JP7366375B2 - ポリカーボネートの製造方法 - Google Patents

ポリカーボネートの製造方法 Download PDF

Info

Publication number
JP7366375B2
JP7366375B2 JP2020556163A JP2020556163A JP7366375B2 JP 7366375 B2 JP7366375 B2 JP 7366375B2 JP 2020556163 A JP2020556163 A JP 2020556163A JP 2020556163 A JP2020556163 A JP 2020556163A JP 7366375 B2 JP7366375 B2 JP 7366375B2
Authority
JP
Japan
Prior art keywords
group
less
integer
substituent
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020556163A
Other languages
English (en)
Other versions
JPWO2020100975A1 (ja
Inventor
明彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Mitsubishi Gas Chemical Co Inc
Original Assignee
Kobe University NUC
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Mitsubishi Gas Chemical Co Inc filed Critical Kobe University NUC
Publication of JPWO2020100975A1 publication Critical patent/JPWO2020100975A1/ja
Application granted granted Critical
Publication of JP7366375B2 publication Critical patent/JP7366375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/38General preparatory processes using other monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/226General preparatory processes using carbonyl halides and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、安全かつ効率的にポリカーボネートを製造するための方法に関するものである。
カーボネート誘導体のうち炭酸とビスフェノール化合物との縮合体であるポリカーボネートは、透明性や耐衝撃性に優れるエンジニアリングプラスチックとして広く利用されている。
カーボネート誘導体は、一般的に、ホスゲンと求核性官能基含有化合物から製造される。しかしホスゲンは水と容易に反応して塩化水素を発生させたり、毒ガスとして利用された歴史があるなど、非常に有毒なものである。その他、一酸化炭素とアルコールと酸素を反応させる製造方法もあるが、有毒である一酸化炭素を高圧で用いなければならないという問題がある。そこで、炭酸エステルやポリカーボネートの安全な製造方法が種々検討されている。
例えば特許文献1には、触媒存在下に炭酸エステルをエステル交換反応に付して目的のカーボネート誘導体を製造する方法が記載されている。しかしこの方法では、原料化合物としてのカーボネート誘導体を如何に製造すべきかとの問題が残っており、根本的な解決とはならない。また、高価な触媒を用いなければならないことや、残留触媒による逆反応や副反応の問題もある。
特許文献2には、触媒の存在下、エポキシ化合物と二酸化炭素からカーボネート誘導体を製造する方法が開示されている。この方法ではホスゲンや一酸化炭素を用いる必要は無いが、高価な触媒を用いなければならず、また、二酸化炭素を高圧にしなければならないなど、工業的な大量生産には適さないといえる。
ところで本発明者は、ハロゲン化炭化水素とアルコールとを酸化的光反応に付すことによるハロゲン化ギ酸エステルの製造方法(特許文献3)や、酸素存在下、クロロホルムに光照射してホスゲンを含有する混合物を得る工程、ホスゲンを単離することなくアルコールを前記混合物と反応させる工程を具備するポリカーボネート等の製造方法を開発している(特許文献4)。
特開平7-10811号公報 特開2001-129397号公報 国際公開第2015/156245号パンフレット 特開2013-181028号公報
大熊誠一ら,分析化学,Vol.24,pp.385-387(1975年) 釼実夫ら,日本ゴム協会誌,第43巻,第5号,pp.337-346(1970年) Jerzy Herbichら,J.Photochem.Photobiol.A: Chem.,80,pp.157-160(1994)
