JP7395314B2 - 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム - Google Patents

安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム Download PDF

Info

Publication number
JP7395314B2
JP7395314B2 JP2019193583A JP2019193583A JP7395314B2 JP 7395314 B2 JP7395314 B2 JP 7395314B2 JP 2019193583 A JP2019193583 A JP 2019193583A JP 2019193583 A JP2019193583 A JP 2019193583A JP 7395314 B2 JP7395314 B2 JP 7395314B2
Authority
JP
Japan
Prior art keywords
carrier gas
temperature
flow rate
stable operation
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019193583A
Other languages
English (en)
Other versions
JP2021067408A (ja
Inventor
聡太朗 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019193583A priority Critical patent/JP7395314B2/ja
Publication of JP2021067408A publication Critical patent/JP2021067408A/ja
Application granted granted Critical
Publication of JP7395314B2 publication Critical patent/JP7395314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)
  • Crushing And Grinding (AREA)

Description

本開示は、安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラムに関するものである。
従来、石炭やバイオマス燃料等の固体燃料(炭素含有固体燃料)は、粉砕機(ミル)で所定粒径範囲内の微粉状に粉砕して、燃焼装置へ供給される。ミルは、回転テーブルへ投入された石炭やバイオマス燃料等の固体燃料を、回転テーブルとローラとの間に挟み込むことで粉砕する。そして、回転テーブルの外周から供給される搬送ガスによって、粉砕されて微粉状となった燃料を分級機へ搬送する。分級機では所定粒径範囲内の微粉燃料を選別し、ボイラへ搬送して燃焼装置で燃焼させている。火力発電プラントでは、ボイラで燃焼して生成された燃焼ガスとの熱交換により蒸気を発生させ、該蒸気により蒸気タービンを回転駆動して、蒸気タービンに接続した発電機を回転駆動することで発電が行われる。
ミルでは、供給される搬送ガスによって、燃料の搬送(排出)と併せて燃料の乾燥を行っている。搬送ガスは、温度の高い熱ガスと温度の低い冷ガスとを混合して、燃料の乾燥に必要な温度及び燃料の搬送に必要な流量が調整されている(例えば、特許文献1及び特許文献2)。
特開2018-123993号公報 特許第5682252号公報
しかしながら、ミルにおいて例えば水分含有量の多い固体燃料(例えばバイオマス燃料)を使用する場合には、粉砕した固体燃料の乾燥に伴う気化熱によって搬送ガスの温度が大幅に低下し、搬送ガスのミル出口温度が低下する場合がある。このような場合には、適切なミル出口温度に管理するために、搬送ガスの温度を上昇させる処置が行われる。具体的には、搬送ガスは、熱ガスと冷ガスの混合により供給されることから、熱ガスの流量を増加させる処理が行われる。しかし、搬送ガスのミル入口温度が上昇し過ぎると、ミル内での固体燃料の着火防止のために、熱ガスの供給を停止(遮断)させるインターロックが動作する場合がある。このような場合には、冷ガスのみの供給となるため搬送ガス流量が低下し、ミルにおける燃料の搬送不良(ミル内での燃料蓄積)を防止するために、ミルの運転を停止(緊急停止)させるインターロックが動作して固体燃料を粉砕した微粉燃料の供給が停止する可能性がある。このように、特に水分含有量の多い固体燃料では、ミル入口温度上昇を伴う搬送ガスを調整した結果、搬送ガス流量が低下してインターロックが動作してしまうというインターロック動作(保護動作)の連鎖的発生が生ずる可能性がある。ミルの運転が停止した場合には、ボイラへの燃料供給ができなくなるため、ボイラ出力の低下等、発電プラントの安定運転に支障をきたす可能性があった。
本開示は、このような事情に鑑みてなされたものであって、安定運転を継続的に行うことのできる安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラムを提供することを目的とする。
本開示の第1態様は、固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御システムであって、前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止部と、前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行部と、を備え、前記実行部は、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行し、前記実行部は、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行する安定運転制御システムである。
本開示の第2態様は、固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御方法であって、前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止工程と、前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行工程と、を有し、前記実行工程において、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行し、前記実行工程において、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行する安定運転制御方法である。
本開示の第3態様は、固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御プログラムであって、前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止処理と、前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行処理と、をコンピュータに実行させ、前記実行処理において、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行し、前記実行処理において、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行する安定運転制御プログラムである。
本開示によれば、安定運転を継続的に行うことができるという効果を奏する。
本開示の一実施形態に係る固体燃料粉砕装置およびボイラを示す構成図である。 本開示の一実施形態に係る制御部のハードウェア構成図である。 本開示の一実施形態に係る制御部が備える機能を示した機能ブロック図である。 本開示の一実施形態に係る制御部による温度低減モード実行処理のフローチャートを示した図である。 参考例における動作の流れを示した図である。
以下に、本開示に係る安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラムの一実施形態について、図面を参照して説明する。本実施形態では、安定運転制御システムが発電プラント1の固体燃料粉砕装置100に適用される場合について説明する。
本実施形態に係る発電プラント1は、固体燃料粉砕装置100とボイラ200とを備えている。
本実施形態の固体燃料粉砕装置100は、一例として石炭やバイオマス燃料等の固体燃料(炭素含有固体燃料)を粉砕し、微粉燃料を生成してボイラ200のバーナ部(燃焼装置)220へ供給する装置である。図1に示す固体燃料粉砕装置100とボイラ200とを含む発電プラント1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ部220のそれぞれに対応する複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。
本実施形態の固体燃料粉砕装置100は、ミル(粉砕部)10と、給炭機(燃料供給機)20と、送風部(搬送ガス供給部)30と、状態検出部(状態検出装置)40と、制御部(制御装置)60とを備えている。
なお、本実施形態では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。また同様に“下”とは鉛直下側の部分を示している。
ボイラ200に供給する石炭やバイオマス燃料等の固体燃料を微粉状の固体燃料である微粉燃料へと粉砕するミル10は、石炭のみを粉砕する形式であっても良いし、バイオマス燃料のみを粉砕する形式であっても良いし、石炭とともにバイオマス燃料を粉砕する形式であってもよく、固体燃料の種類は限定されない。ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。
ミル10は、ハウジング11と、回転テーブル(テーブル)12と、ローラ(粉砕ローラ)13と、駆動部14と、回転式分級機(分級機)16と、燃料供給部17と、回転式分級機16を回転駆動させるモータ18とを備えている。
ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、回転テーブル12とローラ13と回転式分級機16と、燃料供給部17とを収容する筐体である。ハウジング11の天井部42の中央部には、燃料供給部17が取り付けられている。この燃料供給部17は、バンカ21から導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。
