WO2024047933A1 - プレス成形品の製造方法 - Google Patents

プレス成形品の製造方法 Download PDF

Info

Publication number
WO2024047933A1
WO2024047933A1 PCT/JP2023/015563 JP2023015563W WO2024047933A1 WO 2024047933 A1 WO2024047933 A1 WO 2024047933A1 JP 2023015563 W JP2023015563 W JP 2023015563W WO 2024047933 A1 WO2024047933 A1 WO 2024047933A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
formed product
shape
blank
deviation amount
Prior art date
Application number
PCT/JP2023/015563
Other languages
English (en)
French (fr)
Inventor
栄治 飯塚
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024047933A1 publication Critical patent/WO2024047933A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding

Definitions

  • the present invention relates to a method for manufacturing a press-formed product that is press-formed using a blank taken from a metal plate that has shape variations, and reduces the influence of the shape variation of the blank.
  • the resulting press-formed product may deviate from the target dimensional accuracy due to the influence of the shape variations.
  • Patent Document 1 and Patent Document 2 disclose techniques for selecting press-formed products that deviate from the target dimensional accuracy after press-forming. Additionally, there are Patent Document 3 and Patent Document 4 that provide means for providing unevenness to the surface of a press molding die.
  • Patent Document 1 and Patent Document 2 compare the shapes of press-formed products after press-forming to identify areas with poor dimensional accuracy.
  • the techniques disclosed in Patent Document 1 and Patent Document 2 do not identify which parts of the press-formed product are likely to be affected by changes in the shape of the blank before press forming. , it was difficult to take countermeasures.
  • the blank used for press forming is obtained by punching or shearing a metal plate such as a steel plate. Therefore, when a plurality of blanks are sampled from a metal plate with a variable shape, the positions of the blanks are different, so even if the blanks are sampled from the same metal plate, the portions exhibiting unevenness will differ between the blanks. Therefore, in order to reduce the influence of blank shape variations, it is necessary to take measures that also take into consideration the differences in shape variations of individual blanks.
  • Patent Document 3 retains oil between the mold and the blank during press molding by adding irregularities to the mold surface, suppressing friction between the mold and the blank, and facilitating molding. It is something to do. Further, the technique disclosed in Patent Document 4 makes it possible to manufacture a metal plate with a high design quality by imparting irregularities to the surface of the mold. Therefore, the techniques disclosed in Patent Document 3 and Patent Document 4 do not reduce the influence of blank shape variations, which is the objective of the present invention.
  • the present invention has been made in view of the above problems, and its purpose is to reduce the influence of shape fluctuations of blanks on press-formed products that are press-formed using blanks taken from metal plates with shape fluctuations.
  • An object of the present invention is to provide a method for manufacturing a molded article.
  • the method for manufacturing a press-formed product according to the present invention is a method for reducing the influence of shape fluctuations of a blank in a press-formed product press-formed using a blank taken from a metal plate with shape fluctuations,
  • a standard press-formed product shape in which a flat blank model with a flat shape is used to perform press-forming analysis when press-forming is performed with a predetermined mold model, and the shape of the press-formed product after release is obtained as the standard press-formed product shape.
  • an acquisition step generating a waveform blank model having a waveform of a predetermined wavelength and a predetermined amplitude corresponding to the shape variation, and press-forming with the predetermined mold model using the generated waveform blank model.
  • a second deviation amount acquisition step in which the shape of the blank press molded product is compared to determine the portion of both shapes that deviate and the amount of deviation; a step of specifying a part of the press-formed product that corresponds to the part of the press-formed product where a deviation amount exceeding a threshold value has occurred in the second deviation amount acquisition step as a part that requires countermeasures;
  • a convex pattern imparting step of imparting a convex pattern to the area requiring treatment or the area to be molded around the area requiring treatment; and the upper mold and the lower mold to which the conve
  • the first deviation amount obtaining step includes determining the amount of springback at a predetermined portion in the reference press-formed product shape; The difference between the springback amount of the predetermined portion and the same portion of the reference press-formed product shape in the wave-shaped blank press-formed product shape is acquired as the deviation amount, and the second deviation amount obtaining step includes the step of obtaining the springback amount of the reference press-formed product shape. obtaining the difference between the amount of springback at a predetermined portion in the shape and the amount of springback at the same portion as the predetermined portion of the reference press-formed product shape in the periodic deviation wave blank press-formed product shape as the deviation amount; This is a characteristic feature.
  • the convex pattern includes a plurality of convex portions formed at predetermined intervals on a flat or curved surface.
  • the vertical and horizontal lengths A of the convex portions are set to 3 mm or more and 50 mm or less, and the distance between adjacent convex portions is set to 1.2 A or more and 2.0 A or less
  • the convex pattern applying step includes: The convex pattern is placed on the upper mold and the lower mold, so that the convex part of the upper mold faces the flat or curved surface of the lower mold, and the convex part of the lower mold faces the flat or curved surface of the upper mold.
  • press molding is performed such that the distance from the upper surface of the convex portion of the mold is 0.1 t or more and 0.5 t or less.
  • the method for producing a press-formed product according to the present invention includes taking into consideration the differences in shape variation between individual blanks, identifying the parts of the press-formed product that are greatly affected by the shape fluctuations of the blanks, and taking measures for the relevant parts. This can reduce the effects of blank shape variations. As a result, in the method for manufacturing a press-formed product according to the present invention, it is possible to manufacture a press-formed product with good dimensional accuracy, and even when a blank taken from a metal plate having shape variations is used, the dimensional accuracy is good. can produce press-formed products with high yield.
  • FIG. 1 is an explanatory diagram of each step of a method for manufacturing a press-formed product according to an embodiment.
  • FIG. 2 is an external view of a component targeted in the embodiment.
  • FIG. 3 is an explanatory diagram of a flat blank model.
  • FIG. 4 is a diagram showing the standard press-formed product shape analyzed by press-forming using the flat blank model of FIG. 3, and the amount of change from the bottom dead center of the molding at each part of the shape.
  • FIG. 5 is an explanatory diagram of a wave-shaped blank model.
  • FIG. 6 is a diagram showing the shape of a wavy blank press-formed product analyzed by press forming using the wavy blank model of FIG. 5, and the amount of change from the bottom dead center of the molding at each part of the shape.
  • FIG. 7 is a diagram showing a first deviation amount when comparing the reference press-formed product shape of FIG. 4 and the wave-shaped blank press-formed product shape of FIG. 6.
  • FIG. 8 is an explanatory diagram of a period-shifted waveform blank model which has a waveform having the same amplitude and wavelength as the waveform in the waveform blank model of FIG. 5, but whose period is shifted by 1/4 wavelength.
  • FIG. 9 is a diagram showing the shape of a periodic wave blank press-formed product analyzed by press forming using the periodic deviation wave blank model of FIG. 8, and the amount of change from the bottom dead center of the molding at each part of the shape. be.
  • FIG. 10 is a diagram showing a second deviation amount when comparing the reference press-formed product shape of FIG.
  • FIG. 11 is a diagram showing the ranges of the first deviation amount and the second deviation amount shown in FIGS. 7 and 10 in correspondence with the target shape.
  • FIG. 12 is an explanatory diagram of a convex pattern provided on a mold.
  • FIG. 13 is a diagram showing a reference press-formed product shape analyzed by press-forming using a mold model provided with a convex pattern, and the amount of change from the bottom dead center of the molding at each part of the shape.
  • FIG. 14 is a diagram showing the shape of a wave-shaped blank press-formed product analyzed by press-forming using a mold model provided with a convex pattern, and the amount of change from the bottom dead center of the molding at each part of the shape.
  • FIG. 15 is a diagram showing a first deviation amount when comparing the reference press-formed product shape of FIG. 13 and the wave-shaped blank press-formed product shape of FIG. 14.
  • FIG. 16 is a diagram showing the shape of a periodic wave blank press-formed product analyzed by press forming using a mold model with a convex pattern, and the amount of change from the bottom dead center of the molding at each part of the shape.
  • FIG. 17 is a diagram showing a second deviation amount when comparing the reference press-formed product shape of FIG. 13 and the periodically shifted wave-shaped blank press-formed product shape of FIG. 16.
  • FIG. 18 is a diagram showing the ranges of the first deviation amount and the second deviation amount shown in FIGS. 15 and 17 in correspondence with the target shape.
  • FIG. 19 is an explanatory diagram of a period-shifted waveform blank model having a waveform having the same amplitude and wavelength as the waveform in the waveform blank model of FIG. 5, but whose period is shifted by 1/2 wavelength.
  • FIG. 20 is a diagram showing the shape of a periodic wave blank press-formed product analyzed by press forming using the periodic deviation wave shape blank model of FIG. 19, and the amount of change from the bottom dead center of the molding at each part of the shape. be.
  • FIG. 21 is a diagram showing a second deviation amount when comparing the reference press-formed product shape of FIG. 4 and the periodic shift wave shape blank press-formed product shape of FIG. 20.
  • FIG. 22 is a diagram showing the ranges of the first deviation amount and the second deviation amount shown in FIGS.
  • FIG. 23 is a diagram showing the shape of a periodic wave blank press-formed product analyzed by press forming using a mold model with a convex pattern, and the amount of change from the bottom dead center of the molding at each part of the shape.
  • FIG. 24 is a diagram showing a second deviation amount when comparing the reference press-formed product shape of FIG. 13 and the periodic shift wave shape blank press-formed product shape of FIG. 23.
  • FIG. 25 is a diagram showing the ranges of the first deviation amount and the second deviation amount shown in FIGS. 15 and 24 in correspondence with the target shape.
  • the method for manufacturing a press-formed product according to the embodiment is to reduce the influence of the shape variation of the blank on the press-formed product when press-forming such as foam molding or draw molding is performed using a blank taken from a metal plate with shape variation (unevenness).
  • This is a method to reduce Specifically, as shown in FIG. 1, the method for manufacturing a press-formed product according to the embodiment includes a reference press-formed product shape acquisition step S1 to an actual press-forming step S15.
  • each configuration will be described in detail below, taking as an example a case where the press-formed product 1 shown in FIG. 2 is press-formed into a target shape.
  • a blank made of a 1.5 GPa class steel plate with a plate thickness of 1.2 mm and a corresponding blank model were used, but the present invention is not limited to this.
  • ⁇ Standard press-formed product shape acquisition step> In the reference press-formed product shape acquisition step S1, a flat blank model 3 as shown in FIG. This is the step to obtain as follows.
  • the "press forming analysis” in this description includes an analysis to obtain the shape at the bottom dead center of molding, and an analysis to obtain the shape after release from the mold, that is, after springback.
  • the flat blank model 3 is a blank model generally used in press forming analysis, and has a flat shape without any unevenness.
  • press molding For press forming analysis, CAE analysis such as finite element method (FEM) is usually performed.
  • FEM finite element method
  • Press molding includes foam molding, draw molding, etc., and in this embodiment, foam molding will be described as an example.
  • FIG. 4 is a diagram showing the reference press-formed product shape 5 after mold release based on press-forming analysis.
  • the amount of change from the molding bottom dead center is shown by numerical values and color shading.
  • the amount of change is the value obtained by subtracting the height of the corresponding part of the shape at the bottom dead center from the height of each part of the press-formed product shape after press molding and springback in the press-forming direction. , which corresponds to the amount of springback in the press forming direction. If the height difference (change amount) is + (plus), it will be more convex than the molding bottom dead center shape, and if the height difference (change amount) is - (minus), it will be more concave than the molding bottom dead center shape. becomes. In FIG.
  • the color of the concave portion is lighter than the molding bottom dead center shape, and the color of the convex portion is darker. Further, in the numbers shown in FIG. 4, + indicates the amount of change in the convex direction (toward the front of the paper), and - indicates the amount of change in the concave direction (towards the back of the paper), and the unit is mm.
  • the amount of change at the left end (part A) of the reference press-formed product shape 5 was 1.06 mm. Further, the left end (part B) of the top plate portion of the standard press-formed product shape 5 was 0.63 mm. Further, the longitudinal center portion (portion C) of the standard press-formed product shape 5 was 6.02 mm. Further, the right end (part D) of the lower flange portion of the standard press-formed product shape 5 was 1.10 mm. Further, the right end portion (portion E) of the standard press-formed product shape 5 was ⁇ 2.61 mm.
  • Step S3 the same press forming analysis as in the reference press-formed product shape acquisition step S1 is performed using a blank model that corresponds to the shape variation of the metal plate, and the press-formed product shape after release is obtained. This is the step to obtain.
  • FIG. 5(a) is a diagram showing an example of the wave-shaped blank model 7, and the specific shape will be explained below.
  • the waveform blank model 7 shown in FIG. 5(a) is a blank model having a waveform of a predetermined wavelength and a predetermined amplitude.
  • the shading in FIG. 5(a) expresses unevenness, with dark colored portions having a convex shape toward the front of the page, and light colored portions having a concave shape toward the back of the page.
  • FIG. 5(b) is a state in which FIG. 5(a) is viewed from the direction of the white arrow, and FIG. 5(c) is a partially enlarged view thereof.
  • the example shown in FIG. 5 has a plate thickness of 1.2 mm, a waveform amplitude of 5.0 mm ( ⁇ 2.5 mm), and a wavelength (see FIG. 5(d)) of 320 mm. Further, the start position and end position of the waveform set in the blank do not need to be at the end of the metal plate.