上述したように、カーボネート誘導体の製造にはホスゲンが一般的に使用されており、ホスゲンを使用しない製造方法であっても、その他の有毒な化合物や高価な触媒を使用するものであったり、原料化合物の製造にホスゲンを使用しなければならないといった問題があった。
そこで本発明は、安全かつ効率的にポリカーボネートを製造するための方法を提供することを目的とする。
本発明者は、上記課題を解決するために鋭意研究を重ねた。その結果、酸素と特定の塩基の存在下、ハロゲノ基で置換された炭化水素化合物と特定のジオール化合物とを光反応に付すことで、驚くべきことにポリカーボネートを安全かつ効率的に製造できることを見出して、本発明を完成した。一般的に、有機塩基は光反応により色素を形成したり、ラジカルを捕捉する酸化防止剤として働いたり、電子移動などのメカニズムにより化合物の蛍光を消光させたり、ピリジンに至っては紫外線によりグルタコンアルデヒドなどに分解することなどが知られている(非特許文献1~3)。また、無機塩基水溶液は、ハロゲン化炭化水素の酸化的光分解を妨げることが予想され、且つたとえ分解が起こったとしても、ホスゲン等の分解生成物は、無機塩基水溶液により即座に二酸化炭素と塩になることが知られている。よって、有機塩基や無機塩基は、本発明者が開発した特許文献3や特許文献4の発明などの光反応には不利になると考えられていた。それに対して、特定の塩基の存在下での光反応でポリカーボネートが効率的に生成することは、非常に驚くべきことであった。
以下、本発明を示す。
[1] ポリカーボネートを製造するための方法であって、
1-4ハロゲン化炭化水素、ジオール化合物、および塩基を含む組成物に酸素存在下で光照射する工程を含み、
前記塩基として、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用い、
前記ジオール化合物が、下記式(I1)~(I6)のいずれかで表される化合物であることを特徴とする方法。
Figure 0007366375000001

[式中、
1とR2は、独立して-(CR56q1-または-(-O-(CR56q2-)q3-(式中、R5とR6は、独立して、HまたはC1-6アルキル基を表し、q1は0以上、10以下の整数を表し、q2は1以上、10以下の整数を表し、q3は1以上、10以下の整数を表し、q1またはq2が2以上の整数である場合、複数のR5またはR6は互いに同一であっても異なっていてもよい)を表し、
3とR4は、独立して、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、C1-20脂肪族炭化水素基、C1-20アルコキシル基、C3-20シクロアルキル基、C6-20芳香族炭化水素基、C7-20アラルキル基、C6-20芳香族炭化水素オキシ基、またはC3-20シクロアルコキシル基を表し、
1は下記に示す基を表し、
Figure 0007366375000002

(式中、
7とR8は、独立して、H、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、置換基αを有してもよいC1-20脂肪族炭化水素基、置換基αを有してもよいC1-20アルコキシル基、置換基βを有してもよいC6-20芳香族炭化水素基を表すか、或いはR7とR8が結合して、C3-20炭素環または5-12員複素環を形成してもよく、
9とR10は、独立して、HまたはC1-6アルキル基を表し、r1が2以上の整数である場合、複数のR9またはR10は互いに同一であっても異なっていてもよく、
11~R18は、独立して、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、置換基αを有してもよいC1-20脂肪族炭化水素基、置換基αを有してもよいC1-20アルコキシル基、または置換基βを有してもよいC6-12芳香族炭化水素基を表し、
19は置換基αを有してもよいC1-9アルキレン基を表し、
r1は1以上、20以下の整数を表し、
r2は1以上、500以下の整数を表す。)
p1とp2は、独立して、0以上、4以下の整数を表し、
置換基αは、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基であり、
置換基βは、C1-6アルキル基、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基である。]
Figure 0007366375000003

[式中、R1とR2は上記と同義を表し、X2はX1と同義を表す。]
HO-R1-X3-R2-OH (I3
[式中、R1とR2は上記と同義を表し、X3はC15-32二価芳香族炭化水素基を表す。]
HO-R20-X4-R21-OH (I4
[式中、