ハウジング11の底面部41付近には駆動部14が設置され、この駆動部14から伝達される駆動力により回転する回転テーブル12が回転自在に配置されている。
回転テーブル12は、平面視円形の部材であり、燃料供給部17の下端部が対向するように配置されている。回転テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。燃料供給部17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の回転テーブル12に向けて供給する。回転テーブル12は燃料供給部17から供給された固体燃料をローラ13との間で粉砕するもので、粉砕テーブルとも呼ばれる。
固体燃料が燃料供給部17から回転テーブル12の中央へ向けて投入されると、回転テーブル12の回転による遠心力によって固体燃料は回転テーブル12の外周側へと導かれ、ローラ13との間に挟み込まれて粉砕される。粉砕された固体燃料は、搬送ガス流路100aから導かれた搬送ガス(一次空気)によって上方へと吹き上げられ、回転式分級機16へと導かれる。すなわち、回転テーブル12の外周には、搬送ガス流路100aから流入する搬送ガスをハウジング11内の回転テーブル12の上方の空間に流出させる吹出口(図示省略)が設けられている。吹出口にはベーン(図示省略)が設置されており、吹出口から吹き出した搬送ガスに旋回力を与える。ベーンにより旋回力が与えられた搬送ガスは、旋回する速度成分を有する気流となって、回転テーブル12上で粉砕された固体燃料をハウジング11内の上方の回転式分級機16へと導く。なお、搬送ガスに混合した固体燃料の粉砕物のうち、所定粒径より大きいものは回転式分級機16により分級されて、または、回転式分級機16まで到達することなく、落下して回転テーブル12に戻されて、再びローラ13との間で粉砕される。すなわち、固体燃料は搬送ガスによる搬送力によって、出口側(回転式分級機16)へ搬送される。
ローラ13は、燃料供給部17から回転テーブル12に供給された固体燃料を粉砕する回転体である。ローラ13は、回転テーブル12の上面に押圧されて回転テーブル12と協働して固体燃料を粉砕する。図1では、ローラ13が代表して1つのみ示されているが、回転テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数のローラ13が対向して配置される。例えば、外周部上に120°の角度間隔を空けて、3つのローラ13が周方向に均等な間隔で配置される。この場合、3つのローラ13が回転テーブル12の上面と接する部分(押圧する部分)は、回転テーブル12の回転中心軸からの距離が等距離となる。
ローラ13は、ジャーナルヘッド45によって、上下に揺動可能となっており、回転テーブル12の上面に対して接近離間自在に支持されている。ローラ13は、外周面が回転テーブル12の上面に接触した状態で、回転テーブル12が回転すると、回転テーブル12から回転力を受けて連れ回りするようになっている。燃料供給部17から固体燃料が供給されると、ローラ13と回転テーブル12との間で固体燃料が押圧されて粉砕されて、微粉燃料となる。
ジャーナルヘッド45の支持アーム47は、中間部が水平方向に沿った支持軸48によって、ハウジング11の側面部に支持軸48を中心としてローラ13を上下方向に揺動可能に支持されている。また、支持アーム47の鉛直上側にある上端部には、押圧装置49が設けられている。押圧装置49は、ハウジング11に固定され、ローラ13を回転テーブル12に押し付けるように、支持アーム47等を介してローラ13に荷重(粉砕荷重)を付与する。
駆動部14は、回転テーブル12に駆動力を伝達し、回転テーブル12を中心軸(回転軸)回りに回転させる装置である。駆動部14は、回転テーブル12を回転させる駆動力を発生する。
回転式分級機16は、ハウジング11の上部に設けられ中空状の略逆円錐形状の外形を有している。回転式分級機16は、その外周位置に上下方向に延在する複数のブレード16aを備えている。各ブレード16aは、回転式分級機16の中心軸線周りに所定の間隔(均等間隔)で設けられている。また、回転式分級機16は、回転数(分級機回転数)により、ローラ13により粉砕された固体燃料を所定粒径(例えば、石炭では70~100μm)より大きいもの(以下、所定粒径を超える粉砕された固体燃料を「粗粉燃料」という。)と所定粒径以下のもの(以下、所定粒径以下の粉砕された固体燃料を「微粉燃料」という。)に分級する装置である。回転により分級する回転式分級機16は、ロータリセパレータとも呼ばれ、制御部60によって制御されるモータ18により回転駆動力を与えられ、ハウジング11の上下方向に延在する円筒軸(図示省略)を中心に燃料供給部17の周りを回転する。
回転式分級機16に到達した粉砕された固体燃料において、ブレード16aの回転により生じる遠心力と、搬送ガスの気流による向心力との相対的なバランスにより、大きな径の粗粉燃料は、ブレード16aによって叩き落とされ、回転テーブル12へと戻されて再び粉砕され、微粉燃料はハウジング11の天井部42にある出口19に導かれる。
回転式分級機16によって分級された微粉燃料は、出口19から供給流路100bへ排出され、搬送ガスとともに後工程へと搬送される。供給流路100bへ流出した微粉燃料は、ボイラ200のバーナ部220へ供給される。
燃料供給部17は、ハウジング11の上端を貫通するように上下方向に沿って下端部がハウジング11内部まで延設されて取り付けられ、燃料供給部17の上部から投入される固体燃料を回転テーブル12の略中央領域に供給する。燃料供給部17は、給炭機20から固体燃料が供給される。
給炭機20は、搬送部22と、モータ23とを備える。搬送部22は、モータ23から与えられる駆動力によってバンカ21の直下にあるダウンスパウト部24の下端部から排出される固体燃料を搬送し、ミル10の燃料供給部17に導かれる。
通常、ミル10の内部には、粉砕した固体燃料である微粉燃料を搬送するための搬送ガスが制御された風量(搬送ガス流量)で供給されて、圧力が高くなっている。バンカ21の直下にある上下方向に延在する管であるダウンスパウト部24には内部に燃料が積層状態で保持されていて、ダウンスパウト部24内に積層された固体燃料層により、ミル10側の搬送ガスと微粉燃料が逆流入しないようなシール性を確保している。
ミル10へ供給する固体燃料の供給量は、搬送部22のベルトコンベアのベルト速度で調整されてもよい。
一方、粉砕前のバイオマス燃料のチップやペレットは、石炭燃料(すなわち粉砕前の石炭の粒径は、例えば、粒径が2~50mm程度)に比べて、粒径が一定であり(ペレットのサイズは、例えば、直径6~8mm程度、長さは40mm以下程度)、かつ、軽量である。このため、バイオマス燃料がダウンスパウト部24内に貯留されている場合は、石炭燃料の場合に比べて、各バイオマス燃料間に形成される隙間が大きくなる。
したがって、ダウンスパウト部24内のバイオマス燃料のチップやペレットの間には隙間があることから、ミル10内部から吹き上げる搬送ガスと微粉燃料が各バイオマス燃料間に形成される隙間を通過して、ミル10内部の圧力が低下する可能性がある。また、搬送ガスがバンカ21の貯留部へと吹き抜けると、バイオマス燃料の搬送性の悪化や粉塵発生、バンカ21及びダウンスパウト部24の着火や、また、ミル10内部の圧力が低下すると、微粉燃料の搬送量が低下するなど、ミル10の運転に種々の問題が生じる可能性がある。このため、給炭機20から燃料供給部17の途中にロータリバルブ(図示省略)を設けて、搬送ガスと微粉燃料の吹き上げによる逆流を抑制するようにしてもよい。
送風部30は、ローラ13により粉砕された固体燃料を乾燥させるとともに回転式分級機16へ供給するための搬送ガスをハウジング11の内部へ送風する装置である。
送風部30は、ハウジング11へ送風される搬送ガスを適切な温度に調整するために、本実施形態では、一次空気通風機(PAF:Primary Air Fan)31と、熱ガス流路30aと、冷ガス流路30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。
本実施形態では、熱ガス流路30aは、一次空気通風機31から送出された空気(外気)の一部を、例えば空気予熱器などの熱交換器(加熱器)34を通過して加熱せられた熱ガスとして供給する。熱ガス流路30aの下流側には熱ガスダンパ30c(第1送風部)が設けられている。熱ガスダンパ30cの開度は制御部60によって制御される。熱ガスダンパ30cの開度によって熱ガス流路30aから供給する熱ガスの流量が決定する。熱ガスダンパ30cでは開度が増加することによって熱ガスの流量が増加する。
冷ガス流路30bは、一次空気通風機31から送出された空気の一部を常温の冷ガスとして供給する。冷ガス流路30bの下流側には冷ガスダンパ(第2送風部)30dが設けられている。冷ガスダンパ30dの開度は制御部60によって制御される。冷ガスダンパ30dの開度によって冷ガス流路30bから供給する冷ガスの流量が決定する。冷ガスダンパ30dでは開度が増加することによって冷ガスの流量が増加する。
搬送ガスの流量は、本実施形態では、熱ガス流路30aから供給する熱ガスの流量と冷ガス流路30bから供給する冷ガスの流量の合計の流量となり、搬送ガスの温度は、熱ガス流路30aから供給する熱ガスと冷ガス流路30bから供給する冷ガスのそれぞれの温度と混合比率で決まり、制御部60によって制御される。
また、熱ガス流路30aから供給する熱ガスに、図示しないガス再循環通風機を介してボイラ200から排出された燃焼ガスの一部を導き、混合気とすることで、搬送ガス流路100aから流入する搬送ガスの酸素濃度を調整してもよい。
本実施形態では、ハウジング11の状態検出部40により、計測または検出したデータを制御部60に送信する。本実施形態の状態検出部40は、例えば、差圧計測手段であり、搬送ガス流路100aからミル10内部へ搬送ガスが流入する部分及びミル10内部から供給流路100bへ搬送ガス及び微粉燃料が排出する出口19との差圧をミル10内の差圧として計測する。例えば、回転式分級機16の分級性能により、ミル10内部を回転式分級機16付近と回転テーブル12付近の間で循環する粉砕された固体燃料の循環量の増減とこれに対するミル10内の差圧の上昇低減が変化する。すなわち、ミル10の内部に供給する固体燃料に対して、出口19から排出させる微粉燃料を調整して管理することができるので、微粉燃料の粒度がバーナ部220の燃焼性に影響しない範囲で、多くの微粉燃料をボイラ200に設けられたバーナ部220に供給することができる。