  • FIG. 5(e) is a diagram emphasizing the wave-like unevenness of FIG. 5(a
  • the wave-shaped blank model 7 may be generated based on the measurement results by measuring the shape of an actual blank taken from a predetermined position of a metal plate with shape variations.
  • the waveform blank model 7 may be generated by measuring the shape of an actual blank with a three-dimensional shape measuring device using a laser rangefinder, and using representative wavelengths and amplitudes from the measurement results.
  • FIG. 6 is a diagram showing a wave-shaped blank press-formed product shape 9 that was analyzed by press forming.
  • the colors and numerical values shown in FIG. 6 are the same as those in FIG. 4.
  • the amount of change in the left end portion (part A) of the wave-shaped blank press-formed product shape 9 was 1.37 mm.
  • the left end (part B) of the top plate portion of the wave-shaped blank press-molded product shape 9 was 0.72 mm. Further, the longitudinal center portion (part C) of the wave-shaped blank press-molded product shape 9 was 6.02 mm. Further, the right end (part D) of the lower flange portion of the wave-shaped blank press-molded product shape 9 was 0.96 mm. Further, the right end portion (portion E) of the wave-shaped blank press-molded product shape 9 was ⁇ 2.11 mm.
  • the shape of the press-formed product at the bottom dead center of molding is taken as the standard shape, and the amount of change (springback amount) in each part of the shape of the press-formed product after release from the standard shape is determined, and the two press-formed products are The difference in the amount of change in shape was determined as the amount of deviation.
  • the first deviation amount obtained in the first deviation amount acquisition step S5 is the amount of change in the shape of the wavy blank press-formed product 9 (FIG. 6) using the blank model with shape fluctuations, and the amount of change obtained using the flat blank model (FIG. 6). This is the value obtained by subtracting the amount of change in the standard press-formed product shape 5 (FIG. 4).
  • the corresponding portion of the wave-shaped blank press-formed product shape 9 has a convex shape compared to the reference press-formed product shape 5. Further, when the first deviation amount is - (minus), the corresponding portion of the wave-shaped blank press-formed product shape 9 has a concave shape compared to the reference press-formed product shape 5.
  • FIG. 7 is a diagram showing the first deviation amount obtained as described above.
  • the first deviation amount between the wave-shaped blank press-formed product shape 9 and the reference press-formed product shape 5 was 0.31 mm at the left end (portion A). Further, the first deviation amount was 0.09 mm at the left end (part B) of the top plate portion. Further, the first deviation amount was 0.00 mm at the longitudinal center portion (portion C). Further, the first deviation amount was ⁇ 0.14 mm at the right end (part D) of the lower flange portion. Further, the first deviation amount was 0.50 mm at the right end (portion E).
  • Step S7 of acquiring the shape of a blank press-formed product with a periodic deviation waveform the same press forming analysis as in the standard press-formed product shape acquisition step S1 is performed using a waveform blank model with a different shape from the waveform blank model 7, and the mold release is performed. This is the step of acquiring the shape of the subsequent press-formed product.
  • step S7 of acquiring the shape of a blank press molded product with a periodic deviation waveform a periodic deviation waveform blank model 11 having a waveform having the same wavelength and amplitude as the waveform in the waveform blank model 7 but whose period is shifted is generated.
  • FIG. 8 is a diagram showing an example of the periodic shift wave shape blank model 11, and the specific shape will be explained below.
  • FIG. 8(a) is a blank model having a periodic waveform having a predetermined wavelength and a predetermined amplitude, and the shading in FIG. 8(a) expresses the waveform.
  • FIG. 8(b) is a state in which FIG. 8(a) is viewed from the direction of the white arrow, and FIG. 8(c) is a partially enlarged view thereof.
  • the plate thickness is 1.2 mm, and the waveform amplitude and wavelength are the same as the waveform blank model 7 of FIG. 5, but the waveform period is 1/4 of that of the waveform blank model 7. It is shifted to the right in the paper by the wavelength (see FIGS. 8(d) and 8(e)).
  • step S7 for acquiring the shape of a blank press-formed product with a periodic shift waveform the blank model 11 with a periodic shift waveform is used to obtain the press molding when press-forming is performed using the same predetermined mold model as in the reference press-formed product shape acquisition step S1. Perform molding analysis. Then, the shape of the press-formed product after the mold release is obtained as a periodic shift wave-shaped blank press-formed product shape 13.
  • FIG. 9 is a diagram showing a blank press molded product shape 13 in the form of periodic deviation waves. The colors and numerical values shown in FIG. 9 are the same as those in FIGS. 4 and 6. In this example, as shown in FIG.
  • the amount of change in the left end portion (part A) of the blank press-molded product shape 13 in the form of periodic deviation waves was 1.64 mm. Further, the amount of change at the left end (part B) of the top plate portion of the blank press-molded product shape 13 having a periodic shift wave shape was 0.83 mm. Further, the amount of change in the longitudinal center portion (portion C) of the periodic shift wave blank press molded product shape 13 was 6.13 mm. Further, the amount of change at the right end (part D) of the lower flange portion of the blank press molded product shape 13 having a periodic shift wave shape was 1.41 mm. Further, the amount of change in the right end portion (portion E) of the periodic shift wave blank press molded product shape 13 was ⁇ 2.96 mm.
  • the second deviation amount obtaining step S9 is a step of comparing the reference press-formed product shape 5 and the periodically shifted wave-shaped blank press-formed product shape 13, and obtaining the part where the two shapes deviate and the deviation amount (second deviation amount). It is.
  • the method for obtaining the second deviation amount is the same as the method explained in the first deviation amount acquisition step S5, so the explanation will be omitted.
  • FIG. 10 is a diagram showing the second deviation amount when comparing the reference press-formed product shape 5 (FIG. 4) and the periodically shifted wave blank press-formed product shape 13 (FIG. 9).
  • the second deviation amount between the periodic shift wave blank press molded product shape 13 and the reference press molded product shape 5 was 0.58 mm at the left end (part A).
  • the second deviation amount was 0.20 mm at the left end (part B) of the top plate portion.
  • the second deviation amount was 0.11 mm at the central portion in the longitudinal direction (site C).
  • the second deviation amount was 0.31 mm at the right end (part D) of the lower flange portion.
  • the second deviation amount was ⁇ 0.35 mm at the right end portion (portion E).
  • the step S11 for specifying the part requiring action corresponds to the part where the first deviation amount exceeding the threshold value occurred in the first deviation amount acquisition step S5 and the part where the second deviation amount exceeding the threshold value occurred in the second deviation amount acquisition step S9. This is a step of identifying a part of the press-formed product 1 as a part requiring countermeasures.
  • FIG. 11 shows that both the first deviation amount (see FIG. 7) obtained in the first deviation amount acquisition step S5 and the second deviation amount (see FIG. 10) obtained in the second deviation amount acquisition step S9 are It is a diagram shown in correspondence with the target shape of item 1.
  • the amount of deviation at site A was 0.31 mm to 0.58 mm.
  • the amount of deviation at portion B was 0.09 mm to 0.20 mm.
  • the amount of deviation at portion C was 0.00 mm to 0.11 mm.
  • the amount of deviation at portion D was ⁇ 0.14 mm to 0.31 mm.
  • the amount of deviation at portion E was ⁇ 0.35 mm to 0.50 mm.
  • step S11 for identifying areas requiring countermeasures For example, if the threshold value in step S11 for identifying areas requiring countermeasures is set to ⁇ 0.15 mm, the areas where the amount of deviation exceeding the threshold value has occurred are area A, area B, area D, and area E. Therefore, in the step S11 for specifying parts requiring countermeasures, these parts are identified as parts requiring countermeasures.
  • a convex pattern is provided to the part of the actual mold for molding the press-formed product where the above-mentioned areas requiring countermeasures are to be molded, and the actual mold is used. Press molding is performed. The convex pattern is applied to each of the upper and lower molds that constitute the actual mold.
  • FIG. 12 is a diagram showing an example of a convex pattern provided on an actual mold. This convex pattern shape will be explained.
  • FIG. 12(a) is a side view of the convex pattern 23 of the upper mold 21 and the convex pattern 27 of the lower mold 25 at the bottom dead center of molding.
  • FIG. 12(b) is a view taken along the line CC in FIG. 12(a).
  • the position of the convex pattern 27 of the opposing lower mold 25 is indicated by a broken line.
  • the convex patterns 23 and 27 of this embodiment are formed at predetermined intervals on a flat or curved surface of the upper mold 21 or lower mold 25. It is constituted by a plurality of convex portions 23a and 27a (convex portion group).
  • the shape of the tip surfaces of the convex portions 23a and 27a is a square with a side length of A (mm).
  • Such convex portions 23a, 27a are arranged vertically and horizontally at a predetermined distance B (mm), forming regular convex patterns 23,27.
  • the size (vertical and horizontal length) A of the tip surfaces of the convex portions 23a and 27a is preferably 3 mm or more and 50 mm or less. If the size A of the tip surfaces of the convex portions 23a and 27a is less than 3 mm, shape fluctuations (wavy shapes) of the blank may remain in the press-formed product after press-forming, reducing the effect. Furthermore, if the size A of the tip surfaces of the convex portions 23a and 27a exceeds 50 mm, the size will protrude from parts such as the top plate and flange of the mold, and the blank will be held down by the wide surface of the tip of the convex portions. , the molding is similar to that without the convex portion and is ineffective.
  • the distance B between adjacent convex portions is preferably set to 1.2 A or more and 2.0 A or less with respect to the size A of the tip surfaces of the convex portions 23a and 27a. If the distance B (mm) between adjacent convex portions is less than 1.2 A or more than 2.0 A, shape fluctuations (wavy shape) of the blank may remain in the press-formed product after press-forming, which is not preferable.
  • the number and arrangement of the convex portions 23a, 27a and the shape of the tip surfaces shown in FIG. 12 are merely examples, and do not limit the aspect of the convex pattern of the present invention.
  • the shape of the tip surface of the convex portion may be rectangular or circular.
  • the convex pattern 23 provided on the upper mold 21 and the convex pattern 27 provided on the lower mold 25 have their convex portions facing each other, as shown in FIGS. 12(a) and 12(b). It is best to avoid doing so. That is, when applying the convex patterns 23 and 27, the convex portion 23a of the upper mold 21 faces the flat surface 25a (or curved surface) of the lower mold 25, and the convex portion 27a of the lower mold 25 faces the upper mold. It is preferable to provide the upper mold 21 and the lower mold 25 with the convex patterns 23 and 27 so as to be arranged to face the flat surface 21a (or curved surface) of the mold 21.
  • the distance d between the lower surface of the convex portion 23a of the upper mold 21 and the upper surface of the convex portion 27a of the lower mold 25 at the bottom dead center of molding is 0.1 t. It is preferable that the weight is 0.5 t or less.
  • the distance d is less than 0.1t, the amount of strain will become too large and the shape of the tip end surface of the convex portions 23a, 27a will be clearly transferred to the surface of the press-formed product after press-forming, which is not preferable. Moreover, if the distance d exceeds 0.5t, the amount of strain will be insufficient and the effect of alleviating the shape fluctuation of the blank will be reduced, which is not preferable.
  • the convex pattern 23 of the upper mold 21 and the convex pattern 27 of the lower mold 25 were provided so that their convex portions did not face each other.
  • the positions of the convex portion 23a of the upper mold 21 and the convex portion 27a of the lower mold 25 are set so as to be shifted from each other in the horizontal direction and the vertical direction of the page. did.
  • the positional relationship between the convex portions of the upper mold and the convex portions of the lower mold is not limited to this, and may be shifted only in the horizontal direction of the paper or only in the vertical direction of the paper.
  • the distance d between the lower surface of the convex portion 23a of the upper mold 21 and the upper surface of the convex portion 27a of the lower mold 25 at the bottom dead center of molding was 0.36 mm.
  • the above-mentioned convex patterns 23 and 27 are provided to the parts corresponding to the parts requiring countermeasures in the predetermined mold model used for the above-mentioned press forming analysis.
  • the mold model hereinafter referred to as "convex pattern imparting mold model”
  • the same analysis as in the reference press-formed product shape acquisition step S1 to the second deviation amount acquisition step S9 is performed. Ta. Note that the amount of change and the amount of deviation in the following explanation were determined using the same method as shown in FIGS. 4 to 11.
  • FIG. 13 is a diagram showing a reference press-formed product shape 31 obtained by press-molding analysis of the flat blank model 3 (see FIG. 3) using the convex pattern imparting mold model. Note that in FIG. 13, regions to which strain is applied (strain addition region 33) by the convex patterns 23 and 27 of the convex pattern imparting mold model are shaded (the same applies to FIGS. 14 to 18).
  • the amount of change in portion A of the reference press-formed product shape 31 was 1.29 mm when press molding was analyzed using the convex pattern imparting mold model. Further, the amount of change in portion B of the reference press-formed product shape 31 was 0.07 mm. The amount of change in portion C of the standard press-formed product shape 31 was 6.50 mm. Further, the amount of change in the portion D of the reference press-formed product shape 31 was 2.10 mm. Further, the amount of change in the portion E of the reference press-formed product shape 31 was 1.80 mm.
  • FIG. 14 is a diagram showing a wave-shaped blank press-formed product shape 35 obtained by press-molding analysis of the wave-shaped blank model 7 (see FIG. 5) using the convex pattern imparting mold model.
  • the amount of change in portion A of the wave-shaped blank press-molded product shape 35 was 1.45 mm.
  • the amount of change in portion B of the wave-shaped blank press-molded product shape 35 was 0.12 mm.
  • the amount of change in portion C of the wave-shaped blank press-molded product shape 35 was 6.50 mm.
  • the amount of change in portion D of the wave-shaped blank press-molded product shape 35 was 2.03 mm.
  • the amount of change in portion E of the wave-shaped blank press-molded product shape 35 was 2.05 mm.
  • FIG. 15 is a diagram showing the first deviation amount obtained by comparing the reference press-formed product shape 31 (FIG. 13) and the wave-shaped blank press-formed product shape 35 (FIG. 14).
  • the first deviation amount between the reference press-formed product shape 31 and the wave-shaped blank press-formed product shape 35 when press forming is analyzed using the convex pattern imparting mold model is 0. It was 16 mm.
  • the first deviation amount at portion B was 0.05 mm.