20とR21は、独立して-(CR56m1-または-(-O-(CR56m2-)m3-(式中、R5とR6は前記と同義を表し、m1は1以上、10以下の整数を表し、m2は1以上、10以下の整数を表し、m3は1以上、10以下の整数を表し、m1またはm2が2以上の整数である場合、複数のR5またはR6は互いに同一であっても異なっていてもよい)を表し、
4は、1以上の炭化水素環またはヘテロ環を含む二価の基を表す。]
HO-R1-X5-R2-OH (I5
[式中、R1とR2は上記と同義を表し、X5は、二価飽和ヘテロ環基を表す。]
Figure 0007366375000004

[式中、
6はC1-10アルキレン基を表し、
nは13以上、50以下の整数を表す。]
[2] 前記C1-4ハロゲン化炭化水素がC1-4ポリハロゲン化炭化水素である上記[1]に記載の方法。
[3] 前記C1-4ハロゲン化炭化水素がクロロホルムである上記[1]に記載の方法。
[4] 前記複素環式芳香族アミンが、ピリジン、ピコリンまたはルチジンである上記[1]~[3]のいずれかに記載の方法。
[5] 前記非求核性強塩基が、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンまたは1,1,3,3-テトラメチルグアニジンである上記[1]~[4]のいずれかに記載の方法。
[6] 前記無機塩基が、アルカリ金属水酸化物、アルカリ金属炭酸水素塩またはアルカリ金属炭酸塩である上記[1]~[5]のいずれかに記載の方法。
[7] 前記C1-4ハロゲン化炭化水素に対して0.001倍モル以上1倍モル以下の前記ジオール化合物を用いる上記[1]~[6]のいずれかに記載の方法。
[8] 前記ジオール化合物に対して1.5倍モル以上100倍モル以下の前記塩基を用いる上記[1]~[7]のいずれかに記載の方法。
[9] 前記組成物に照射する光が180nm以上280nm以下の波長の光を含む上記[1]~[8]のいずれかに記載の方法。
[10] 2種以上の前記ジオール化合物を用いる上記[1]~[9]のいずれかに記載の方法。
本発明方法では、ホスゲンや一酸化炭素といった毒性が極めて高い化合物や、高価な触媒を原料化合物として使う必要が無い。よって本発明方法は、有用なポリカーボネートを安全に且つ効率的に製造できる技術として、産業上極めて有用である。
図1は、本発明方法で用いられる反応装置の構成の一例を示す模式図である。
本発明に係るポリカーボネートの製造方法では、C1-4ハロゲン化炭化水素、ジオール化合物、および特定の塩基を含む組成物に酸素存在下で光照射する。
1. C1-4ハロゲン化炭化水素
本発明に係る反応においてC1-4ハロゲン化炭化水素は、おそらく照射光と酸素により分解され、ハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物に変換され、ジオール化合物と反応してポリカーボネートが生成すると考えられる。たとえ有害なハロゲン化カルボニルが生成しても、ハロゲン化カルボニルは反応性が極めて高いためにジオール化合物と直ぐに反応し、反応液外へは漏出しないか、或いは漏出してもその漏出量は僅かである。なお、例えばハロゲン化カルボニルであるホスゲンは非常に毒性が高く、その運搬などには厳しい規制が課せられているが、C1-4ハロゲン化炭化水素は勿論それほど危険ではない。但し、後述するように本発明に係る反応は無機塩基水溶液の存在下でも進行することから、本発明に係る反応にはハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物が介在していない可能性もある。
特に常温常圧で液体であるC1-4ハロゲン化炭化水素は有機溶媒などとして大量に消費される一方で、大気に放出されると大気汚染やオゾン層の破壊といった環境汚染の原因となる。本発明は、かかるC1-4ハロゲン化炭化水素を光分解することで有用な化合物を製造する技術であり、工業的にもまた環境科学的にも寄与するところは大きい。
1-4ハロゲン化炭化水素は、フルオロ、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基で置換された、炭素数1以上4以下のアルカン、アルケンまたはアルキンである。上述した通り、本発明においてC1-4ハロゲン化炭化水素は照射光と酸素により分解され、ハロゲン化カルボニルと同等の働きをすると考えられる。よってC1-2ハロゲン化炭化水素化合物が好ましく、ハロゲン化メタンがより好ましい。炭素数が2以上4以下である場合には、分解がより容易に進行するよう、1以上の不飽和結合を有するアルケンまたはアルキンが好ましい。また、2以上の上記ハロゲノ基を有するC1-4ハロゲン化炭化水素が好ましい。さらに、分解に伴って上記ハロゲノ基が転移する可能性もあるが、同一炭素に2以上の上記ハロゲノ基を有するC1-4ポリハロゲン化炭化水素化合物が好ましい。