また、本実施形態の状態検出部40は、例えば、温度計測手段であり、ローラ13により粉砕された固体燃料を回転式分級機16へ吹き上げるためにハウジング11の内部に供給する搬送ガスの温度と、ハウジング11の内部において出口19までの搬送ガスの温度(出口温度)を検出して、上限温度を超えないように送風部30を制御する。なお、搬送ガスは、ハウジング11内において、粉砕物を乾燥しながら搬送することによって冷却されるので、ハウジング11の上部空間から出口19での温度(ミル出口温度)は、例えば約60~80度程度となる。
ボイラ200は、固体燃料粉砕装置100から供給される微粉燃料を用いて燃焼を行って蒸気を発生させる。このため、ボイラ200は、火炉210とバーナ部220とを備えている。
バーナ部220は、供給流路100bから供給される微粉燃料を含む搬送ガスと、押込気通風機(FDF:Feed Draft Fan)32から送出される空気(外気)を熱交換器34で加熱して供給される二次空気とを用いて微粉燃料を燃焼させて火炎を形成する装置である。微粉燃料の燃焼は火炉210内で行われ、高温の燃焼ガスは、蒸発器,過熱器,エコノマイザなどの熱交換器(図示省略)を通過した後にボイラ200の外部に排出される。
ボイラ200から排出された燃焼ガスは、環境装置(脱硝装置、電気集塵機などで図示省略)で所定の処理を行うとともに、例えば空気予熱器などの熱交換器34で一次空気通風機31から送出される空気と押込気通風機32から送出される空気との熱交換が行われ、誘引通風機(IDF:Induced Draft Fan)33を介して煙突(図示省略)へと導かれて外気へと放出される。熱交換器34において燃焼ガスにより加熱された一次空気通風機31から送出される空気は、前述した熱ガス流路30aに供給される。
ボイラ200の各熱交換器への給水は、エコノマイザ(図示省略)において加熱された後に、蒸発器(図示省略)および過熱器(図示省略)によって更に加熱されて高温高圧の蒸気が生成され、発電部である蒸気タービン(図示省略)へと送られて蒸気タービンを回転駆動し、蒸気タービンに接続した発電機(図示省略)を回転駆動して発電が行われ、発電プラント1を構成する。
制御部60は、固体燃料粉砕装置100の各部を制御する装置である。制御部60は、例えば、駆動部14に駆動指示を伝達することによりミル10の運転に対する回転テーブル12の回転速度を制御してもよい。制御部60は、例えば回転式分級機16のモータ18へ駆動指示を伝達して回転速度を制御することで、分級性能を調整することにより、ミル10内の差圧を所定の範囲に適正化して微粉燃料の供給を安定化させることができる。また、制御部60は、例えば給炭機20のモータ23へ駆動指示を伝達することにより、搬送部22が固体燃料を搬送して燃料供給部17へ供給する固体燃料の供給量(給炭量)を調整することができる。また、制御部60は、開度指示を送風部30に伝達することにより、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御して搬送ガスの流量と温度を制御することができる。具体的には、制御部60は、搬送ガスの流量と出口温度が、固体燃料種別毎に給炭量に対して設定された所定値となるように、熱ガスダンパ30cおよび冷ガスダンパ30dを制御する。
本実施形態における制御部60は、ミル10の入口温度が閾値以上となった場合に、連鎖的に搬送ガスの流量が低下してミル10の運転の緊急停止(トリップ)が発生しないように、温度低減モード(暫定モード)を行う。すなわち、ミル10を停止させることなく安定的に運転を継続できるように搬送ガスの制御を行う。なお、本実施形態では、熱ガスと冷ガスが混合され、ミル10へ供給される(流入する)搬送ガスの温度を入口温度と記載、ミル10から排出される(流出する)搬送ガスの温度を出口温度と記載する。また、ミル10へ供給される(流入する)搬送ガスの流量を入口流量と記載する。例えば、入口温度は温度計71により計測され、入口流量は流量計72により計測される。
図2は、本実施形態に係る制御部60のハードウェア構成の一例を示した図である。
図2に示すように、制御部60は、コンピュータシステム(計算機システム)であり、例えば、CPU110と、CPU110が実行するプログラム等を記憶するためのROM(Read Only Memory)120と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)130と、大容量記憶装置としてのハードディスクドライブ(HDD)もしくはソリッドステートドライブ(SSD)140と、ネットワーク等に接続するための通信部150とを備えている。これら各部は、バス180を介して接続されている。
また、制御部60は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。
なお、CPU110が実行するプログラム等を記憶するための記憶媒体は、ROM120に限られない。例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。また、HDD140はソリッドステートディスク(SSD)等で置き換えられてもよい。
後述の各種機能を実現するための一連の処理の過程は、プログラムの形式でHDD(もしくはSSD)140等に記録されており、このプログラムをCPU110がRAM130等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。なお、プログラムは、ROM120やその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
具体的には、図3に示すように、制御部60は、停止部62と、実行部63と、を主な構成として備えている。すなわち、停止部62及び実行部63によって安定運転制御システムを構成しており、ミル10が安定的に運転を継続できるように搬送ガスの制御を行う。
停止部62は、所定の条件が満たされた場合に、ミル10の運転を停止させる。このため、停止部62は、第1停止部64と、第2停止部65とを有する。第1停止部64と第2停止部65とは、それぞれ異なる条件に従ってミル10の運転を停止させる。
第1停止部64は、ミル10へ供給される搬送ガスの流量(入口流量)が所定値未満となった場合に、ミル10の運転を停止させる(流量異常インターロック)。搬送ガスは、ミル10の内部において粉砕された固体燃料を搬送(排出)する役割を担っている。十分な流量の搬送ガスがミル10へ供給されない場合には、ミル10からバーナ部220までの搬送力を確保できなくなり、粉砕後の固体燃料(微粉燃料)の搬送不良(例えば微粉固体燃料の供給流路100b(微粉炭管)内での沈降堆積など)が発生する可能性がある。搬送不良が発生すると、ミル10が過負荷状態となったり、微粉炭管内で微粉燃料の温度が上昇して不具合になる可能性がある。
このため、第1停止部64では、図1のようにミル10の入口側に設置した流量計72より搬送ガスの流量を取得する。そして、第1停止部64は、搬送ガスの流量が所定値未満となった場合に、ミル10を緊急停止(トリップ)させる。所定値は、例えば固体燃料の種類(炭種や原料の違い)や供給量(給炭量)に応じて、所定の搬送力を得ることができる搬送ガスの流量として設定される。
第1停止部64によって、搬送ガスの流量が低下した場合にミル10をトリップすることができるため、ミル10において搬送不良等が発生することをより確実に抑制することが可能となる。
なお、本実施形態では、図1のように流量計72を設ける場合について説明するが、ミル10へ供給される搬送ガスの流量を取得することができればよいため、流量計72の設置位置については図1の設置位置に限定されない。例えば、熱ガス流路30aと冷ガス流路30bでの流量をそれぞれ計測し、それらを加算してもよい。
第2停止部65は、温度低減モードを実行中に、所定の条件が満たされた場合に、ミル10の運転を停止させる。なお、温度低減モードの詳細については後述するが、搬送ガスの入口温度の高温状態を改善する(温度低下させる)モードである。すなわち、第2停止部65は、温度異常の改善のためのモードを行っている間において所定の運転状態の不安定状態が見られた場合に、安全のためにミル10を停止させる。
具体的には、第2停止部65は、温度低減モードを実行中に、粉砕された固体燃料(微粉燃料)を用いて燃焼を行うボイラ200の運転状態が予め設定した不安定状態となった場合に、ミル10の運転を停止させる。ボイラ200の運転状態は、ボイラ200の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つである。
ボイラ200の排ガス性状については、例えば、NOx濃度やCO濃度が所定範囲を逸脱した場合に不安定状態と判定される。ボイラ主蒸気温度については、ボイラ200出口での主蒸気の温度が基準値以下となるまで低下した場合に不安定状態変化と判定される。なお、基準値については、ミル10の運転状態とボイラ200の主蒸気温度との相関関係に基づいて、ミル10の安定運転の継続が困難と推定されるボイラ主蒸気の温度の閾値として設定される。ボイラ主蒸気圧力については、ボイラ200出口での主蒸気の圧力が基準値以下となるまで低下した場合に不安定状態と判定される。なお、基準値については、ミル10の運転状態とボイラ200の主蒸気圧力との相関関係に基づいて、ミル10の安定運転の継続が困難と推定されるボイラ主蒸気の圧力の閾値として設定される。このように、第2停止部65では、ボイラ200の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つによって、ボイラ200の運転状態が不安定状態か否かを判定する。
そして、第2停止部65では、ボイラ200の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つによって、ボイラ200の運転状態が不安定状態にあると判定された場合に、ミル10の運転を停止させる。なお、ボイラ200の運転状態については、ミル10の運転状態と関係性を有するパラメータであれば、ボイラ200の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力以外を用いることとしてもよい。