  • the first deviation amount at portion C was 0.00 mm.
  • the first deviation amount at portion D was ⁇ 0.07 mm.
  • the first deviation amount at portion E was 0.25 mm.
  • FIG. 16 is a diagram showing a blank press-molded product shape 37 with a periodic deviation waveform obtained by performing press molding analysis of the periodic deviation waveform blank model 11 (see FIG. 8) using the convex pattern imparting mold model.
  • the amount of change in portion A of the periodic shift wave blank press molded product shape 37 was 1.58 mm.
  • the amount of change in portion B of the periodic shift wave blank press molded product shape 37 was 0.17 mm.
  • the amount of change in portion C of the periodic shift wave blank press molded product shape 37 was 6.60 mm.
  • the amount of change in portion D of the periodic shift wave blank press molded product shape 37 was 2.26 mm.
  • the amount of change in the portion E of the periodic shift wave blank press molded product shape 37 was 1.63 mm.
  • FIG. 17 is a diagram showing the second deviation amount obtained by comparing the standard press-formed product shape 31 (FIG. 13) and the periodically shifted wave-shaped blank press-formed product shape 37 (FIG. 16).
  • the second deviation amount between the reference press-formed product shape 31 and the periodic shift wave blank press-formed product shape 37 was 0.29 mm at the portion A.
  • the second deviation amount at portion B was 0.10 mm.
  • the second deviation amount at portion C was 0.10 mm.
  • the second deviation amount at portion D was 0.16 mm.
  • the second deviation amount at portion E was ⁇ 0.17 mm.
  • FIG. 18 is a diagram showing both the first deviation amount in FIG. 15 and the second deviation amount in FIG. 17 in correspondence with the target shape.
  • the first deviation amount and the second deviation amount at portion A were 0.16 mm to 0.29 mm.
  • the first deviation amount and the second deviation amount were 0.05 mm to 0.10 mm at portion B.
  • the first deviation amount and the second deviation amount were 0.00 mm to 0.10 mm at the portion C.
  • the first deviation amount and the second deviation amount were ⁇ 0.07 mm to 0.16 mm at the portion D.
  • the first deviation amount and the second deviation amount at the portion E were ⁇ 0.17 mm to 0.25 mm.
  • the deviation amount in FIG. 18 is reduced compared to the deviation amount before the countermeasure shown in FIG. 11. Therefore, it was confirmed that the use of the convex pattern-imparting mold model was effective in reducing the influence of blank shape variations.
  • the convex pattern imparting step S13 is a step of imparting the convex patterns 23 and 27 described in FIG. 12 to the actual mold.
  • the convex patterns 23 and 27 are preferably provided by performing laser processing or etching processing on the surface of the actual mold.
  • the convex patterns 23 and 27 are applied to areas requiring countermeasures in the upper die 21 and lower die 25 of the actual mold, or to areas requiring countermeasures and the surroundings thereof to be molded.
  • the convex portion 23a of the upper mold 21 faces the flat surface 25a or the curved surface of the lower mold 25, and the convex portion 27a of the lower mold 25 faces the flat surface 21a of the upper mold 21.
  • convex patterns 23 and 27 similar to the convex pattern imparted mold model used in the press forming analysis explained with reference to FIGS. 13 to 18 were imparted to the actual mold.
  • Actual press forming step S15 is a step of press forming an actual blank using upper die 21 and lower die 25 to which convex patterns 23 and 27 were provided in convex pattern imparting step S13.
  • the distance d between the lower surface of the convex portion 23a of the upper mold 21 and the upper surface of the convex portion 27a of the lower mold 25 at the bottom dead center of molding is set to 0.1 t or more and 0.5 t. It is preferable to press-form as follows (t (mm) is the thickness of the blank).
  • the waveforms of the period-shifted waveform blank models may have their periods shifted from each other (the wavelength and amplitude are the same for the waveform blank model and all the periodicity-shifted waveform blank models).
  • the difference in the amount of change from the bottom dead center of molding (springback amount) in the press forming direction was used as the amount of deviation.
  • the height of each part after release (after springback) in one press-formed product shape is determined by the height of each part after release (after springback) in the other press-formed product shape.
  • the difference obtained by subtracting the height of each part may be used as the deviation amount.
  • the amount of change is compared based on the shape at the bottom dead center of molding, which is constant regardless of the presence or absence of shape change of the blank, the amount of deviation can be accurately and easily It is preferable to be able to ask for
  • draw molding may also be used.
  • a concavo-convex pattern may be formed on the press-formed product after press molding.
  • a restriking step may be further provided in which the press-formed product on which the uneven pattern is formed is pressed again to crush the uneven pattern.
  • the method for manufacturing a press-formed product explained in FIG. 1 was carried out.
  • the press-formed product 1 shown in FIG. 2 was used as the target shape similarly to the embodiment.
  • the molding for the CAE analysis in this example was performed using foam molding as in the embodiment. Note that the amount of change and the amount of deviation in this example were determined by the same method as in the embodiment.
  • the reference press-formed product shape acquisition step S1 was performed using the flat blank model 3 (see FIG. 3) similarly to the embodiment.
  • the amount of change in the standard press-formed product shape 5 when the flat blank model 3 is press-molded using a predetermined mold model is as follows. That is, as explained in FIG. 4, the amount of change is 1.06 mm at site A, 0.63 mm at site B, 6.02 mm at site C, 1.10 mm at site D, and -2.61 mm at site E. Met.
  • the wave-shaped blank press-molded product shape acquisition step S3 was performed using the wave-shaped blank model 7 (see FIG. 5).
  • the amount of change in the shape of the wavy blank press-formed product 9 when the wavy blank model 7 is press-molded using a predetermined mold model is as follows. That is, as explained in FIG. 6, the amount of change is 1.37 mm at site A, 0.72 mm at site B, 6.02 mm at site C, 0.96 mm at site D, and -2.11 mm at site E. Met.
  • the reference press-formed product shape 5 (FIG. 4) and the wave-shaped blank press-formed product shape 9 (FIG. 6) are compared, and the deviation amount ( The first deviation amount) was calculated.
  • the first deviation amount is 0.31 mm at site A, 0.09 mm at site B, 0.00 mm at site C, -0.14 mm at site D, and 0.50 mm at site E. there were.
  • a wave-shaped blank model having a shape different from the wave-shaped blank model 7 was generated in step S7 of acquiring the shape of a blank press-molded product having a period-shifted wave shape.
  • a press molding analysis was performed using a predetermined mold model similar to that described above, and the shape of the press molded product after mold release was obtained.
  • the periodic shift waveform blank model 11 explained in FIG. 8 was used in the embodiment, but in this example, the periodic shift waveform blank model shown in FIG. 19 was used. 41 was used. The specific shape of the periodic shift waveform blank model 41 will be explained below.
  • FIG. 19 is a blank model that has a periodic waveform with a predetermined wavelength and a predetermined amplitude, and the shading in FIG. 19(a) expresses unevenness.
  • FIG. 19(b) is a state in which FIG. 19(a) is viewed from the direction of the white arrow, and FIG. 19(c) is a partially enlarged view thereof.
  • the plate thickness is 1.2 mm, and the amplitude and wavelength of the unevenness are the same as the wave-shaped blank model 7 in FIG. 5, but the wave-shaped period is 1/2 that of the wave-shaped blank model 7. It is shifted to the right in the paper by the wavelength (see FIGS. 19(d) and 19(e)).
  • FIG. 20 is a diagram illustrating the shape of a blank press-molded product 43 in a wave-shaped blank press molded product when the blank model 41 in a wave-shaped blank shown in FIG. 19 is analyzed by press molding using a predetermined mold model.
  • the amount of change in portion A of the periodic shift wave blank press molded product shape 43 was 0.85 mm.
  • the amount of change in portion B of the periodic shift wave blank press molded product shape 43 was 0.88 mm.
  • the amount of change in portion C of the periodic shift wave blank press molded product shape 43 was 5.95 mm.
  • the amount of change in portion D of the periodic shift wave blank press molded product shape 43 was 0.86 mm.
  • the amount of change in the portion E of the blank press-molded product shape 43 having a periodic shift wave shape was ⁇ 2.64 mm.
  • the reference press-formed product shape 5 (FIG. 4) and the periodic shift wave shape blank press-formed product shape 43 (FIG. 20) are compared, and the deviation amount (second deviation amount 2 deviation amount) was calculated.
  • the second deviation amount between the periodic shift wave blank press-formed product shape 43 and the reference press-formed product shape 5 is -0.21 mm at part A, 0.25 mm at part B, and 0.25 mm at part C. -0.07 mm, -0.24 mm at site D, and -0.03 mm at site E.
  • FIG. 22 shows that both the first deviation amount (FIG. 7) obtained in the first deviation amount acquisition step S5 and the second deviation amount (FIG. 21) obtained in the second deviation amount acquisition step S9 are (Target shape)
  • the amount of deviation before the countermeasure is -0.21 mm to 0.31 mm at part A, 0.09 mm to 0.25 mm at part B, -0.07 mm to 0.00 mm at part C, and -0.07 mm to 0.00 mm at part C. It was -0.24 mm to -0.14 mm at D, and -0.03 mm to 0.50 mm at part E.
  • step S11 for specifying areas requiring countermeasures is set to ⁇ 0.15 mm
  • the areas where the amount of deviation exceeding the threshold value has occurred are area A, area B, area D, and area E. Therefore, these areas were identified as areas requiring countermeasures.
  • the convex pattern 23 of the upper mold 21 and the convex pattern 27 of the lower mold 25 were provided so that their convex portions 23a and 27a did not face each other.
  • the positions of the convex portion 23a of the upper mold 21 and the convex portion 27a of the lower mold 25 are set so as to be shifted from each other in the horizontal direction and the vertical direction of the page. did.
  • the distance d between the lower surface of the convex portion 23a of the upper mold 21 and the upper surface of the convex portion 27a of the lower mold 25 at the bottom dead center of molding was 0.36 mm.
  • the above-mentioned convex patterns 23 and 27 are applied to the parts corresponding to the areas requiring measures in a predetermined mold model, and the standard press-formed product shape is Analysis similar to acquisition step S1 to second deviation amount acquisition step S9 was performed.
  • the amount of change in the standard press-formed product shape 31 when the flat blank model 3 (see FIG. 3) was press-molded using the convex pattern imparted mold model was 1.29 mm at the portion A. Ta. Further, the amount of change in the reference press-formed product shape 31 at portion B was 0.07 mm. Further, the amount of change in the reference press-formed product shape 31 was 6.50 mm at portion C. Further, the amount of change in the reference press-formed product shape 31 was 2.10 mm at portion D. Further, the amount of change in the reference press-formed product shape 31 at portion E was 1.80 mm.
  • the amount of change in the wavy blank press-formed product shape 35 is 1. It was 45 mm. Further, the amount of change in the shape 35 of the wave-shaped blank press molded product was 0.12 mm at portion B. Further, the amount of change in the shape 35 of the wave-shaped blank press molded product was 6.50 mm at portion C. Further, the amount of change in the wave-shaped blank press-molded product shape 35 at portion D was 2.03 mm. Further, the amount of change in the wave-shaped blank press-molded product shape 35 was 2.05 mm at portion E.
  • the first deviation amount obtained by comparing the reference press-formed product shape 31 (FIG. 13) and the wave-shaped blank press-formed product shape 35 (FIG. 14) is 0. It was 16 mm. Further, the first deviation amount at portion B was 0.05 mm. Further, the first deviation amount at portion C was 0.00 mm. Further, the first deviation amount at portion D was ⁇ 0.07 mm. Further, the first deviation amount at portion E was 0.25 mm.
  • FIG. 23 is a diagram showing a blank press-molded product shape 51 with a periodic deviation wave shape obtained by performing press molding analysis of the periodic deviation wave pattern blank model 41 (see FIG. 19) using a convex pattern imparting mold model.
  • the amount of change in portion A of the blank press-molded product shape 51 having a periodic shift wave shape was 1.19 mm.
  • the amount of change in portion B of the periodic shift wave blank press molded product shape 51 was 0.20 mm.
  • the amount of change in portion C of the periodic shift wave blank press molded product shape 51 was 6.44 mm.
  • the amount of change in portion D of the periodic shift wave blank press molded product shape 51 was 1.98 mm.
  • the amount of change in the portion E of the blank press molded product shape 51 having a periodic shift wave shape was 1.82 mm.
  • FIG. 24 is a diagram showing the second deviation amount obtained by comparing the reference press-formed product shape 31 (FIG. 13) and the periodically shifted wave-shaped blank press-formed product shape 51 (FIG. 23).
  • the second deviation amount between the standard press-formed product shape 31 and the periodic shift wave blank press-formed product shape 51 is ⁇ 0.10 mm at portion A. Met.
  • the second deviation amount at portion B was 0.13 mm.
  • the second deviation amount at portion C was ⁇ 0.06 mm.
  • the second deviation amount at portion D was ⁇ 0.12 mm.
  • the second deviation amount at portion E was 0.02 mm.
  • FIG. 25 is a diagram showing both the first deviation amount in FIG. 15 and the second deviation amount in FIG. 24 in correspondence with the press-formed product 1 (target shape).
  • the amount of deviation was ⁇ 0.10 mm to 0.16 mm at portion A when the convex pattern imparting mold model was used.
  • the amount of deviation at portion B was 0.05 mm to 0.13 mm.
  • the amount of deviation at portion C was ⁇ 0.06 mm to 0.00 mm.
  • the amount of deviation at portion D was ⁇ 0.12 mm to ⁇ 0.07 mm.
  • the amount of deviation at portion E was 0.02 mm to 0.25 mm.
  • the amount of deviation in FIG. 25 is significantly smaller than the amount of deviation before the countermeasure shown in FIG. 22. Therefore, it was confirmed that providing a mold with a convex pattern corresponding to the area requiring countermeasures was effective in reducing the effects of blank shape variations.
  • convex patterns 23 and 27 similar to the above convex pattern imparting mold model were imparted to the surface of the actual mold. Specifically, in this example, convex patterns 23 and 27 were provided to the area requiring treatment, or to the area of the mold for molding the area requiring treatment and its surroundings. Then, in the actual press forming step S15, an actual blank having a shape variation was press-molded using the actual mold provided with the above-mentioned convex patterns 23 and 27. Note that, as the actual blank, a 1.5 GPa class steel plate with a thickness of 1.2 mm, which corresponds to the above-mentioned blank model, was used.
  • the shape of the press-formed product press-formed in the actual press-forming step S15 was less affected by the shape variation of the blank, similar to the analysis results in FIG. 25, and good dimensional accuracy was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本発明に係るプレス成形品の製造方法は、基準プレス成形品形状5を取得する基準プレス成形品形状取得ステップと、波形状ブランクプレス成形品形状9を取得する波形状ブランクプレス成形品形状取得ステップと、基準プレス成形品形状5と波形状ブランクプレス成形品形状9の乖離量を求める第1乖離量取得ステップと、周期ずれ波形状ブランクプレス成形品形状13を取得する周期ずれ波形状ブランクプレス成形品形状取得ステップと、基準プレス成形品形状5と周期ずれ波形状ブランクプレス成形品形状13の乖離量を求める第2乖離量取得ステップと、要対策部位を特定する要対策部位特定ステップと、実金型に凸パターン23、27を付与する凸パターン付与ステップと、凸パターン23、27を付与した実金型を用いてプレス成形する実プレス成形ステップと、を備えたものである。