具体的なC1-4ハロゲン化炭化水素としては、C1-4ハロゲン化アルカン、C2-4ハロゲン化アルケンまたはC2-4ハロゲン化アルキンが好ましく、ハロゲン化カルボニル様化合物を容易に生成する観点から、ハロゲン化メタン、ハロゲン化エテンまたはハロゲン化アセチレンがより好ましく、2以上の上記ハロゲノ基を有するポリハロゲン化メタン、ポリハロゲン化エテンまたはポリハロゲン化アセチレンが特に好ましく、ポリハロゲン化メタンが最も好ましい。C1-4ハロゲン化炭化水素としては、例えば、トリフルオロメタン等のフルオロメタン;ジクロロメタン、クロロホルム、四塩化炭素などのクロロメタン;ジブロモメタン、ブロモホルム等のブロモメタン;ヨードメタン、ジヨードメタン等のヨードメタン;クロロジフルオロメタン、ジクロロフルオロメタン、トリクロロフルオロメタン、ブロモフルオロメタン等のハロメタン;1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン等のハロエタン;1,1,1,3-テトラクロロプロパン等のハロプロパン;テトラクロロメタン、テトラブロモメタン、テトラヨードメタン、ヘキサクロロエタン、ヘキサブロモエタン等のパーハロアルカン;1,1,2,2-テトラクロロエテン、1,1,2,2-テトラブロモエテン等のパーハロエテン等を挙げることができる。
1-4ハロゲン化炭化水素は目的とする化学反応や所期の生成物に応じて適宜選択すればよく、また、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。好適には、製造目的化合物に応じて、C1-4ハロゲン化炭化水素は1種のみ用いる。C1-4ハロゲン化炭化水素の中でもクロロ基を有する化合物が好ましい。
本発明方法で用いるC1-4ハロゲン化炭化水素は、例えば溶媒としていったん使用したC1-4ハロゲン化炭化水素を回収したものであってもよい。その際、多量の不純物や水が含まれていると反応が阻害されるおそれがあり得るので、ある程度は精製することが好ましい。例えば、水洗により水溶性不純物を除去した後、無水硫酸ナトリウムや無水硫酸マグネシウムなどで脱水することが好ましい。但し、水が含まれていても反応は進行すると考えられるので、生産性を低下させるような過剰な精製は必要ない。かかる水含量としては、0質量%以上が好ましく、0.0001質量%以上がより好ましく、また、0.5質量%以下がより好ましく、0.2質量%以下がさらに好ましく、0.1質量%以下がよりさらに好ましい。また、上記再利用C1-4ハロゲン化炭化水素には、C1-4ハロゲン化炭化水素の分解物などが含まれていてもよい。
2. ジオール化合物
本発明において「ジオール化合物」とは、求核性の水酸基を2つ有する化合物であり、式(I1)~(I6)のいずれかで表される化合物である。ジオール化合物は、それぞれジオール化合物(I1)~(I6)と略記する場合がある。本発明で用いるジオール化合物は、フルオロを置換基として有さない。その結果、本発明方法で製造されるポリカーボネートもフルオロを置換基として有さない。また、本発明では特定のジオール化合物を用いることによって、ポリカーボネートまでの反応の進行が可能になる。
ジオール化合物(I1)は、下記式(I1)で表される。
Figure 0007366375000005

[式中、
1とR2は、独立して-(CR56q1-または-(-O-(CR56q2-)q3-(式中、R5とR6は、独立して、HまたはC1-6アルキル基を表し、q1は0以上、10以下の整数を表し、q2は1以上、10以下の整数を表し、q3は1以上、10以下の整数を表し、q1またはq2が2以上の整数である場合、複数のR5またはR6は互いに同一であっても異なっていてもよい)を表し、
3とR4は、独立して、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、C1-20脂肪族炭化水素基、C1-20アルコキシル基、C3-20シクロアルキル基、C6-20芳香族炭化水素基、C7-20アラルキル基、C6-20芳香族炭化水素オキシ基、またはC3-20シクロアルコキシル基を表し、
1は下記に示す基を表し、
Figure 0007366375000006

(式中、
7とR8は、独立して、H、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、置換基αを有してもよいC1-20脂肪族炭化水素基、置換基αを有してもよいC1-20アルコキシル基、置換基βを有してもよいC6-20芳香族炭化水素基を表すか、或いはR7とR8が結合して、C3-20炭素環または5-12員複素環を形成してもよく、
9とR10は、独立して、HまたはC1-6アルキル基を表し、r1が2以上の整数である場合、複数のR9またはR10は互いに同一であっても異なっていてもよく、
11~R18は、独立して、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、置換基αを有してもよいC1-20脂肪族炭化水素基、置換基αを有してもよいC1-20アルコキシル基、または置換基βを有してもよいC6-12芳香族炭化水素基を表し、
19は置換基αを有してもよいC1-9アルキレン基を表し、