また、第2停止部65は、温度低減モードを実行中に、ミル10から排出される搬送ガスの温度が露点以下となった場合に、ミル10の運転を停止させる。温度低減モードは、搬送ガスの入口温度を低下させるモードであるため、搬送ガスの出口温度にも影響を及ぼす。温度低減モードを行っている場合に、排ガスの入口温度を低下させるため、搬送ガスの出口温度も低下する。搬送ガスの出口温度が低下して露点以下となると、微粉燃料の供給流路100b(微粉炭管)内で結露が発生し、微粉炭管内面への微粉燃料の付着等が発生し、搬送不良や微粉炭管の閉塞が発生する可能性がある。
このため、第2停止部65では、搬送ガスの出口温度を監視して、出口温度が露点以下となった場合に、ミル10の運転を停止させる。なお、露点の判定基準値については、ミル10へ供給される搬送ガス、及び固体燃料のヒートマスバランスにより計算してもよく、また予め設定された温度としてもよい。
このように、第2停止部65では、温度低減モード中における運転状態変化によってミル10の運転を停止させることができるため、ミル10の運転状態が不安定状態となることや不安定状態が維持されてしまうことを抑制できる。
実行部63は、ミル10へ供給される搬送ガスの温度が閾値以上となった場合に、搬送ガスの流量が所定値以上となる範囲内で、搬送ガスの温度を低下させる温度低減モードを暫定的に実行する。具体的には、実行部63は、搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して温度低減モードを暫定的に実行する。具体的には、冷ガスダンパ(流量調整器)30dの開度を調整して冷ガスの流量を制御し、熱ガスダンパ(流量調整器)30cの開度を調整して熱ガスの流量を制御する。なお、冷ガス及び熱ガスそれぞれの流量を制御することができれば、ダンパによる制御に限定されない。実行部63は、例えば温度計71より計測した温度を取得し、ミル10へ供給される搬送ガスの温度を監視する。
例えば、搬送ガスの入口温度が上昇し過ぎると、ミル10内の粉砕された固体燃料が着火する可能性があるため、搬送ガスの入口温度を低下させるために、熱ガスダンパ30cを全閉する場合(冷ガスの流量は維持)がある。しかしながら、熱ガスダンパ30cを全閉にすることで搬送ガスの温度を低減することができるものの、搬送ガス全体としての流量も低下してしまい、搬送ガスの流量異常インターロックが連鎖的に動作する可能性がある。特にバイオマス燃料を用いる場合など、着火し易い固体燃料を使用する場合に、上記のような連鎖的なインターロック動作が発生する可能性がある。搬送ガスの流量異常インターロックが動作するとミル10の運転が停止してボイラ200への微粉燃料の供給が停止するため、発電プラント1の出力低下等、安定運転に支障をきたす場合があり、本実施形態では、搬送ガスの流量異常インターロックを発生させない対応工程を設けることとした。
そこで、実行部63では、搬送ガスの入口温度が閾値以上となった場合には、搬送ガスの温度及び流量を調整対象として、搬送ガスの入口温度を低減させる。本実施形態では、実行部63は、3つの温度低減モードを有する場合について説明するが、少なくともいずれか1つのモードを実行することとしてもよい。
具体的には、実行部63は、温度低減モードとして、熱ガスの流量を減少させる。また、実行部63は、温度低減モードとして、熱ガスの供給を停止させ、冷ガスの流量を増加させる。また、実行部63は、温度低減モードとして、冷ガスの流量を増加させる。本実施形態では、冷ガスの流量を増加させる温度低減モードをAモードとし、熱ガスの流量を減少させる温度低減モードをBモードとし、熱ガスの供給を停止させ、冷ガスの流量を増加させる温度低減モードをCモードとする。
Aモードでは、冷ガスの流量を増加させるために、冷ガスダンパ30dを所定開度だけ開く。具体的には、Aモードでは、モード実行前おける冷ガスダンパ30dの開度から、冷ガスダンパ30dを所定開度開く。なお、熱ガスダンパ30cについては、モード実行前における開度が維持される。Aモードでは、熱ガスの流量は変化せず、冷ガスの流量が増加されるため、搬送ガスの温度を低下させることができる。なお、Aモードでは、熱ガスの流量は変化せず、冷ガスの流量が増加されることにより、搬送ガスの流量は増加するため、搬送ガスの流量は所定値以上となり搬送力は確保されるので、搬送ガスの流量異常インターロックを発生させることはない。
Bモードでは、熱ガスの流量を減少させるために、熱ガスダンパ30cを所定開度だけ閉じる。具体的には、Bモードでは、モード実行前おける熱ガスダンパ30cの開度から、熱ガスダンパ30cを所定開度閉じる。なお、冷ガスダンパ30dについては、モード実行前における開度が維持される。Bモードでは、冷ガスの流量は変化せず、熱ガスの流量が減少されるため、搬送ガスの温度を低下させることができる。なお、Bモードでは、搬送ガスの流量が所定値以上となる範囲内で熱ガスの流量が低減される。このため、Bモードにおいても、搬送ガスの流量は所定値以上となり搬送力は確保されるので、搬送ガスの流量異常インターロックを発生させない。
Cモードでは、熱ガスの供給を停止させ、冷ガスの流量を増加させるために、熱ガスダンパ30cを全閉とし、冷ガスダンパ30dの開度を開く。具体的には、Cモードでは、熱ガスダンパ30cの開度を全閉とするとともに、モード実行前おける冷ガスダンパ30dの開度から、冷ガスダンパ30dを開く方向に制御する。Cモードでは、熱ガスの流量がなくなり、冷ガスのみとなるため、搬送ガスの温度を低下させることができる。Cモードでは、熱ガスの流量が零となるため、冷ガスのみで搬送ガスによる搬送力を確保する必要がある。このため、冷ガスダンパ30dは、冷ガスダンパ30dの流量のみで搬送ガスの流量が所定値以上となる開度範囲が予め設定され、該開度範囲となるように、冷ガスダンパ30dが開かれる。このため、Cモードにおいても、搬送ガスの流量は所定値以上となり搬送力は確保されるので、搬送ガスの流量異常インターロックを発生させない。
Aモード、Bモード、及びCモードのいずれにおいても、搬送ガスの温度を低下させて搬送ガスの入口温度を低下させることができるとともに、搬送ガスの流量による搬送力を確保することができるので、搬送ガスの流量異常インターロックを発生させることなく、搬送ガスの入口温度の調整が可能となる。
実行部63は、複数の温度低減モードを実行可能であり、搬送ガスの流量低下への影響度が低い温度低減モードを優先的に実行する。搬送ガスの流量低下への影響度とは、制御による搬送ガスの流量の低下し難さの度合である。すなわち、影響度が低いほど、モード実行による搬送ガスの流量低下が抑制される。
Aモードでは、冷ガスの流量を増加させるため、搬送ガスの流量は低下しない。Bモードでは、熱ガスの流量を減少させるため、搬送ガスの流量が低下する可能性があるものの、低下幅は小さい。このため、Bモードは、Aモードと比較して、搬送ガスの流量低下への影響度は高い。Cモードでは、熱ガスの供給を停止させ、冷ガスの流量を増加させるため、Bモードと比較して、搬送ガスの流量が低下する可能性がある。このため、Cモードは、Aモードと比較して、搬送ガスの流量低下への影響度は高い。すなわち、Aモードが最も搬送ガスの流量低下への影響度が低く(優先度が高い)、Bモードが次に搬送ガスの流量低下への影響度が低く(優先度がAモードの次に高い)、Cモードが次に搬送ガスの流量低下への影響度が低いこと(優先度がBモードの次に高い)となる。このため、本実施形態では、Aモード、Bモード、及びCモードの順に、温度低減モードを実行する。なお、各モードを組み合わせて実行することとしてもよい。
具体的には、実行部63は、温度低減モードを行う場合に、先ずAモードを実行し、Aモードにより搬送ガスの入口温度が閾値未満とならなかった場合に、Bモードを実行する。そして、Bモードを実行し、Bモードにより搬送ガスの入口温度が閾値未満とならなかった場合に、Cモードを実行する。そして、Cモードを実行し、Cモードにより搬送ガスの入口温度が閾値未満とならなかった場合に、Aモードを実行する。なお、Cモードにより搬送ガスの入口温度が閾値未満とならなかった場合には、温度低減モードによって温度を効果的に低減することができないと推定して、Aモードを再度実行せずに、ミル10を停止させることとしてもよい。
このように、実行部63では、各温度低減モードによってミル10内で粉砕された固体燃料の搬送力を確保しつつ搬送ガスの入口温度を効果的に低減する。このため、搬送ガスの入口温度の温度異常によって搬送ガスの流量異常インターロックが連鎖的に動作して、ミル10の運転が停止してしまうことを抑制することができる。
次に、上述の制御部60による温度低減モード実行処理の一例について図4を参照して説明する。図4は、本実施形態に係る温度低減モード実行処理の手順の一例を示すフローチャートである。図4に示すフローは、例えば、固体燃料粉砕装置100が稼働している場合に、所定の制御周期で繰り返し実行される。
図4のフローは、ミル10の搬送ガスの入口温度が上昇するとS101がYES判定となり後段の処理が実行される。ミル10の搬送ガスの入口温度が上昇する場合とは、例えば、水分含有量の多い高水分燃料がミル10へ投入され、搬送ガスの出口温度が低下した場合に、搬送ガスの出口温度を維持するために熱ガスダンパ30cを増加させ(例えば全開)、冷ガスダンパ30dを減少または維持する制御を行うことにより搬送ガスの温度が上昇するために生ずる。なお、ミル10の搬送ガスの入口温度が上昇する場合であれば上記の例に限定されない。このようにミル10の搬送ガスの入口温度が上昇して閾値以上となると固体燃料が着火する可能性があるため、図4の各処理が実行される。
まず、搬送ガスの入口温度が閾値以上であるか否かを判定する(S101)。搬送ガスの入口温度が閾値以上でない場合(S101のNO判定)にはS101が再度実行される。
搬送ガスの入口温度が閾値以上である場合(S101のYES判定)に、温度低減モードを開始する(S102)。なお、S102では、優先度の高いAモードが開始される。
次に、搬送ガスの流量が所定値以上であるか否かを判定する(S103)。搬送ガスの流量が所定値以上でない場合(S103のNO判定)には、ミル10の運転を停止させる(S104)。なお、温度低減モードでは、搬送ガスの流量は所定値以上となるように制御されるが、冷ガス流量及び熱ガス流量以外の原因により搬送ガスの流量が低下してしまった場合に、S103によりミル10の運転の停止処理が行われる。