Description

プレス成形品の製造方法
 本発明は、形状変動のある金属板から採取したブランクを用いてプレス成形したプレス成形品における前記ブランクの形状変動の影響を低減するプレス成形品の製造方法に関する。
 自動車の衝突安全性基準の厳格化により自動車車体の衝突安全性の向上が進展する中で、昨今の二酸化炭素排出規制を受けて自動車の燃費向上を図るため、車体の軽量化も必要とされている。これら衝突安全性能と車体の軽量化を両立するために、従来に比べてさらに高強度な金属板が車体に採用されつつある。
 従来から、プレス成形品を得るためのブランクを採取する実際の金属板は、完全に平坦なものはなく、波形状(形状変動)を有している。したがって、金属板から採取した実際のブランクもまた、必ずしも平坦であるとは限らず、形状変動を有する場合がある。
 このような形状変動を有する金属板をブランクとして用いて、車体部品にプレス成形した場合、プレス成形後に得られたプレス成形品は、その形状変動が影響して、目標となる寸法精度から外れることが危惧される。
 プレス成形した後のプレス成形品について、目標となる寸法精度から外れたものを選別する技術として、例えば、特許文献1及び特許文献2が開示されている。また、プレス成形金型の表面に凹凸を付与する手段を講じるものとしては、特許文献3及び特許文献4がある。
特開昭62-047504号公報 特開2019-002834号公報 特開2020-127959号公報 特開平3-077728号公報
 特許文献1及び特許文献2に開示の技術は、プレス成形後のプレス成形品同士の形状を比較し、寸法精度の不良な部位を特定するものである。特許文献1及び特許文献2に開示の技術では、プレス成形前のブランクの形状変動により、プレス成形品のどの部位がブランクの形状変動による影響を受けやすいかを特定することが行われておらず、対策を講じることが難しかった。
 さらに、プレス成形に用いるブランクは、鋼板などの金属板から打ち抜きやせん断によって採取される。したがって、形状変動のある金属板から複数のブランクを採取すると、採取位置が異なることで、同じ金属板から採取したブランクであっても、個々のブランクで凹凸を呈する部位が異なる。したがって、ブランクの形状変動による影響を低減するには、個々のブランクの形状変動に相違があることも考慮して対策を講じる必要がある。
 特許文献3に開示の技術は、金型表面に凹凸を付与することでプレス成形中に金型とブランクの間に油を保持し、金型とブランクの間の摩擦を抑制して成形を容易にするものである。また、特許文献4に開示の技術は、金型表面に凹凸を付与することで、意匠性の高い金属板を製造できるようにしたものである。したがって、特許文献3及び特許文献4に開示の技術は、本発明が目的とするブランクの形状変動による影響を低減するものではない。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、形状変動のある金属板から採取したブランクを用いてプレス成形したプレス成形品におけるブランクの形状変動の影響を低減するプレス成形品の製造方法を提供することである。
 上述した課題を解決し、目的を達成するために、
(1)本発明に係るプレス成形品の製造方法は、形状変動のある金属板から採取したブランクを用いてプレス成形したプレス成形品における前記ブランクの形状変動の影響を低減する方法であって、平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、前記形状変動に対応した所定の波長と所定の振幅の波形状を有する波形状ブランクモデルを生成し、該生成した波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得する波形状ブランクプレス成形品形状取得ステップと、前記基準プレス成形品形状と前記波形状ブランクプレス成形品形状とを比較し、両形状の乖離する部位と乖離量とを求める第1乖離量取得ステップと、前記波形状ブランクモデルにおける波形状とは振幅と波長が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類または複数種類生成し、該生成した周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得する周期ずれ波形状ブランクプレス成形品形状取得ステップと、前記基準プレス成形品形状と一種類または複数種類の前記周期ずれ波形状ブランクプレス成形品形状とを比較し、両形状の乖離する部位と乖離量とを求める第2乖離量取得ステップと、前記第1乖離量取得ステップで閾値を超える乖離量が生じた部位及び前記第2乖離量取得ステップで閾値を超える乖離量が生じた部位に相当する前記プレス成形品の部位を要対策部位として特定する要対策部位特定ステップと、前記プレス成形品を成形する実金型の上金型及び下金型において、前記要対策部位、または、前記要対策部位とその周囲を成形する部位に凸パターンを付与する凸パターン付与ステップと、前記凸パターンを付与した上金型及び下金型を用いて、前記ブランクをプレス成形する実プレス成形ステップと、を備えたことを特徴とするものである。
(2)本発明に係るプレス成形品の製造方法は、上記(1)に記載の発明において、前記第1乖離量取得ステップは、前記基準プレス成形品形状における所定部位のスプリングバック量と、前記波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、前記第2乖離量取得ステップは、前記基準プレス成形品形状における所定部位のスプリングバック量と、前記周期ずれ波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とするものである。
(3)本発明に係るプレス成形品の製造方法は、上記(1)または(2)に記載の発明において、前記凸パターンは、平面又は湾曲面上に所定間隔で形成された複数の凸部によって構成され、前記凸部の縦及び横の長さAが3mm以上50mm以下、隣接する凸部間の距離が1.2A以上2.0A以下に設定されており、前記凸パターン付与ステップは、前記凸パターンを前記上金型及び前記下金型に、上金型の凸部が下金型の平面又は湾曲面に対向し、下金型の凸部が上金型の平面又は湾曲面に対向する配置となるように付与し、前記実プレス成形ステップは、板厚t(mm)の前記ブランクを成形する場合の成形下死点における前記上金型の前記凸部の下面と前記下金型の前記凸部の上面との距離が0.1t以上0.5t以下になるようにプレス成形することを特徴とするものである。
 本発明に係るプレス成形品の製造方法は、個々のブランクにおける形状変動の相違も考慮した上で、プレス成形品におけるブランクの形状変動による影響が大きい部位を特定し、当該部位に対策を講じることでブランクの形状変動による影響を低減することができる。これにより、本発明に係るプレス成形品の製造方法においては、寸法精度の良好なプレス成形品の製造が可能となって、形状変動を有する金属板から採取したブランクを用いても良好な寸法精度のプレス成形品を歩留まり良く生産できる。
図1は、実施形態に係るプレス成形品の製造方法の各ステップの説明図である。 図2は、実施形態で対象とした部品の外観図である。 図3は、平坦ブランクモデルの説明図である。 図4は、図3の平坦ブランクモデルを用いてプレス成形解析した基準プレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図5は、波形状ブランクモデルの説明図である。 図6は、図5の波形状ブランクモデルを用いてプレス成形解析した波形状ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図7は、図4の基準プレス成形品形状と図6の波形状ブランクプレス成形品形状とを比較したときの第1乖離量を示した図である。 図8は、図5の波形状ブランクモデルにおける波形状とは振幅と波長が同じで周期が1/4波長分ずれた波形状を有する周期ずれ波形状ブランクモデルの説明図である。 図9は、図8の周期ずれ波形状ブランクモデルを用いてプレス成形解析した周期ずれ波形状ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図10は、図4の基準プレス成形品形状と図9の周期ずれ波形状ブランクプレス成形品形状とを比較したときの第2乖離量を示した図である。 図11は、図7と図10に示した第1乖離量と第2乖離量の範囲を目標形状に対応させて示した図である。 図12は、金型に付与する凸パターンの説明図である。 図13は、凸パターンを付与した金型モデルを用いてプレス成形解析した基準プレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図14は、凸パターンを付与した金型モデルを用いてプレス成形解析した波形状ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図15は、図13の基準プレス成形品形状と図14の波形状ブランクプレス成形品形状とを比較したときの第1乖離量を示した図である。 図16は、凸パターンを付与した金型モデルを用いてプレス成形解析した周期ずれ波形状ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図17は、図13の基準プレス成形品形状と図16の周期ずれ波形状ブランクプレス成形品形状とを比較したときの第2乖離量を示した図である。 図18は、図15と図17に示した第1乖離量と第2乖離量の範囲を目標形状に対応させて示した図である。 図19は、図5の波形状ブランクモデルにおける波形状とは振幅と波長が同じで周期が1/2波長分ずれた波形状を有する周期ずれ波形状ブランクモデルの説明図である。 図20は、図19の周期ずれ波形状ブランクモデルを用いてプレス成形解析した周期ずれ波形状ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図21は、図4の基準プレス成形品形状と図20の周期ずれ波形状ブランクプレス成形品形状とを比較したときの第2乖離量を示した図である。 図22は、図7と図21に示した第1乖離量と第2乖離量の範囲を目標形状に対応させて示した図である。 図23は、凸パターンを付与した金型モデルを用いてプレス成形解析した周期ずれ波形状ブランクプレス成形品形状と、当該形状の各部位における成形下死点からの変化量を示した図である。 図24は、図13の基準プレス成形品形状と図23の周期ずれ波形状ブランクプレス成形品形状とを比較したときの第2乖離量を示した図である。 図25は、図15と図24に示した第1乖離量と第2乖離量の範囲を目標形状に対応させて示した図である。
 以下に、本発明に係るプレス成形品の製造方法の実施形態について説明する。なお、本実施形態により本発明が限定されるものではない。
 実施形態に係るプレス成形品の製造方法は、形状変動(凹凸)のある金属板から採取したブランクを用いてフォーム成形やドロー成形などのプレス成形した際のプレス成形品におけるブランクの形状変動による影響を低減する方法である。具体的には、図1に示すように、実施形態に係るプレス成形品の製造方法は、基準プレス成形品形状取得ステップS1~実プレス成形ステップS15を備えている。本実施形態では、図2に示すプレス成形品1を目標形状としてプレス成形する場合を例に挙げて、以下、各構成を詳細に説明する。なお、本実施形態では、板厚1.2mmの1.5GPa級鋼板からなるブランク及びこれに対応するブランクモデルを用いたが、これに限定されるものではない。
<基準プレス成形品形状取得ステップ>
 基準プレス成形品形状取得ステップS1は、図3に示すような平坦ブランクモデル3を用いて、所定の金型モデルでプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得するステップである。なお、本説明の「プレス成形解析」とは、成形下死点の形状を取得する解析と、離型後、すなわち、スプリングバックした後の形状を取得する解析とを含むものとする。
 平坦ブランクモデル3とは、従来、一般的にプレス成形解析で用いられるブランクモデルであり、凹凸のない平らな形状のものである。