r1は1以上、20以下の整数を表し、
r2は1以上、500以下の整数を表す。)
p1とp2は、独立して、0以上、4以下の整数を表し、
置換基αは、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基であり、
置換基βは、C1-6アルキル基、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基である。]
-(CR56q1-としては、例えば、エチレン基(-CH2CH2-)を挙げることができ、-O-(CR56q2-としては、例えば、-O-CH2CH2-および-O-CH(CH3)CH2-を挙げることができる。なお、R1が-(-O-(CR56q2-)q3-である場合、安定性の点からHO-R1-PhはHO-(-O-(CR56q2-)q3-Phとはならず、HO-(-(CR56q2-O-)q3-Phとなる。q2としては、2以上が好ましい。
「ハロゲノ基」としては、クロロ、ブロモおよびヨードを例示することができ、クロロまたはブロモが好ましく、クロロがより好ましい。
「C1-20脂肪族炭化水素基」は、炭素数1以上、20以下の直鎖状または分枝鎖状の一価脂肪族炭化水素基をいい、C1-20アルキル基、C2-20アルケニル基、およびC2-20アルキニル基を挙げることができる。C1-20アルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-オクチル、n-デシル、n-ペンタデシル、n-イコシルが挙げられる。好ましくはC1-10アルキル基またはC1-6アルキル基であり、より好ましくはC1-4アルキル基またはC1-2アルキル基であり、より更に好ましくはメチルである。C2-20アルケニル基としては、例えば、エテニル(ビニル)、1-プロペニル、2-プロペニル(アリル)、イソプロペニル、2-ブテニル、3-ブテニル、イソブテニル、ペンテニル、ヘキセニル、オクテニル、デセニル、ペンタデセニル、イコセニル等が挙げられる。好ましくはC2-10アルケニル基またはC2-6アルケニル基であり、より好ましくはエテニル(ビニル)または2-プロペニル(アリル)である。C2-20アルキニル基としては、例えば、エチニル、1-プロピニル、2-プロピニル、2-ブチニル、3-ブチニル、ペンチニル、ヘキシニル、オクチニル、デシニル、ペンタデシニル、イコシニル等が挙げられる。好ましくはC2-10アルキニル基またはC2-6アルキニル基であり、より好ましくはC2-4アルキニル基またはC2-3アルキニル基である。
「C1-20アルコキシル基」とは、炭素数1以上、20以下の直鎖状または分枝鎖状の一価脂肪族炭化水素オキシ基をいう。例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキソキシ等であり、好ましくはC1-10アルコキシル基またはC1-6アルコキシル基であり、より好ましくはC1-4アルコキシル基またはC1-2アルコキシル基であり、より更に好ましくはメトキシである。
「C3-20シクロアルキル基」は、炭素数3以上、20以下の一価環状飽和脂肪族炭化水素基をいう。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチル等である。好ましくはC3-10シクロアルキル基である。
「C6-20芳香族炭化水素基」とは、炭素数が6以上、20以下の一価芳香族炭化水素基をいう。例えば、フェニル、インデニル、ナフチル、ビフェニル、アセナフテニル、フルオレニル、フェナレニル、フェナントレニル、アントラセニル、トリフェニレニル、ピレニル、クリセニル、ナフタセニル、ペリレニル等であり、好ましくはC6-12芳香族炭化水素基であり、より好ましくはフェニルである。
「C7-20アラルキル基」とは、1個の芳香族炭化水素基で置換されたアルキル基であり、炭素数が7以上、20以下のものをいう。例えば、ベンジル、フェネチル、フェニルプロピル、ナフチルメチル、ナフチルエチル、ビフェニルメチルを挙げることができ、ベンジルが好ましい。
「C6-20芳香族炭化水素オキシ基」とは、炭素数6以上、20以下の一価芳香族炭化水素オキシ基をいう。例えば、フェノキシ、インデニルオキシ、ナフチルオキシ、ビフェニルオキシ、アセナフテニルオキシ、フルオレニルオキシ、フェナレニルオキシ、フェナントレニルオキシ、アントラセニルオキシ、アントラセニルオキシ、トリフェニレニルオキシ、ピレニルオキシ、クリセニルオキシ、ナフタセニルオキシ、ペリレニルオキシ等であり、好ましくはC6-12芳香族炭化水素オキシ基であり、より好ましくはフェノキシである。
「C3-20シクロアルコキシル基」は、炭素数3以上、20以下の一価環状飽和脂肪族炭化水素オキシ基をいう。例えば、シクロプロピルオキシ、シクロブチルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、アダマンチルオキシ、シクロドデカニル等である。好ましくはC3-12シクロアルキルオキシ基である。