搬送ガスの流量が所定値以上である場合(S103のYES判定)には、ボイラ200の運転状態が予め設定した不安定状態となっているか否かを判定する(S105)。S105では、例えば、ボイラ200の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つによって、ボイラ200の運転状態が不安定状態であるか否かが判定される。
ボイラ200の運転状態が予め設定した不安定状態となっている場合(S105のYES判定)には、ミル10の運転を停止させる(S104)。ボイラ200の運転状態が予め設定した不安定状態となっていない場合(S105のNO判定)には、搬送ガスの出口温度が露点以下であるか否かを判定する(S106)。
搬送ガスの出口温度が露点以下である場合(S106のYES判定)には、ミル10の運転を停止させる(S104)。搬送ガスの出口温度が露点以下でない場合(S106のNO判定)には、予め設定した所定時間が経過したか否かを判定する(S107)。所定時間とは、温度低減モードの各モードを継続する時間として予め設定される。所定時間は、例えば、各モードを実行した場合におけるボイラ効率の低下の許容継続時間や、搬送ガスの出口温度低下による露点以上であっても配管経路の途中で温度が低下して結露発生の可能性に至るまでの許容発生状態等により設定される。すなわち、各モードの継続時間は、所定時間に制限される。各モードに応じて、所定時間を設定することとしてもよい。
S107では、予め設定した所定時間が経過したか否かを判定しているが、温度低減モードを終了させる指示が運転者等により入力されたか否かを判定することとしてもよい。温度低減モードを終了させる指示は、例えば復帰スイッチが運転者等によって押下されることによって入力される。
予め設定した所定時間が経過していない場合(S107のNO判定)には、S103へ戻り再度処理を実行する。予め設定した所定時間が経過した場合(S107のYES判定)には、温度低減モードを終了し、復帰させる(S108)。復帰とは、温度低減モード実行前の冷ガス及び熱ガスの流量状態に戻すことである。具体的には、復帰によって、温度低減モード実行前の熱ガスダンパ30cの開度及び冷ガスダンパ30dの開度へ戻される。
そして、搬送ガスの入口温度が閾値以上であるか否かを判定する(S109)。搬送ガスの入口温度が閾値以上でない場合(S109のNO判定)には、温度低減モードによって、入口温度の異常が改善されたと推定して、処理を終了する。すなわち、温度低減モード実行前の熱ガスダンパ30cの開度及び冷ガスダンパ30dの開度において、運転が継続される。なお、運転が継続されると、通常の運転通り、熱ガスダンパ30c及び冷ガスダンパ30dは制御される。
搬送ガスの入口温度が閾値以上である場合(S109のYES判定)には、温度低減モードを変更し(S110)、S103の処理が再度実行される。モードの変更では、優先度の低いモードへ切り替えが行われ、新たなモードが開始される。具体的には、Aモードが実行されていた後にS110の処理を行う場合には、Bモードへの切り替えが行われてBモードが開始し、再度処理が実行される。また、Bモードが実行されていた後にS110の処理を行う場合には、Cモードへの切り替えが行われてCモードが開始し、再度処理が実行される。このようにして、Aモード、Bモード、及びCモードの各モードが、所定時間継続して実行される。このように、各モードが優先度に応じて切り替わり実行される。
例えば、Aモードを実行した結果、S109において搬送ガスの入口温度の異常が回復した場合には、BモードやCモードを行うことなく、継続運転が行われる。このため、搬送ガスの流量への影響度が低いモードを優先的に実行することによって、搬送ガスの流量の低減による搬送ガスの流量異常インターロックを発生を抑制しつつ、運転状態の改善を行うことが可能となる。
図5は、参考例として、搬送ガスの入口温度異常のインターロックと、搬送ガスの流量異常のインターロックとをそれぞれ備えた場合の動作の流れの例である。なお、参考例における搬送ガスの入口温度異常のインターロックとは、搬送ガスの入口温度が閾値以上となった場合に、搬送ガスの入口温度を低下させるために、熱ガスダンパ30cを全閉(冷ガスダンパ30dは開度維持)とする動作である。参考例における搬送ガスの流量異常のインターロックとは、搬送ガスの流量が閾値未満となった場合に、ミル10を停止させる動作である。図5のように、水分含有量の多い高水分燃料の投入等により搬送ガスの入口温度が上昇した場合(S201)に、搬送ガスの入口温度異常のインターロックが作動する(S202)。このため、熱ガスダンパ30cが全閉となり(S203)、搬送ガスの流量が低下する(S204)。そうすると、搬送ガスの流量異常のインターロックが作動し(S205)、ミル10の運転が停止される(S206)。このように、参考例のように搬送ガスの入口温度異常が生じた場合に単に搬送ガスの温度を低下させるだけだと、連鎖的に搬送ガスの流量異常のインターロックが作動してしまい、ミル10の運転を停止する処理が実行されてしまう。
しかしながら、本実施形態のような図4の処理によれば、ミル10へ供給される搬送ガスの入口温度が閾値以上となった場合に、搬送ガスの流量が所定値以上となる範囲内で、搬送ガスの温度を低下させる温度低減モードを実行しているため、連鎖的に搬送ガスの流量異常のインターロックが作動してミル10の運転を停止させる処理が実行されてしまうことを抑制することできる。
以上説明したように、本実施形態に係る安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラムによれば、固体燃料粉砕装置100の運転状態を安定化させることができる。ミル10へ供給される搬送ガスの温度が上昇し過ぎると、ミル10で固体燃料が着火する可能性がある。特にバイオマス燃料は着火し易い。しかしながら、ミル10へ供給される搬送ガスの温度が閾値以上となった場合に、搬送ガスを調整すると、そのままの制御を継続すると、搬送ガスの流量が減少して所定値未満となりミル10における固体燃料の搬送力が低下する場合がある。ミル10における固体燃料の搬送力が低下すると、ミル10が過負荷状態となる可能性があるため、ミル10の運転停止が行われる。なお、所定値とは、搬送ガスの流量に対してミル10の運転を停止させる閾値として設定されており、例えば、ミル内で搬送ガスによる粉砕された固体燃料の搬送力を確保するために許容される搬送ガスの流量の下限値として設定される。そこで、本実施形態では、ミル10へ供給される搬送ガスの温度が閾値以上となった場合には、搬送ガスの流量が所定値以上となる範囲内で、搬送ガスの温度を低下させる温度低減モード(ミル10へ供給される搬送ガスの温度を低減する暫定的なモード)を実行することにより、搬送ガスによる搬送力の低下を抑制しつつ、ミル10へ供給される搬送ガスの温度を低下させることができる。すなわち、ミル10へ供給される搬送ガスの温度が閾値以上となった場合であっても、連鎖的に搬送ガスの流量が低下してミル10を停止させること(ミルトリップ)を抑制しつつ、運転状態を改善することが可能となる。このため、固体燃料粉砕装置100の稼働安定化に寄与することができる。
冷ガスと熱ガスの混合によって搬送ガスが構成されている場合に、冷ガスの流量及び熱ガスの流量をそれぞれ制御することによって搬送ガスの流量及び温度を効果的に制御して、温度低減モードを実行することができる。
温度低減モードとしては複数設定される。1つは、熱ガスの流量を減少させることによって、搬送ガスの温度を低下させることができる。なお、熱ガスの減少量については、搬送ガスの流量が所定値以上となる範囲内で設定される。また1つは、熱ガスの供給を停止させ、冷ガスの流量を増加させることによって、搬送ガスの温度を低下させることができる。なお、冷ガスの増加量については、搬送ガスの流量が所定値以上となる範囲内で設定される。また他の1つは、冷ガスの流量を増加させることによって、搬送ガスの温度を低下させることができる。なお、冷ガスを増加させる処理のため、搬送ガスの流量は所定値以上に保たれる。複数の温度低減モードが実行可能である場合には、搬送ガスの流量低下への影響度が低い(すなわち搬送ガスの流量が低下し難い)温度低減モードを優先的に実行することにより、搬送ガスの流量が所定値未満となることを抑制できる。また、ミル内で搬送ガスの流量が過度に低下して粉砕された固体燃料の搬送性や乾燥性が低下してしまうことを抑制できる。
温度低減モードを実行中であっても、ボイラ200の運転状態が予め設定した不安定状態となった場合には、ミル10の運転を停止させることで、発電プラント1およびボイラ200の運転状態の急変やミル10の故障を抑制することができる。温度低減モードを実行中であっても、ミル10から排出される搬送ガスの温度(出口温度)が露点以下となった場合には、ミル10の運転を停止させることで、発電プラント1およびボイラ200の運転状態の急変やミル10の故障を抑制することができる。
本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。
本実施形態では、着火し易い固体燃料としてバイオマス燃料を例としているが、他の着火し易い固体燃料についても適用してもよいし、石炭や石油精製時に発生するPC(石油コークス:Petroleum Coke)燃料など炭素を含有する固体燃料に適用することも可能である。
本実施形態では、Aモード、Bモード、及びCモードをそれぞれ実行することとしているが、各モードを組み合わせてもよい。例えば、熱ガスダンパ30cの開度を減少させ(熱ガス流量減少)、冷ガスダンパ30dの開度を増加させてもよい(冷ガス流量増加)。
各モードにおいてダンパを開閉する開度(または閉度)や、開閉速度については、予め試運転等による試験によって適切に設定されることが好ましい。また、各モードにおいてダンパを開閉する開度(または閉度)や、開閉速度については、使用する固体燃料の種類に応じて設定されることが好ましい。
温度低減モードを行った場合には、搬送ガスの出口温度は低下方向となる。搬送ガスの出口温度が低下すると、ボイラ効率が低下する可能性がある。また、搬送ガスの出口温度が低い状態が長時間維持されると、固体燃料の供給流路100b(微粉炭管)内で露点以上であっても配管経路の途中で温度が低下して結露発生の可能性に至り、微粉炭管内面への微粉燃料の付着成長による搬送不良や閉塞等も懸念される。このため、温度低減モードは、長時間継続されない方が好ましい。このため、温度低減モードの実行時間を制限することとしてもよい。