 プレス成形解析は、通常、有限要素法(FEM)などのCAE解析が行われる。プレス成形にはフォーム成形やドロー成形等があるが、本実施形態ではフォーム成形の場合を例に挙げて説明する。
 図4は、プレス成形解析による離型後の基準プレス成形品形状5を示す図である。図4では、成形下死点からの変化量を数値及び色の濃淡で示している。変化量とは、プレス成形方向において、プレス成形後に離型しスプリングバックした後のプレス成形品形状の各部位の高さから、成形下死点の形状の対応する部位の高さを差し引いた値であり、プレス成形方向のスプリングバック量に相当する。高さの差(変化量)が+(プラス)の場合は成形下死点形状より凸状となり、高さの差(変化量)が-(マイナス)の場合は成形下死点形状より凹み状となる。図4においては、成形下死点形状よりも凹み状になる部位の色を薄くし、凸状になる部位の色を濃くしている。また、図4中に表示した数字は、+が凸方向(紙面手前)への変化量、-が凹方向(紙面奥)への変化量で、単位はmmである。
 本例においては、図4に示すように、基準プレス成形品形状5の左端部(部位A)の変化量は1.06mmであった。また、基準プレス成形品形状5の天板部の左端(部位B)は0.63mmであった。また、基準プレス成形品形状5の長手方向中央部(部位C)は6.02mmであった。また、基準プレス成形品形状5の下フランジ部の右端(部位D)は1.10mmであった。また、基準プレス成形品形状5の右端部(部位E)は-2.61mmであった。
<波形状ブランクプレス成形品形状取得ステップ>
 波形状ブランクプレス成形品形状取得ステップS3は、金属板の形状変動に対応したブランクモデルを用いて、基準プレス成形品形状取得ステップS1と同じプレス成形解析を行い、離型後のプレス成形品形状を取得するステップである。
 波形状ブランクプレス成形品形状取得ステップS3では、まず、金属板の形状変動に対応した形状の波形状ブランクモデル7を生成する。図5(a)は、波形状ブランクモデル7の一例を示した図であり、具体的な形状を以下に説明する。
 図5(a)に示す波形状ブランクモデル7は、所定の波長と所定の振幅の波形状を有するブランクモデルである。図5(a)における濃淡が凹凸を表現しており、色の濃い部分が紙面手前に凸形状であり、色の淡い部分が紙面奥に凹む形状である。図5(a)を白抜き矢印の方向から見た状態が図5(b)であり、その一部拡大図が図5(c)である。図5に示す例は、板厚1.2mmで、波形状の振幅が5.0mm(±2.5mm)、波長(図5(d)参照)が320mmの形状である。また、ブランクに設定する波形状の開始位置や終了位置は、金属板の端である必要はない。なお、図5(e)は、図5(a)の波形状の凹凸を強調して示した図である。
 なお、波形状ブランクモデル7は、形状変動のある金属板の所定位置から採取した実ブランクの形状を測定し、測定結果に基づいて生成してもよい。例えば、波形状ブランクモデル7は、実ブランクの形状をレーザ距離計による3次元形状測定器などによって測定し、測定結果における代表的な波長と振幅を用いるなどして生成してもよい。
 次に、波形状ブランクプレス成形品形状取得ステップS3では、波形状ブランクモデル7を用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行う。そして、離型後のプレス成形品形状を波形状ブランクプレス成形品形状9として取得する。図6は、プレス成形解析した波形状ブランクプレス成形品形状9を示す図である。図6に示す色や数値は、図4と同様である。本例においては、図6に示すように、波形状ブランクプレス成形品形状9の左端部(部位A)の変化量は1.37mmであった。また、波形状ブランクプレス成形品形状9の天板部の左端(部位B)は0.72mmであった。また、波形状ブランクプレス成形品形状9の長手方向中央部(部位C)は6.02mmであった。また、波形状ブランクプレス成形品形状9の下フランジ部の右端(部位D)は0.96mmであった。また、波形状ブランクプレス成形品形状9の右端部(部位E)は-2.11mmであった。
<第1乖離量取得ステップ>
 第1乖離量取得ステップS5は、基準プレス成形品形状5(図4)と波形状ブランクプレス成形品形状9(図6)とを比較し、両形状の乖離する部位と乖離量(第1乖離量)とを求めるステップである。
 本実施形態では、成形下死点におけるプレス成形品形状を基準形状とし、基準形状からの離型後のプレス成形品形状の各部位における変化量(スプリングバック量)を求め、二つのプレス成形品形状の変化量の差を乖離量として求めた。すなわち、第1乖離量取得ステップS5で求める第1乖離量とは、形状変動のあるブランクモデルを用いた波形状ブランクプレス成形品形状9の変化量(図6)から、平坦なブランクモデルを用いた基準プレス成形品形状5の変化量(図4)を差し引いた値となる。したがって、第1乖離量が+(プラス)の場合は、波形状ブランクプレス成形品形状9の当該部位は、基準プレス成形品形状5に比べて凸形状となる。また、第1乖離量が-(マイナス)の場合は、波形状ブランクプレス成形品形状9の当該部位は、基準プレス成形品形状5に比べて凹み形状となる。
 図7は、上記のように求めた第1乖離量を示す図である。図7に示すように、波形状ブランクプレス成形品形状9と基準プレス成形品形状5との第1乖離量は、左端部(部位A)で0.31mmであった。また、前記第1乖離量は、天板部の左端(部位B)で0.09mmであった。また、前記第1乖離量は、長手方向中央部(部位C)で0.00mmであった。また、前記第1乖離量は、下フランジ部の右端(部位D)で-0.14mmであった。また、前記第1乖離量は、右端部(部位E)で0.50mmであった。
<周期ずれ波形状ブランクプレス成形品形状取得ステップ>
 周期ずれ波形状ブランクプレス成形品形状取得ステップS7は、波形状ブランクモデル7とは異なる形状の波形状ブランクモデルを用いて、基準プレス成形品形状取得ステップS1と同じプレス成形解析を行い、離型後のプレス成形品形状を取得するステップである。
 周期ずれ波形状ブランクプレス成形品形状取得ステップS7では、まず、波形状ブランクモデル7における波形状と波長及び振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデル11を生成する。図8は、周期ずれ波形状ブランクモデル11の一例を示した図であり、具体的な形状を以下に説明する。
 図8(a)に示す例は、所定の波長と所定の振幅を有する周期的な波形状を有するブランクモデルであり、図8(a)における濃淡が波形状を表現している。図8(a)を白抜き矢印の方向から見た状態が図8(b)であり、その一部拡大図が図8(c)である。図8に示す例は、板厚1.2mmで、波形状の振幅と波長が図5の波形状ブランクモデル7と同じであるが、波形状の周期が波形状ブランクモデル7よりも1/4波長分紙面右方向にずれている(図8(d)及び図8(e)参照)。
 次に、周期ずれ波形状ブランクプレス成形品形状取得ステップS7では、周期ずれ波形状ブランクモデル11を用いて、基準プレス成形品形状取得ステップS1と同じ所定の金型モデルでプレス成形したときのプレス成形解析を行う。そして、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状13として取得する。図9は、周期ずれ波形状ブランクプレス成形品形状13を示す図である。図9に示す色や数値は、図4及び図6と同様である。本例においては、図9に示すように、周期ずれ波形状ブランクプレス成形品形状13の左端部(部位A)の変化量は1.64mmであった。また、周期ずれ波形状ブランクプレス成形品形状13の天板部の左端(部位B)の変化量は0.83mmであった。また、周期ずれ波形状ブランクプレス成形品形状13の長手方向中央部(部位C)の変化量は6.13mmであった。また、周期ずれ波形状ブランクプレス成形品形状13の下フランジ部の右端(部位D)の変化量は1.41mmであった。また、周期ずれ波形状ブランクプレス成形品形状13の右端部(部位E)の変化量は-2.96mmであった。
<第2乖離量取得ステップ>
 第2乖離量取得ステップS9は、基準プレス成形品形状5と周期ずれ波形状ブランクプレス成形品形状13とを比較し、両形状の乖離する部位と乖離量(第2乖離量)とを求めるステップである。第2乖離量の求め方は、第1乖離量取得ステップS5で説明した方法と同様であるので説明を省略する。
 図10は、基準プレス成形品形状5(図4)と周期ずれ波形状ブランクプレス成形品形状13(図9)とを比較したときの第2乖離量を示す図である。図10に示すように、周期ずれ波形状ブランクプレス成形品形状13と基準プレス成形品形状5との第2乖離量は、左端部(部位A)で0.58mmであった。また、前記第2乖離量は、天板部の左端(部位B)で0.20mmであった。また、前記第2乖離量は、長手方向中央部(部位C)で0.11mmであった。また、前記第2乖離量は、下フランジ部の右端(部位D)で0.31mmであった。また、前記第2乖離量は、右端部(部位E)で-0.35mmであった。
<要対策部位特定ステップ>
 要対策部位特定ステップS11は、第1乖離量取得ステップS5で閾値を超える第1乖離量が生じた部位及び第2乖離量取得ステップS9で閾値を超える第2乖離量が生じた部位に相当するプレス成形品1の部位を要対策部位として特定するステップである。
 例えば、複数のプレス成形品を重ね合わせて接合して車体のメンバー類に組み立てる場合など、プレス成形品の形状(特にフランジ部分など)に乖離が大きいとプレス成形品同士の接合が困難となり、対策を要する場合がある。そこで、本実施形態では、ブランクの形状変動による影響が大きい(乖離が大きい)と想定される部位を要対策部位として特定し、影響を低減するための対策をとれるようにした。
 図11は、第1乖離量取得ステップS5で求めた第1乖離量(図7参照)と第2乖離量取得ステップS9で求めた第2乖離量(図10参照)との両方を、プレス成形品1の目標形状に対応させて示す図である。図11に示されるように、乖離量は、部位Aで0.31mm~0.58mmであった。また、乖離量は、部位Bで0.09mm~0.20mmであった。また、乖離量は、部位Cで0.00mm~0.11mmであった。また、乖離量は、部位Dで-0.14mm~0.31mmであった。また、乖離量は、部位Eで-0.35mm~0.50mmであった。
 例えば、要対策部位特定ステップS11における閾値を±0.15mmとすると、閾値を超える乖離量が生じた部位は、部位A、部位B、部位D、及び、部位Eとなる。よって、要対策部位特定ステップS11では、これらの部位を要対策部位として特定する。
 本実施形態では、ブランクの形状変動による影響を低減するための対策として、プレス成形品を成形する実金型の上記要対策部位を成形する部位に凸パターンを付与し、当該実金型を用いてプレス成形を行う。凸パターンは、実金型を構成する上金型と下金型との当該部位にそれぞれ付与する。図12は、実金型に付与する凸パターンの一例を示す図である。この凸パターン形状について説明する。
 図12(a)は、成形下死点における上金型21の凸パターン23と下金型25の凸パターン27とを側面視した図である。図12(b)は、図12(a)のC-C矢視図である。図12(b)中には、対向する下金型25の凸パターン27の位置を破線で示した。図12(a)及び図12(b)に示すように、本実施形態の凸パターン23,27は、上金型21または下金型25の表面における平面または湾曲面上に所定間隔で形成された複数の凸部23a,27a(凸部群)によって構成されている。
 凸部23a,27aの先端面の形状は、一辺の長さがA(mm)の正方形である。このような凸部23a,27aが縦横に所定の距離B(mm)を設けて配置され、規則的な凸パターン23,27を構成している。図12に示したような凸パターン23,27を上金型21と下金型25との要対策部位を成形する部分に付与することにより、凸部23a,27aが要対策部位の形状変動を押さえこみながらプレス成形できるので、ブランクの形状変動による影響が低減される。