置換基αとしては、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基を挙げることができる。
置換基βとしては、C1-6アルキル基、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基を挙げることができる。
「アミノ基」には、無置換のアミノ基(-NH2)のほか、1個のC1-6アルキル基に置換されたモノC1-6アルキルアミノ基と2個のC1-6アルキル基に置換されたジC1-6アルキルアミノ基が含まれるものとする。かかるアミノ基としては、アミノ(-NH2);メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、t-ブチルアミノ、n-ペンチルアミノ、n-ヘキシルアミノ等のモノC1-6アルキルアミノ基;ジメチルアミノ、ジエチルアミノ、ジ(n-プロピル)アミノ、ジイソプロピルアミノ、ジ(n-ブチル)アミノ、ジイソブチルアミノ、ジ(n-ペンチル)アミノ、ジ(n-ヘキシル)アミノ、エチルメチルアミノ、メチル(n-プロピル)アミノ、n-ブチルメチルアミノ、エチル(n-プロピル)アミノ、n-ブチルエチルアミノ等のジC1-6アルキルアミノ基を挙げることができる。好ましくは、無置換のアミノ基である。
「C1-7アシル基」とは、炭素数1以上、7以下の脂肪族カルボン酸からOHを除いた残りの原子団をいう。例えば、ホルミル、アセチル、エチルカルボニル、n-プロピルカルボニル、イソプロピルカルボニル、n-ブチルカルボニル、イソブチルカルボニル、t-ブチルカルボニル、n-ペンチルカルボニル、n-ヘキシルカルボニル等であり、好ましくはC1-4アシル基であり、より好ましくはアセチルである。
置換基αの置換基数は、置換可能であれば特に制限されないが、例えば、1以上、20以下とすることができる。当該置換基数は、10以下が好ましく、5以下または3以下がより好ましく、2以下または1がより更に好ましい。
置換基βの置換基数は、置換可能であれば特に制限されないが、例えば、1以上、10以下とすることができる。当該置換基数は、5以下が好ましく、3以下がより好ましく、2以下または1がより更に好ましい。
7とR8が結合して形成されるC5-20炭素環としては、置換基βを有してもよいC3-20シクロアルキル基、およびシクロアルキル基と芳香族炭化水素基との縮合環を挙げることができる。当該縮合環としては、例えば、アセナフテニルやフルオレニルを挙げることができる。
7とR8が結合して形成される5-12員複素環としては、例えば、オキシラニル、アジリジニル、テトラヒドロフラニル、テトラヒドロチオフェニル、ピロリジニル、オキサチオラニル、ピペリジニル、1(3H)-イソベンゾフラノニル等を挙げることができる。
ジオール化合物(I1)として具体的には、例えば、ビス(4-ヒドロキシフェニル)メタン、ビス(2-ヒドロキシフェニル)メタン、2,4’-ジヒドロキシジフェニルメタン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(2-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3-メチルフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルファイド、ビス(4-ヒドロキシフェニル)ケトン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、ビス(4-ヒドロキシ-3-メチルフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロウンデカン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン、3,3,5-トリメチル-1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、α,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルジフェニルランダム共重合シロキサン、α,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスフェノール、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-t-ブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、4-(9-(4-ヒドロキシエトキシ)フェニル)-9H-フルオレン-9-イル)フェノール、2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパン、4、4-ビス(2-ヒドロキシエトキシ)ビフェニル、2,2’(9H-フルオレン-9,9’-ジイル)ビス(エタン-1-オール)、9H-フルオレン-9,9-ジイル)ジメタノール、2,2’-(1,4-フェニレン