Aモードについて、冷ガスダンパ30dを開く際に、搬送ガスの入口温度が閾値未満となった段階で冷ガスダンパ30dの開度を維持することとしてもよい。
ダンパの動作指令については、各モードによる開度変更信号を直接的にダンパ開度指示として入力してもよい。すなわち、最終的なダンパ開度指令を出力する直前で、搬送ガスの入口温度異常による各モードの開度信号を各ダンパの開度指令に反映させてもよい。また、各モードによる開度変更信号については、ダンパ開度に影響する他の信号(例えばミル10の出口温度設定値など)に入力して、間接的に各モード状態を反映させることとしてもよい。
熱ガス及び冷ガスの流量調整については、各流路に設置されている流量調整器のいずれで行うこととしてもよい。例えば、各流路にダンパ(調整器)及びゲート(開閉器)が設けられている場合には、ダンパ(コントロールダンパ)及びゲート(遮断ダンパ)のいずれで行ってもよい。
以上説明した各実施形態に記載の安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラムは例えば以下のように把握される。
本開示に係る安定運転制御システムは、固体燃料を粉砕する粉砕部(10)と、前記粉砕部(10)へ搬送ガスを供給する送風部(30)とを備える固体燃料粉砕装置に適用される安定運転制御システムであって、前記粉砕部(10)へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部(10)の運転を停止させる停止部(62)と、前記粉砕部(10)へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行部(63)と、を備える。
粉砕部(10)へ供給される搬送ガスの温度が上昇し過ぎると、粉砕部(10)で粉砕された固体燃料が着火する可能性がある。特にバイオマス燃料は着火し易い。一方では、粉砕部(10)へ供給される搬送ガスの温度が閾値以上となった場合に、搬送ガスを調整すると、搬送ガスの流量が減少して所定値未満となり粉砕部(10)内における粉砕された固体燃料の搬送力が低下する場合がある。粉砕部(10)内における粉砕された固体燃料の搬送力が低下すると、粉砕部(10)が過負荷状態となる可能性があるため、粉砕部(10)の運転停止が行われる。なお、所定値とは、搬送ガスの流量に対して粉砕部(10)の運転を停止させる閾値として設定されており、例えば、粉砕部(10)内の搬送ガスによる粉砕された固体燃料の搬送力を確保するために許容される搬送ガスの流量の下限値として設定される。
そこで、粉砕部(10)へ供給される搬送ガスの温度が閾値以上となった場合には、搬送ガスの流量が所定値以上となる範囲内で、搬送ガスの温度を暫定的に低下させる温度低減モード(粉砕部(10)へ供給される搬送ガスの温度を低減する暫定モード)を実行することにより、搬送ガスによる搬送力の低下を抑制しつつ、粉砕部(10)へ供給される搬送ガスの温度を低下させることができる。すなわち、粉砕部(10)へ供給される搬送ガスの温度が閾値以上となった場合であっても、連鎖的に搬送ガスの流量が低下して粉砕部(10)の運転を停止させること(ミルトリップ)を抑制しつつ、運転状態を改善することが可能となる。このため、固体燃料粉砕装置(100)の稼働安定化に寄与することができる。
本開示に係る安定運転制御システムは、前記実行部(63)は、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行することとしてもよい。
本開示に係る安定運転制御システムによれば、搬送ガスは、相互に温度が低い冷ガスと温度の高い熱ガスを用いて構成されており、例えば一次空気通風機から送出された空気の一部である常温程度の冷ガスと、例えば一次空気通風機から送出された空気の一部を例えば空気予熱器などの熱交換器を通過して加熱せられた熱ガスの混合によって搬送ガスが構成されている。この場合に、冷ガスの流量及び熱ガスの流量をそれぞれ制御することによって搬送ガスの流量及び温度を効果的に制御して、温度低減モードを実行することができる。
本開示に係る安定運転制御システムは、前記実行部(63)は、前記温度低減モードとして、前記熱ガスの流量を減少させることとしてもよい。
本開示に係る安定運転制御システムによれば、熱ガスの流量を減少させることによって、搬送ガスの温度を低下させることができる。なお、熱ガス流量の減少量については、搬送ガスの流量が所定値以上となる範囲内で設定される。
本開示に係る安定運転制御システムは、前記実行部(63)は、前記温度低減モードとして、前記熱ガスの供給を停止させ、前記冷ガスの流量を増加させることとしてもよい。
本開示に係る安定運転制御システムによれば、前記温度低減モードとして、前記熱ガスの供給を停止させ、前記冷ガスの流量を増加させる。
本開示に係る安定運転制御システムは、前記実行部(63)は、前記温度低減モードとして、前記冷ガスの流量を増加させることとしてもよい。
本開示に係る安定運転制御システムによれば、冷ガスの流量を増加させることによって、搬送ガスの温度を低下させることができる。なお、冷ガスを増加させる処理のため、搬送ガスの流量は所定値以上に保たれる。
本開示に係る安定運転制御システムは、前記実行部(63)は、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行することとしてもよい。
本開示に係る安定運転制御システムによれば、複数の温度低減モードが実行可能である場合には、搬送ガスの流量低下への影響度が低い(すなわち搬送ガスの流量が低下し難い)温度低減モードを優先的に実行することにより、搬送ガスの流量が所定値未満となることを抑制できる。また、搬送ガスの流量が過度に低下して粉砕部(10)内における粉砕された固体燃料の搬送性や乾燥性が低下してしまうことを抑制できる。
本開示に係る安定運転制御システムは、前記停止部(62)は、前記温度低減モードを実行中に、粉砕された前記固体燃料を用いて燃焼を行うボイラ(200)の運転状態が予め設定した不安定状態となった場合に、前記粉砕部(10)の運転を停止させることとしてもよい。
本開示に係る安定運転制御システムによれば、温度低減モードを実行中であっても、ボイラ(200)の運転状態が予め設定した不安定状態となった場合には、粉砕部(10)の運転を停止させることで、発電プラント(1)およびボイラ(200)の運転状態の急変や粉砕部(10)の故障を抑制することができる。
本開示に係る安定運転制御システムは、前記ボイラ(200)の運転状態は、前記ボイラ(200)の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つであることとしてもよい。
本開示に係る安定運転制御システムによれば、粉砕部(10)による粉砕された固体燃料(微粉燃料)のボイラ(200)への供給状態は、ボイラ(200)の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力に影響を及ぼすため、ボイラ(200)の排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つによってボイラ(200)の運転状態の変化を効果的に把握することができる。
本開示に係る安定運転制御システムは、前記停止部(62)は、前記温度低減モードを実行中に、前記粉砕部(10)から排出される前記搬送ガスの温度が露点以下となった場合に、前記粉砕部(10)の運転を停止させることとしてもよい。
本開示に係る安定運転制御システムによれば、温度低減モードを実行中であっても、粉砕部(10)から排出される搬送ガスの温度(出口温度)が露点以下となった場合には、粉砕部(10)の運転を停止させることで、発電プラント(1)およびボイラ(200)の運転状態の急変や粉砕部(10)の不具合を抑制することができる。
本開示に係る固体燃料粉砕装置(100)は、固体燃料を粉砕する粉砕部(10)と、前記粉砕部(10)へ搬送ガスを供給する送風部(30)と、上記の安定運転制御システムと、を備える。
本開示に係る安定運転制御方法は、固体燃料を粉砕する粉砕部(10)と前記粉砕部(10)へ搬送ガスを供給する送風部(30)とを備える固体燃料粉砕装置(100)に適用される安定運転制御方法であって、前記粉砕部(10)へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部(10)の運転を停止させる工程と、前記粉砕部(10)へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する工程と、を有する。
本開示に係る安定運転制御プログラムは、固体燃料を粉砕する粉砕部(10)と前記粉砕部(10)へ搬送ガスを供給する送風部(30)とを備える固体燃料粉砕装置(100)に適用される安定運転制御プログラムであって、前記粉砕部(10)へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部(10)の運転を停止させる処理と、前記粉砕部(10)へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する処理と、をコンピュータに実行させる。
1 :発電プラント
10 :ミル(粉砕部)
11 :ハウジング
12 :回転テーブル
13 :ローラ
14 :駆動部
16 :回転式分級機(分級機)
16a :ブレード
17 :燃料供給部
18 :モータ
19 :出口
20 :給炭機
21 :バンカ
22 :搬送部
23 :モータ
24 :ダウンスパウト部
30 :送風部
30a :熱ガス流路
30b :冷ガス流路
30c :熱ガスダンパ
30d :冷ガスダンパ
31 :一次空気通風機(PAF)
32 :押込気通風機(FDF)
34 :熱交換器
40 :状態検出部
41 :底面部
42 :天井部
45 :ジャーナルヘッド
47 :支持アーム
48 :支持軸
49 :押圧装置
60 :制御部
62 :停止部
63 :実行部
64 :第1停止部
65 :第2停止部
71 :温度計
72 :流量計
100 :固体燃料粉砕装置
100a :搬送ガス流路
100b :供給流路
110 :CPU
120 :ROM
130 :RAM
140 :HDD
150 :通信部
180 :バス
200 :ボイラ
210 :火炉
220 :バーナ部