 なお、凸部23a,27aの先端面の大きさ(縦及び横の長さ)Aは、3mm以上50mm以下とするのが好ましい。凸部23a,27aの先端面の大きさAを3mm未満とすると、プレス成形後にブランクの形状変動(波形状)がプレス成形品に残留する場合があって効果が小さくなる。また、凸部23a,27aの先端面の大きさAを50mm超えとすると、金型の天板部やフランジ部等の部位からはみ出す大きさとなって凸部先端の広い面でブランクを押さえることとなり、凸部のない場合と類似の成形となって効果がない。
 また、隣接する凸部間の距離Bは、凸部23a,27aの先端面の大きさAに対して1.2A以上2.0A以下とするとよい。隣接する凸部間の距離B(mm)を1.2A未満または2.0A超えとすると、プレス成形後にブランクの形状変動(波形状)がプレス成形品に残留する場合があって好ましくない。
 なお、図12に示した凸部23a,27aの数や配置及び先端面の形状は一例であり、本発明の凸パターンの態様を限定するものではない。例えば、凸部の先端面の形状は、長方形や円形であってもよい。
 また、上金型21に付与する凸パターン23と、下金型25に付与する凸パターン27とは、図12(a)及び図12(b)に示すように、互いの凸部同士が対向しないようにするとよい。すなわち、凸パターン23,27を付与する際には、上金型21の凸部23aが下金型25の平面25a(または湾曲面)に対向し、下金型25の凸部27aが上金型21の平面21a(または湾曲面)に対向する配置となるように、凸パターン23,27を上金型21及び下金型25に付与するとよい。
 さらに、板厚t(mm)のブランクを成形する場合、成形下死点における上金型21の凸部23aの下面と下金型25の凸部27aの上面との距離dは、0.1t以上0.5t以下とするのが好ましい。これにより、形状変動を有するブランクを上金型21と下金型25とで挟み込んだ際に、ブランク表面の要対策部位に相当する部分に新たな交互の微小なひずみを与えることができる。その結果、当該ひずみにより要対策部位の形状変動が緩和され、ブランクの形状変動による影響を抑制しやすくなる。
 なお、距離dを0.1t未満とすると、ひずみ量が大きくなり過ぎて凸部23a,27aの先端面形状がプレス成形後のプレス成形品表面に明瞭に転写されてしまうので好ましくない。また、距離dを0.5t超えとすると、ひずみの量が不足してブランクの形状変動を緩和する効果が小さくなるので好ましくない。
 また、本実施形態では、凸パターン23,27を付与した上金型21及び下金型25を用いてプレス成形した場合の効果をプレス成形解析によって確認したので、以下に説明する。
 なお、下記に説明するプレス成形解析では、凸部23a,27aの先端面形状を3mmの正方形とし(A=3mm)、隣接する凸部間の距離Bを4.5mmとした。また、上金型21の凸パターン23と下金型25の凸パターン27とは、互いの凸部が対向しないように付与した。具体的には、図12(b)に示すように、上金型21の凸部23aと下金型25の凸部27aとの位置を、紙面横方向及び紙面縦方向に互いにずれるように設定した。なお、上金型の凸部と下金型の凸部との位置関係は、この限りではなく、紙面横方向のみ、または、紙面縦方向のみにずれるようにしてもよい。
 また、成形下死点における上金型21の凸部23aの下面と下金型25の凸部27aの上面との距離dは0.36mmとした。前述のように、本実施形態のブランクの板厚tは1.2mmであるので、距離dとブランクの板厚tとの関係はd=0.3tである。
 また、本実施形態では、前述のプレス成形解析に用いた所定の金型モデルにおける要対策部位に対応する部位に、上記の凸パターン23,27を付与した。そして、本実施形態では、当該金型モデル(以下、「凸パターン付与金型モデル」という)を用いて、基準プレス成形品形状取得ステップS1~第2乖離量取得ステップS9と同様の解析を行った。なお、下記の説明における変化量及び乖離量は、図4~図11に示したものと同様の方法で求めたものである。
 図13は、凸パターン付与金型モデルを用いて平坦ブランクモデル3(図3参照)をプレス成形解析して取得した基準プレス成形品形状31を示す図である。なお、図13には、凸パターン付与金型モデルの凸パターン23,27によってひずみが付加される領域(ひずみ付加領域33)に網掛けを付している(図14~図18も同様)。
 図13に示すように、凸パターン付与金型モデルを用いてプレス成形解析した場合の基準プレス成形品形状31の部位Aの変化量は1.29mmであった。また、前記基準プレス成形品形状31の部位Bの変化量は0.07mmであった。前記基準プレス成形品形状31の部位Cの変化量は6.50mmであった。また、前記基準プレス成形品形状31の部位Dの変化量は2.10mmであった。また、前記基準プレス成形品形状31の部位Eの変化量は1.80mmであった。
 図14は、凸パターン付与金型モデルを用いて波形状ブランクモデル7(図5参照)をプレス成形解析して取得した波形状ブランクプレス成形品形状35を示す図である。図14に示すように、波形状ブランクプレス成形品形状35の部位Aの変化量は1.45mmであった。また、波形状ブランクプレス成形品形状35の部位Bの変化量は0.12mmであった。また、波形状ブランクプレス成形品形状35の部位Cの変化量は6.50mmであった。また、波形状ブランクプレス成形品形状35の部位Dの変化量は2.03mmであった。また、波形状ブランクプレス成形品形状35の部位Eの変化量は2.05mmであった。
 図15は、基準プレス成形品形状31(図13)と、波形状ブランクプレス成形品形状35(図14)とを比較して求めた第1乖離量を示す図である。図15に示すように、凸パターン付与金型モデルを用いてプレス成形解析した場合の基準プレス成形品形状31と波形状ブランクプレス成形品形状35との第1乖離量は、部位Aで0.16mmであった。また、前記第1乖離量は、部位Bで0.05mmであった。また、前記第1乖離量は、部位Cで0.00mmであった。また、前記第1乖離量は、部位Dで-0.07mmであった。また、前記第1乖離量は、部位Eで0.25mmであった。
 図16は、凸パターン付与金型モデルを用いて周期ずれ波形状ブランクモデル11(図8参照)をプレス成形解析して取得した周期ずれ波形状ブランクプレス成形品形状37を示す図である。図16に示すように、周期ずれ波形状ブランクプレス成形品形状37の部位Aの変化量は1.58mmであった。また、周期ずれ波形状ブランクプレス成形品形状37の部位Bの変化量は0.17mmであった。また、周期ずれ波形状ブランクプレス成形品形状37の部位Cの変化量は6.60mmであった。また、周期ずれ波形状ブランクプレス成形品形状37の部位Dの変化量は2.26mmであった。また、周期ずれ波形状ブランクプレス成形品形状37の部位Eの変化量は1.63mmであった。
 図17は、基準プレス成形品形状31(図13)と、周期ずれ波形状ブランクプレス成形品形状37(図16)とを比較して求めた第2乖離量を示す図である。図17に示すように、基準プレス成形品形状31と周期ずれ波形状ブランクプレス成形品形状37との第2乖離量は、部位Aで0.29mmであった。また、前記第2乖離量は、部位Bで0.10mmであった。また、前記第2乖離量は、部位Cで0.10mmであった。また、前記第2乖離量は、部位Dで0.16mmであった。また、前記第2乖離量は、部位Eで-0.17mmであった。
 図18は、図15の第1乖離量と図17の第2乖離量との両方を目標形状に対応させて示す図である。図18に示すように、第1乖離量と第2乖離量とは、部位Aで0.16mm~0.29mmであった。また、第1乖離量と第2乖離量とは、部位Bで0.05mm~0.10mmであった。また、第1乖離量と第2乖離量とは、部位Cで0.00mm~0.10mmであった。また、第1乖離量と第2乖離量とは、部位Dで-0.07mm~0.16mmであった。また、第1乖離量と第2乖離量とは、部位Eで-0.17mm~0.25mmであった。図18の乖離量は、図11に示した対策前の乖離量と比べて低減している。したがって、凸パターン付与金型モデルを用いることで、ブランクの形状変動による影響を低減する効果があることが確認できた。
<凸パターン付与ステップ>
 凸パターン付与ステップS13は、図12で説明した凸パターン23,27を実金型に付与するステップである。凸パターン23,27は、実金型の表面にレーザ加工やエッチング加工を施すなどして付与するとよい。凸パターン23,27は、実金型の上金型21及び下金型25における要対策部位、または、要対策部位とその周囲を成形する部位に付与する。その際、図12で説明したように、上金型21の凸部23aが下金型25の平面25aまたは湾曲面に対向し、下金型25の凸部27aが上金型21の平面21aまたは湾曲面に対向する位置関係とするのが好ましい。ここでは、図13~図18で説明したプレス成形解析に用いた凸パターン付与金型モデルと同様の凸パターン23,27を実金型に付与した。
<実プレス成形ステップ>
 実プレス成形ステップS15は、凸パターン付与ステップS13で凸パターン23,27を付与した上金型21及び下金型25を用いて、実ブランクをプレス成形するステップである。実プレス成形ステップS15では、前述したように、成形下死点における上金型21の凸部23aの下面と下金型25の凸部27aの上面との距離dを0.1t以上0.5t以下になるようにプレス成形するのが好ましい(t(mm)はブランクの板厚)。
 凸パターン23,27を付与した実金型を用いて形状変動のある実ブランクをプレス成形すると、プレス成形後のプレス成形品の形状は、図18の解析結果と同様に、ブランクの形状変動による影響が小さくなり、良好な寸法精度を得た。
 以上、本実施形態によれば、ブランクの形状変動による影響が大きい部位を特定し、適切な対策をとることができるので、良好な寸法精度のプレス成形品を安定して得ることができる。なお、本実施形態では、形状変動のあるブランクを想定したブランクモデルを複数パターン生成し、それぞれの場合の乖離量を求めて要対策部位を特定しているので、個々の実ブランクの間で生じる形状変動の相違を考慮したものとなっている。
 なお、上記は周期ずれ波形状ブランクモデルを一種類だけ生成したものであったが、周期ずれ波形状ブランクモデルを複数種類生成してもよい。その場合、周期ずれ波形状ブランクモデルの波形状は、互いに周期がずれるようにする(波長及び振幅は、波形状ブランクモデル及びすべての周期ずれ波形状ブランクモデルで共通とする)とよい。形状変動のあるブランクを想定したブランクモデルのパターンを増やすことで、個々の実ブランクの間で生じる形状変動の相違をより具体的に考慮することができる。
 また、上記の説明では、二つのプレス成形品形状の乖離量を求めるにあたり、プレス成形方向における成形下死点からの変化量(スプリングバック量)の差を乖離量としたが、本発明はこれに限らない。例えば、本発明は、プレス成形方向において、一方のプレス成形品形状における離型後(スプリングバック後)の各部位の高さから、他方のプレス成形品形状における離型後(スプリングバック後)の各部位の高さを差し引いた差を乖離量としてもよい。もっとも、この場合は、二つのプレス成形品形状に共通する固定点を設定する必要があり、固定点の選び方によって、乖離量が変動する場合がある。この点、本実施形態のように、ブランクの形状変動の有無によらず一定である成形下死点での形状を基準とした変化量同士を比較するようにすれば、正確かつ容易に乖離量を求めることができて好ましい。
 また、本実施形態はフォーム成形の場合を例に説明したが、ドロー成形であってもよい。
 なお、凸パターンを付与した上金型及び下金型を用いることで、プレス成形後のプレス成形品に凹凸パターンが形成される場合がある。そのような場合には、実プレス成形ステップS15の後に、凹凸パターンが形成されたプレス成形品を再プレスして凹凸パターンを潰すリストライク工程をさらに備えてもよい。リストライク工程で凹凸パターンを潰すことで、凹凸パターンが形成された部位とその周辺にひずみが加わって加工硬化し、更に剛性が向上する。これにより、プレス成形品に残留する波形状(形状変動)を抑えることができて、寸法精度を向上できる。