)ビス(エタン-1-オール)、2,2’-(1,4-フェニレン)ビス(メタン-1-オール)、2,2’-(1,4フェニレンビス(オキシ))ビス(エタン-1-オール)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-sec-ブチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-アリルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-フルオロフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-クロロフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-ブロモフェニル)シクロドデカン、7-エチル-1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、5,6-ジメチル-1,1-ビス(4-ヒドロキシフェニル)シクロドデカンを挙げることができる。
これらの中でも特にビス(4-ヒドロキシフェニル)メタン、ビス(2-ヒドロキシフェニル)メタン、2,4’-ジヒドロキシジフェニルメタン、ビス(4-ヒドロキシフェニル)エーテル、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン及び1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロドデカンが好ましい。更に、代表的なジオール化合物(I1)を以下に示す。
Figure 0007366375000007
[式中、R1とR2は前記と同義を表す。]
但し、場合によっては、ジオール化合物(I1)から、ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールE、ビスフェノールF、ビスフェノールTMC、ビスフェノールZを除外してもよい。
ジオール化合物(I2)は、下記式(I2)で表される。
Figure 0007366375000008

[式中、R1とR2は上記と同義を表し、X2はX1と同義を表す。]
ジオール化合物(I2)としては、具体的には、9,9-ビス[6-(1-ヒドロキシメトキシ)ナフタレン-2-イル]フルオレン、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン、9,9-ビス[6-(3-ヒドロキシプロポキシ)ナフタレン-2-イル]フルオレン、および9,9-ビス[6-(4-ヒドロキシブトキシ)ナフタレン-2-イル]フルオレン等が挙げられる。なかでも9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレンが好ましい。
ジオール化合物(I3)は、下記式(I3)で表される。
HO-R1-X3-R2-OH (I3
[式中、R1とR2は上記と同義を表し、X3はC15-32二価芳香族炭化水素基を表す。]
15-32二価芳香族炭化水素基としては、例えば、フルオランテニレン、アセフェナントリレニレン、アセアントリレニレン、トリフェニレン、ピレニレン、クリセニレン、ナフタセニレン、プレイアデニレン、ピセニレン、ペリレニレン、ビフェニレン、ペンタフェニレン、ペンタセニレン、テトラフェニレニレン、ヘキサフェニレン、ヘキサセニレン、ルビセニレン、コロネニレン、トリナフチレニレン、ヘプタフェニレン、ヘプタセニレン、ピラントレニレン、オヴァレニレンなどのC15-32二価縮合多環式芳香族炭化水素基;テルフェニレンやクウォーターフェニレン等を挙げることができる。
3上のR3基の数は、置換可能であれば特に制限されないが、例えば、1以上、10以下とすることができ、8以下または5以下が好ましく、1または2がより好ましい。
ジオール化合物(I3)として具体的には、下記式で表されるビナフタレンジオール化合物が挙げられる。
Figure 0007366375000009

[式中、R1とR2は上記と同義を表す。]
かかるビナフタレンジオール化合物としては、例えば、2,2’-ビス(1-ヒドロキシメトキシ)-1,1’-ビナフタレン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン、2,2’-ビス(3-ヒドロキシプロピルオキシ)-1,1’-ビナフタレン、2,2’-ビス(4-ヒドロキシブトキシ)-1,1’-ビナフタレン等が挙げられる。なかでも、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンが好ましい。
ジオール化合物(I4)は、下記式(I4)で表される。
HO-R20-X4-R21-OH (I4
[式中、
20とR21は、独立して-(CR56m1-または-(-O-(CR56m2-)m3-(式中、R5とR6は前記と同義を表し、m1は1以上、10以下の整数を表し、m2は1以上、10以下の整数を表し、m3は1以上、10以下の整数を表し、m1またはm2が2以上の整数である場合、複数のR5またはR6は互いに同一であっても異なっていてもよい)を表し、