Claims (12)

  1. 固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御システムであって、
    前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止部と、
    前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行部と、
    を備え
    前記実行部は、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行し、
    前記実行部は、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行する安定運転制御システム。
  2. 前記実行部は、前記温度低減モードとして、前記熱ガスの流量を減少させる請求項に記載の安定運転制御システム。
  3. 前記実行部は、前記温度低減モードとして、前記熱ガスの供給を停止させ、前記冷ガスの流量を増加させる請求項に記載の安定運転制御システム。
  4. 前記実行部は、前記温度低減モードとして、前記冷ガスの流量を増加させる請求項に記載の安定運転制御システム。
  5. 前記停止部は、前記温度低減モードを実行中に、粉砕された前記固体燃料を用いて燃焼を行うボイラの運転状態が予め設定した不安定状態となった場合に、前記粉砕部の運転を停止させる請求項1からのいずれか1項に記載の安定運転制御システム。
  6. 前記ボイラの運転状態は、前記ボイラの排ガス性状、ボイラ主蒸気温度、及びボイラ主蒸気圧力の少なくともいずれか1つである請求項に記載の安定運転制御システム。
  7. 固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御システムであって、
    前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止部と、
    前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行部と、
    を備え、
    前記停止部は、前記温度低減モードを実行中に、前記粉砕部から排出される前記搬送ガスの温度が露点以下となった場合に、前記粉砕部の運転を停止させる安定運転制御システム。
  8. 固体燃料を粉砕する粉砕部と、
    前記粉砕部へ搬送ガスを供給する送風部と、
    請求項1からのいずれか1項に記載の安定運転制御システムと、
    を備える固体燃料粉砕装置。
  9. 固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御方法であって、
    前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止工程と、
    前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行工程と、
    を有し、
    前記実行工程において、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行し、
    前記実行工程において、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行する安定運転制御方法。
  10. 固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御プログラムであって、
    前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止処理と、
    前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行処理と、
    をコンピュータに実行させ
    前記実行処理において、前記搬送ガスを構成する冷ガス及び熱ガスのそれぞれの流量を制御して前記温度低減モードを実行し、
    前記実行処理において、複数の前記温度低減モードを実行可能であり、前記搬送ガスの流量低下への影響度が低い前記温度低減モードを優先的に実行する安定運転制御プログラム。
  11. 固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御方法であって、
    前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止工程と、
    前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行工程と、
    を有し、
    前記停止工程において、前記温度低減モードを実行中に、前記粉砕部から排出される前記搬送ガスの温度が露点以下となった場合に、前記粉砕部の運転を停止させる安定運転制御方法。
  12. 固体燃料を粉砕する粉砕部と、前記粉砕部へ搬送ガスを供給する送風部とを備える固体燃料粉砕装置に適用される安定運転制御プログラムであって、
    前記粉砕部へ供給される前記搬送ガスの流量が所定値未満となった場合に、前記粉砕部の運転を停止させる停止処理と、
    前記粉砕部へ供給される前記搬送ガスの温度が閾値以上となった場合に、前記搬送ガスの流量が前記所定値以上となる範囲内で、前記搬送ガスの温度を低下させる温度低減モードを実行する実行処理と、
    をコンピュータに実行させ、
    前記停止処理において、前記温度低減モードを実行中に、前記粉砕部から排出される前記搬送ガスの温度が露点以下となった場合に、前記粉砕部の運転を停止させる安定運転制御プログラム。
JP2019193583A 2019-10-24 2019-10-24 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム Active JP7395314B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019193583A JP7395314B2 (ja) 2019-10-24 2019-10-24 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019193583A JP7395314B2 (ja) 2019-10-24 2019-10-24 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム

