプレス成形品の製造方法。
JP2023562315A 2022-08-19 2023-08-14 プレス成形品の製造方法 Active JP7405319B1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2022130912 2022-08-19
JP2022130912 2022-08-19
JP2022198306 2022-12-13
JP2022198306 2022-12-13
PCT/JP2023/029453 WO2024038850A1 (ja) 2022-08-19 2023-08-14 プレス成形品の製造方法

Publications (1)

Publication Number Publication Date
JP7405319B1 true JP7405319B1 (ja) 2023-12-26

Family

ID=89307827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023562315A Active JP7405319B1 (ja) 2022-08-19 2023-08-14 プレス成形品の製造方法

Country Status (1)

Country Link
JP (1) JP7405319B1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205450A (ja) 2004-01-22 2005-08-04 Nissan Motor Co Ltd 成形型の型面形状修正方法およびそのプログラム
JP6123951B2 (ja) 2015-03-27 2017-05-10 新日鐵住金株式会社 ブランク形状決定方法、ブランク製造方法、プレス成形方法、プレス成形品製造方法、コンピュータプログラム、および記録媒体
JP6314626B2 (ja) 2014-04-21 2018-04-25 新日鐵住金株式会社 プレス成形性の評価方法、装置、プログラム及びコンピュータ読み取り可能な記憶媒体
JP6828851B2 (ja) 2018-07-03 2021-02-10 Jfeスチール株式会社 金型形状の設計方法及びプレス部品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205450A (ja) 2004-01-22 2005-08-04 Nissan Motor Co Ltd 成形型の型面形状修正方法およびそのプログラム
JP6314626B2 (ja) 2014-04-21 2018-04-25 新日鐵住金株式会社 プレス成形性の評価方法、装置、プログラム及びコンピュータ読み取り可能な記憶媒体
JP6123951B2 (ja) 2015-03-27 2017-05-10 新日鐵住金株式会社 ブランク形状決定方法、ブランク製造方法、プレス成形方法、プレス成形品製造方法、コンピュータプログラム、および記録媒体
JP6828851B2 (ja) 2018-07-03 2021-02-10 Jfeスチール株式会社 金型形状の設計方法及びプレス部品の製造方法

Similar Documents

Publication Publication Date Title
JP4693475B2 (ja) プレス成形方法およびそれに用いる金型
JP6512191B2 (ja) 金型の設計方法およびプレス成形品の製造方法
WO2017002253A1 (ja) プレス成形方法
JP5794025B2 (ja) 金型設計方法及びプレス成形方法
US11020785B2 (en) Method and apparatus for manufacturing press component
JP6515961B2 (ja) プレス成形品の製造方法
US20210316352A1 (en) Method for manufacturing pressed component
JP6504130B2 (ja) プレス成形品の製造方法
CN108698105B (zh) 冲压成型品的制造方法
JP7405319B1 (ja) プレス成形品の製造方法
JP5949856B2 (ja) プレス成形方法及び装置
WO2024038850A1 (ja) プレス成形品の製造方法
KR102083108B1 (ko) 프레스 성형품의 제조 방법
JP6094699B2 (ja) プレス成形品の製造方法、プレス成形品及びプレス装置
JP7409583B1 (ja) プレス成形品の製造方法
WO2024019168A1 (ja) プレス成形品の製造方法
CN105818866A (zh) 一种汽车引擎盖及加工方法
CN110355284B (zh) 用于构造用于成型模具的成型元件的方法和借助于这种方法制造的成型元件
JP6176430B1 (ja) プレス成形品の製造方法
JP2021164954A (ja) プレス部品の製造方法、曲げ戻し用の金型、プレス部品の成形方法及び高強度鋼板
JP6176429B1 (ja) プレス成形品の製造方法
JP6493331B2 (ja) プレス成形品の製造方法
WO2024047933A1 (ja) プレス成形品の製造方法
JP7416106B2 (ja) プレス成形解析の解析精度評価方法
WO2023106013A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231010

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7405319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150