 本発明の効果を確認するために、図1で説明したプレス成形品の製造方法を実施した。本実施例では、実施形態と同様に図2のプレス成形品1を目標形状とした。また、本実施例におけるCAE解析の成形は、実施形態と同様にフォーム成形とした。なお、本実施例における変化量及び乖離量は、実施形態と同様の方法で求めた。
 まず、本実施例では、実施形態と同様に平坦ブランクモデル3(図3参照)を用いて基準プレス成形品形状取得ステップS1を実施した。所定の金型モデルで平坦ブランクモデル3をプレス成形解析した場合の基準プレス成形品形状5の変化量は、次の通りである。すなわち、前記変化量は、図4で説明したように、部位Aで1.06mm、部位Bで0.63mm、部位Cで6.02mm、部位Dで1.10mm、部位Eで-2.61mmであった。
 また、本実施例では、実施形態と同様に波形状ブランクモデル7(図5参照)を用いて波形状ブランクプレス成形品形状取得ステップS3を実施した。所定の金型モデルで波形状ブランクモデル7をプレス成形解析した場合の波形状ブランクプレス成形品形状9の変化量は、次の通りである。すなわち、前記変化量は、図6で説明したように、部位Aで1.37mm、部位Bで0.72mm、部位Cで6.02mm、部位Dで0.96mm、部位Eで-2.11mmであった。
 さらに、本実施例では、第1乖離量取得ステップS5において、基準プレス成形品形状5(図4)と波形状ブランクプレス成形品形状9(図6)とを比較し、両形状の乖離量(第1乖離量)を求めた。第1乖離量は、図7で説明したように、部位Aで0.31mm、部位Bで0.09mm、部位Cで0.00mm、部位Dで-0.14mm、部位Eで0.50mmであった。
 続いて、本実施例では、周期ずれ波形状ブランクプレス成形品形状取得ステップS7において、波形状ブランクモデル7とは異なる形状の波形状ブランクモデルを生成した。そして、本実施例では、上記と同様の所定の金型モデルを用いてプレス成形解析を行い、離型後のプレス成形品形状を取得した。波形状ブランクモデル7とは異なる形状の波形状ブランクモデルとして、実施形態では図8で説明した周期ずれ波形状ブランクモデル11を用いたが、本実施例では図19に示す周期ずれ波形状ブランクモデル41を用いた。周期ずれ波形状ブランクモデル41の具体的な形状を以下に説明する。
 図19に示す例は、所定の波長と所定の振幅とを有する周期的な波形状を有するブランクモデルであり、図19(a)における濃淡が凹凸を表現している。図19(a)を白抜き矢印の方向から見た状態が図19(b)であり、その一部拡大図が図19(c)である。図19に示す例は、板厚1.2mmで、凹凸の振幅と波長とが図5の波形状ブランクモデル7と同じであるが、波形状の周期が波形状ブランクモデル7よりも1/2波長分紙面右方向にずれている(図19(d)及び図19(e)参照)。
 図20は、図19の周期ずれ波形状ブランクモデル41を所定の金型モデルでプレス成形解析した場合の周期ずれ波形状ブランクプレス成形品形状43を示す図である。図20に示すように、所定の金型モデルでプレス成形解析した場合の周期ずれ波形状ブランクプレス成形品形状43の部位Aの変化量は0.85mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状43の部位Bの変化量は0.88mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状43の部位Cの変化量は5.95mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状43の部位Dの変化量は0.86mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状43の部位Eの変化量は-2.64mmであった。
 さらに、本実施例では、第2乖離量取得ステップS9において、基準プレス成形品形状5(図4)と周期ずれ波形状ブランクプレス成形品形状43(図20)とを比較し、乖離量(第2乖離量)を求めた。図21に示すように、周期ずれ波形状ブランクプレス成形品形状43と基準プレス成形品形状5との第2乖離量は、部位Aで-0.21mm、部位Bで0.25mm、部位Cで-0.07mm、部位Dで-0.24mm、部位Eで-0.03mmであった。
 図22は、第1乖離量取得ステップS5で求めた第1乖離量(図7)と第2乖離量取得ステップS9で求めた第2乖離量(図21)との両方を、プレス成形品1(目標形状)に対応させて示す図である。図22に示すように、対策前の乖離量は、部位Aで-0.21mm~0.31mm、部位Bで0.09mm~0.25mm、部位Cで-0.07mm~0.00mm、部位Dで-0.24mm~-0.14mm、部位Eで-0.03mm~0.50mmであった。
 ここで、例えば、要対策部位特定ステップS11における閾値を±0.15mmとすると、閾値を超える乖離量が生じた部位は、部位A、部位B、部位D、部位Eとなる。よって、これらの部位を要対策部位として特定した。
 本実施例においても、ブランクの形状変動による影響を低減するための対策として、上記要対策部位に対応する実金型の表面に、図12で説明した凸パターン23,27を付与することとした。本実施例においては、その効果をプレス成形解析によって確認したので、以下に説明する。
 なお、下記に説明するプレス成形解析では、凸部23a,27aの先端面形状を3mmの正方形とし(A=3mm)、隣接する凸部間の距離Bを4.5mmとした。また、上金型21の凸パターン23と下金型25の凸パターン27とは、互いの凸部23a,27aが対向しないように付与した。具体的には、図12(b)に示すように、上金型21の凸部23aと下金型25の凸部27aとの位置を、紙面横方向及び紙面縦方向に互いにずれるように設定した。また、成形下死点における上金型21の凸部23aの下面と下金型25の凸部27aの上面との距離dは、0.36mmとした。本実施例のブランクの板厚tは、実施形態と同様に1.2mmであるので、距離dとブランクの板厚tとの関係はd=0.3tである。
 本実施例では、所定の金型モデルにおける要対策部位に対応する部位に上記の凸パターン23,27を付与し、当該金型モデル(凸パターン付与金型モデル)を用いて基準プレス成形品形状取得ステップS1~第2乖離量取得ステップS9と同様の解析を実施した。
 凸パターン付与金型モデルで平坦ブランクモデル3(図3参照)をプレス成形解析した場合の基準プレス成形品形状31の変化量は、図13で説明したように、部位Aで1.29mmであった。また、前記基準プレス成形品形状31の変化量は、部位Bで0.07mmであった。また、前記基準プレス成形品形状31の変化量は、部位Cで6.50mmであった。また、前記基準プレス成形品形状31の変化量は、部位Dで2.10mmであった。また、前記基準プレス成形品形状31の変化量は、部位Eで1.80mmであった。
 凸パターン付与金型モデルで波形状ブランクモデル7(図5参照)をプレス成形解析した場合の波形状ブランクプレス成形品形状35の変化量は、図14で説明したように、部位Aで1.45mmであった。また、前記波形状ブランクプレス成形品形状35の変化量は、部位Bで0.12mmであった。また、前記波形状ブランクプレス成形品形状35の変化量は、部位Cで6.50mmであった。また、前記波形状ブランクプレス成形品形状35の変化量は、部位Dで2.03mmであった。また、前記波形状ブランクプレス成形品形状35の変化量は、部位Eで2.05mmであった。
 基準プレス成形品形状31(図13)と、波形状ブランクプレス成形品形状35(図14)とを比較して求めた第1乖離量は、図15で説明したように、部位Aで0.16mmであった。また、前記第1乖離量は、部位Bで0.05mmであった。また、前記第1乖離量は、部位Cで0.00mmであった。また、前記第1乖離量は、部位Dで-0.07mmであった。また、前記第1乖離量は、部位Eで0.25mmであった。
 図23は、凸パターン付与金型モデルを用いて周期ずれ波形状ブランクモデル41(図19参照)を、プレス成形解析して取得した周期ずれ波形状ブランクプレス成形品形状51を示す図である。図23に示すように、凸パターン付与金型モデルを用いた場合の周期ずれ波形状ブランクプレス成形品形状51の部位Aの変化量は1.19mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状51の部位Bの変化量は0.20mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状51の部位Cの変化量は6.44mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状51の部位Dの変化量は1.98mmであった。また、前記周期ずれ波形状ブランクプレス成形品形状51の部位Eの変化量は1.82mmであった。
 図24は、基準プレス成形品形状31(図13)と、周期ずれ波形状ブランクプレス成形品形状51(図23)とを比較して求めた第2乖離量を示す図である。図24に示すように、凸パターン付与金型モデルを用いた場合の基準プレス成形品形状31と周期ずれ波形状ブランクプレス成形品形状51との第2乖離量は、部位Aで-0.10mmであった。また、前記第2乖離量は、部位Bで0.13mmであった。また、前記第2乖離量は、部位Cで-0.06mmであった。また、前記第2乖離量は、部位Dで-0.12mmであった。また、前記第2乖離量は、部位Eで0.02mmであった。
 図25は、図15の第1乖離量と図24の第2乖離量との両方を、プレス成形品1(目標形状)に対応させて示す図である。図25に示すように、凸パターン付与金型モデルを用いた場合の乖離量は、部位Aで-0.10mm~0.16mmであった。また、前記乖離量は、部位Bで0.05mm~0.13mmであった。また、前記乖離量は、部位Cで-0.06mm~0.00mmであった。また、前記乖離量は、部位Dで-0.12mm~-0.07mmであった。また、前記乖離量は、部位Eで0.02mm~0.25mmであった。図25の乖離量は、図22に示した対策前の乖離量と比べて著しく小さくなっている。したがって、要対策部位に対応して金型に凸パターンを付与することで、ブランクの形状変動による影響を低減する効果があることが確認できた。
 そこで、凸パターン付与ステップS13においては、上記凸パターン付与金型モデルと同様の凸パターン23,27を実金型表面に付与した。具体的には、本実施例における要対策部位、または、要対策部位とその周囲を成形する金型の部位に、凸パターン23,27を付与した。そして、実プレス成形ステップS15においては、上記凸パターン23,27を付与した実金型を用いて、形状変動のある実ブランクをプレス成形した。なお、実ブランクは、上述のブランクモデルに相当する板厚1.2mmの1.5GPa級鋼板を用いた。
 本実施例において、実プレス成形ステップS15でプレス成形したプレス成形品の形状は、図25の解析結果と同様にブランクの形状変動による影響が小さくなり、良好な寸法精度を得た。
 本発明においては、ブランクの形状変動による影響を低減するプレス成形品の製造方法を提供することができる。
1 プレス成形品(目標形状)
3 平坦ブランクモデル
5 基準プレス成形品形状(所定の金型モデル使用)
7 波形状ブランクモデル
9 波形状ブランクプレス成形品形状(所定の金型モデル使用)
11 周期ずれ波形状ブランクモデル
13 周期ずれ波形状ブランクプレス成形品形状(所定の金型モデル使用)
21 上金型
21a 平面
23 凸パターン(上金型)
23a 凸部
25 下金型
25a 平面
27 凸パターン(下金型)
27a 凸部
31 基準プレス成形品形状(凸パターン付与金型モデル使用)
33 ひずみ付加領域
35 波形状ブランクプレス成形品形状(凸パターン付与金型モデル使用)
37 周期ずれ波形状ブランクプレス成形品形状(凸パターン付与金型モデル使用)
41 周期ずれ波形状ブランクモデル(実施例)
43 周期ずれ波形状ブランクプレス成形品形状(所定の金型モデル使用)
51 周期ずれ波形状ブランクプレス成形品形状(凸パターン付与金型モデル使用)