Publications (2)

Publication Number Publication Date
JP2021067408A JP2021067408A (ja) 2021-04-30
JP7395314B2 true JP7395314B2 (ja) 2023-12-11

Family

ID=75637005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193583A Active JP7395314B2 (ja) 2019-10-24 2019-10-24 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム

Country Status (1)

Country Link
JP (1) JP7395314B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045345A1 (ja) * 2020-08-31 2022-03-03 三菱重工業株式会社 装置、発電プラント、装置の制御方法、プログラム、発電プラントシステム、及び発電プラントシステムの制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048643A1 (fr) 2001-12-03 2003-06-12 Babcock-Hitachi Kabushiki Kaisha Dispositif de distribution de carburant pour conduites d'alimentation en carburant et procede pour faire fonctionner ce dispositif de distribution
JP2016102621A (ja) 2014-11-28 2016-06-02 三菱日立パワーシステムズ株式会社 固体燃料粉砕装置およびその制御方法
JP2018123993A (ja) 2017-01-31 2018-08-09 三菱日立パワーシステムズ株式会社 ボイラシステム、および、ボイラシステムの運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048643A1 (fr) 2001-12-03 2003-06-12 Babcock-Hitachi Kabushiki Kaisha Dispositif de distribution de carburant pour conduites d'alimentation en carburant et procede pour faire fonctionner ce dispositif de distribution
JP2016102621A (ja) 2014-11-28 2016-06-02 三菱日立パワーシステムズ株式会社 固体燃料粉砕装置およびその制御方法
JP2018123993A (ja) 2017-01-31 2018-08-09 三菱日立パワーシステムズ株式会社 ボイラシステム、および、ボイラシステムの運転方法

Also Published As

Publication number Publication date
JP2021067408A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
KR102340659B1 (ko) 고체 연료 분쇄 장치, 발전 플랜트 및 고체 연료 분쇄 장치의 제어 방법
CN111482242B (zh) 固体燃料粉碎装置、具备其的发电设备、以及其控制方法
JP2019066122A (ja) 固体燃料粉砕システム、固体燃料粉砕装置および固体燃料粉砕システムの制御方法
JP7395314B2 (ja) 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム
KR102533816B1 (ko) 고체 연료 분쇄 장치 및 이것을 구비한 발전 플랜트 및 고체 연료 분쇄 방법
JP2023095072A (ja) 排出装置、固体燃料粉砕装置および排出装置の制御方法
JP2022041973A (ja) 装置、発電プラント、装置の制御方法、プログラム、発電プラントシステム、及び発電プラントシステムの制御方法
KR20220100828A (ko) 고체연료 분쇄 장치 및 이를 구비한 발전 플랜트 및 고체연료 분쇄 방법
JP7475876B2 (ja) 排出装置、固体燃料粉砕装置及びボイラシステム並びに排出装置の運転方法
JP7423204B2 (ja) 粉砕装置及びボイラシステム並びに粉砕装置の運転方法
JP6195512B2 (ja) 固体燃料粉砕装置および固体燃料粉砕方法
WO2020045276A1 (ja) 固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕方法
WO2022080218A1 (ja) 固体燃料粉砕装置及び発電プラント並びに固体燃料粉砕装置の運転方法
JP2021085634A (ja) 固体燃料粉砕システム及びこれを備えた発電プラント並びに固体燃料粉砕システムの制御方法
JP2020116537A (ja) 固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕装置の制御方法
WO2022045345A1 (ja) 装置、発電プラント、装置の制御方法、プログラム、発電プラントシステム、及び発電プラントシステムの制御方法
JP2024145457A (ja) 燃料供給装置の保護システム、固体燃料粉砕装置、ボイラシステム及び燃料供給装置を保護する方法
JP2023107454A (ja) 固体燃料粉砕装置および固体燃料粉砕装置の制御方法
JP2024066763A (ja) ダンパシステム、固体燃料粉砕装置及び発電プラント並びにダンパシステムの制御方法
JP2022130855A (ja) 固体燃料粉砕装置及び発電プラント並びに固体燃料粉砕装置の運転方法
JP2023096501A (ja) 運転制御システム及び発電プラント、並びに運転制御方法、並びに運転制御プログラム
JP2022130856A (ja) ロータリバルブ及び発電プラント並びにロータリバルブの運転方法
JP2024111450A (ja) 固体燃料粉砕装置及び発電プラント並びに固体燃料粉砕装置の運転方法
WO2020045129A1 (ja) 固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕の制御方法
JP2024106829A (ja) ピストン装置、粉砕機及びピストン装置の運用方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R150 Certificate of patent or registration of utility model

Ref document number: 7395314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150