Claims (3)

  1.  形状変動のある金属板から採取したブランクを用いてプレス成形したプレス成形品における前記ブランクの形状変動の影響を低減するプレス成形品の製造方法であって、
     平坦な形状の平坦ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を基準プレス成形品形状として取得する基準プレス成形品形状取得ステップと、
     前記形状変動に対応した所定の波長と所定の振幅の波形状を有する波形状ブランクモデルを生成し、該生成した波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を波形状ブランクプレス成形品形状として取得する波形状ブランクプレス成形品形状取得ステップと、
     前記基準プレス成形品形状と前記波形状ブランクプレス成形品形状とを比較し、両形状の乖離する部位と乖離量とを求める第1乖離量取得ステップと、
     前記波形状ブランクモデルにおける波形状とは振幅と波長が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類または複数種類生成し、該生成した周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を周期ずれ波形状ブランクプレス成形品形状として取得する周期ずれ波形状ブランクプレス成形品形状取得ステップと、
     前記基準プレス成形品形状と一種類または複数種類の前記周期ずれ波形状ブランクプレス成形品形状とを比較し、両形状の乖離する部位と乖離量とを求める第2乖離量取得ステップと、
     前記第1乖離量取得ステップで閾値を超える乖離量が生じた部位及び前記第2乖離量取得ステップで閾値を超える乖離量が生じた部位に相当する前記プレス成形品の部位を要対策部位として特定する要対策部位特定ステップと、
     前記プレス成形品を成形する実金型の上金型及び下金型において、前記要対策部位、または、前記要対策部位とその周囲を成形する部位に凸パターンを付与する凸パターン付与ステップと、
     前記凸パターンを付与した上金型及び下金型を用いて、前記ブランクをプレス成形する実プレス成形ステップと、を備えたことを特徴とするプレス成形品の製造方法。
  2.  前記第1乖離量取得ステップは、
     前記基準プレス成形品形状における所定部位のスプリングバック量と、前記波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得し、
     前記第2乖離量取得ステップは、
     前記基準プレス成形品形状における所定部位のスプリングバック量と、前記周期ずれ波形状ブランクプレス成形品形状における前記基準プレス成形品形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得することを特徴とする請求項1に記載のプレス成形品の製造方法。
  3.  前記凸パターンは、平面又は湾曲面上に所定間隔で形成された複数の凸部によって構成され、前記凸部の縦及び横の長さAが3mm以上50mm以下、隣接する凸部間の距離が1.2A以上2.0A以下に設定されており、
     前記凸パターン付与ステップは、前記凸パターンを前記上金型及び前記下金型に、上金型の凸部が下金型の平面又は湾曲面に対向し、下金型の凸部が上金型の平面又は湾曲面に対向する配置となるように付与し、
     前記実プレス成形ステップは、板厚t(mm)の前記ブランクを成形する場合の成形下死点における前記上金型の前記凸部の下面と前記下金型の前記凸部の上面との距離が0.1t以上0.5t以下になるようにプレス成形することを特徴とする請求項1または2に記載のプレス成形品の製造方法。
PCT/JP2023/015563 2022-08-29 2023-04-19 プレス成形品の製造方法 WO2024047933A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022135509A JP7343015B1 (ja) 2022-08-29 2022-08-29 プレス成形品の製造方法
JP2022-135509 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024047933A1 true WO2024047933A1 (ja) 2024-03-07

Family

ID=87934848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015563 WO2024047933A1 (ja) 2022-08-29 2023-04-19 プレス成形品の製造方法

Country Status (2)

Country Link
JP (1) JP7343015B1 (ja)
WO (1) WO2024047933A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247504A (ja) * 1985-08-27 1987-03-02 Nissan Motor Co Ltd 形状検査装置
JPH0377728A (ja) * 1989-08-14 1991-04-03 Kawasaki Steel Corp 意匠性金属板及びその製造方法
JP2005081417A (ja) * 2003-09-10 2005-03-31 Nissan Motor Co Ltd プレスシミュレーション用モデルの初期形状作成装置、プレスシミュレーション装置、プレスシミュレーション用モデルの初期形状作成方法、およびシミュレーション方法
JP2017177150A (ja) * 2016-03-29 2017-10-05 フレキシースクラム株式会社 拘束材およびそれを用いた加工装置,搬送装置
JP2019002834A (ja) * 2017-06-16 2019-01-10 株式会社オプトン 検査装置
WO2020149381A1 (ja) * 2019-01-17 2020-07-23 日本製鉄株式会社 プレス成形品の製造方法、及びプレスライン
JP2020127959A (ja) * 2019-02-08 2020-08-27 盛岡セイコー工業株式会社 板金部品、板金部品の製造方法及び順送金型

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247504A (ja) * 1985-08-27 1987-03-02 Nissan Motor Co Ltd 形状検査装置
JPH0377728A (ja) * 1989-08-14 1991-04-03 Kawasaki Steel Corp 意匠性金属板及びその製造方法
JP2005081417A (ja) * 2003-09-10 2005-03-31 Nissan Motor Co Ltd プレスシミュレーション用モデルの初期形状作成装置、プレスシミュレーション装置、プレスシミュレーション用モデルの初期形状作成方法、およびシミュレーション方法
JP2017177150A (ja) * 2016-03-29 2017-10-05 フレキシースクラム株式会社 拘束材およびそれを用いた加工装置,搬送装置
JP2019002834A (ja) * 2017-06-16 2019-01-10 株式会社オプトン 検査装置
WO2020149381A1 (ja) * 2019-01-17 2020-07-23 日本製鉄株式会社 プレス成形品の製造方法、及びプレスライン
JP2020127959A (ja) * 2019-02-08 2020-08-27 盛岡セイコー工業株式会社 板金部品、板金部品の製造方法及び順送金型

Also Published As

Publication number Publication date
JP2024032070A (ja) 2024-03-12
JP7343015B1 (ja) 2023-09-12

Similar Documents

Publication Publication Date Title
US9731339B2 (en) Method for producing press-molded article
JP6458802B2 (ja) プレス成形品の製造方法およびプレス金型
KR102291185B1 (ko) 프레스 성형품의 제조 방법
JP2014028379A (ja) アウタパネルのプレス成形方法
CN110293167A (zh) Suv汽车后背门外板拉延工艺面造型方法
JPWO2017038579A1 (ja) 伸びフランジ成形部品の製造方法
WO2024047933A1 (ja) プレス成形品の製造方法
JPS6289544A (ja) クランクスロ−の部分型入れ鍛造方法およびその装置
JP7409583B1 (ja) プレス成形品の製造方法
WO2024019168A1 (ja) プレス成形品の製造方法
JP2017006943A (ja) プレス成形品の製造方法
JP6784346B1 (ja) プレス部品の製造方法
JP2014226678A (ja) 金属板材の曲げ成形方法
WO2024038850A1 (ja) プレス成形品の製造方法
JP7405319B1 (ja) プレス成形品の製造方法
JP2000288643A (ja) エンボス加工を施したアルミニウム合金板のプレス成形方法
JP7392746B2 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2021164954A (ja) プレス部品の製造方法、曲げ戻し用の金型、プレス部品の成形方法及び高強度鋼板
WO2023139900A1 (ja) プレス成形解析の解析精度評価方法
JP5531422B2 (ja) プレス成形方法およびプレス成形装置
JP6319382B2 (ja) 伸びフランジ成形部品の製造方法
JP6176430B1 (ja) プレス成形品の製造方法
JP7416106B2 (ja) プレス成形解析の解析精度評価方法
WO2023106013A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023119915A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859704

Country of ref document: EP

Kind code of ref document: A1