4は、1以上の炭化水素環またはヘテロ環を含む二価の基を表す。]
m2としては、2以上が好ましい。
-(CR56m1-としては、例えば、エチレン基(-CH2CH2-)を挙げることができ、-O-(CR56m2-としては、例えば、-O-CH2CH2-および-O-CH(CH3)CH2-を挙げることができる。なお、R1が-(-O-(CR56m2-)m3-である場合、安定性の点からHO-R1-X3-はHO-(-O-(CR56m2-)m3-X3-とはならず、HO-(-(CR56m2-O-)m3-X3-となる。
1以上の炭化水素環またはヘテロ環を含む二価の基としては、置換基βを有してもよい二価C6-32芳香族炭化水素基、置換基βを有してもよい二価C3-20シクロアルキル基、置換基βを有してもよい二価C6-32芳香族炭化水素基および置換基βを有してもよい二価C3-20シクロアルキル基をそれぞれ1以上有する二価基を挙げることができる。
二価C6-32芳香族炭化水素基は、全体として芳香族性を示すものであれば、酸素原子、硫黄原子、窒素原子から選択されるヘテロ原子を含むものであってもよい。二価C6-32芳香族炭化水素基としては、特に制限されないが、以下のものを挙げることができる。
Figure 0007366375000010
二価C3-20シクロアルキル基も、酸素原子、硫黄原子、窒素原子から選択されるヘテロ原子を含むものであってもよい。二価C3-14シクロアルキル基としては、特に制限されないが、以下のものを挙げることができる。
Figure 0007366375000011
置換基βを有してもよい二価C6-32芳香族炭化水素基および置換基βを有してもよい二価C3-20シクロアルキル基をそれぞれ1以上有する二価基としては、特に制限されないが、以下のものを挙げることができる。
Figure 0007366375000012
ジオール化合物(I5)は、下記式(I5)で表される。
HO-R1-X5-R2-OH (I5
[式中、R1とR2は上記と同義を表し、X5は、二価飽和ヘテロ環基を表す。]
二価飽和ヘテロ環基としては、特に制限されないが、以下のものを挙げることができる。
Figure 0007366375000013
ジオール化合物(I6)は、下記式(I6)で表される。
Figure 0007366375000014

[式中、 X6はC1-10アルキレン基を表し、
nは13以上、50以下の整数を表す。]
1-10アルキレン基は、炭素数1以上、10以下の直鎖状または分枝鎖状の二価飽和脂肪族炭化水素基をいう。例えば、-CH2-、-CH2CH2-、-CH2CH2CH2-、-CH2CH(CH3)-、-CH(CH3)CH2-、-CH2CH2CH2CH2-を挙げることができる。ジオール化合物(I6)中のX6は、互いに同一であっても異なっていてもよく、複数のX5が存在する場合、-O-X6-の並び方はランダム状であってもブロック状であってもよい。C1-10アルキレン基としては、C2-10アルキレン基が好ましい。
ジオール化合物は、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。例えば、2種以上のジオール化合物を併用することにより、共重合ポリカーボネートを良好に製造することができる。但し、製造効率などの観点からは、1種のみのジオール化合物を単独で用いることが好ましい。2種以上のジオール化合物を用いる場合には、ジオール化合物の数としては5以下が好ましく、3以下がより好ましく、2がより更に好ましい。2種以上のジオール化合物を用いて本発明方法で共重合させることにより、得られるポリカーボネートの物性範囲が広がり、物性調整が容易になる。
1-4ハロゲン化炭化水素とジオール化合物の使用量は、反応が進行し、所期の生成物が得られる限り特に限定されるものではなく、例えば、C1-4ハロゲン化炭化水素のモル数に対して1倍モルのジオール化合物を使用する場合にも上記反応は進行する。なお、反応効率および反応時間などの観点からは、C1-4ハロゲン化炭化水素に対するジオール化合物のモル比([ジオール化合物]/[C1-4ハロゲン化炭化水素])を0.001以上1以下とすることが好ましい。上記モル比率は、0.01以上がより好ましく、0.1以上がよりさらに好ましく、また、0.8以下がより好ましく、0.5以下がよりさらに好ましい。上記モル比が大き過ぎる場合には、相対的に求核性官能基含有化合物の量が多くなるため未反応の求核性官能基含有化合物が増加する一方で、上記モル比が小さ過ぎる場合には、未反応のC1-4ハロゲン化炭化水素が増加して、反応系外へハロゲン化カルボニルが放出されてしまう虞があり得る。また、C1-4ハロゲン化炭化水素が常温常圧で液体であり、溶媒としても用いることができる場合には、C1-4ハロゲン化炭化水素に対するジオール化合物の割合を1mg/mL以上、500mg/mL以下としてもよい。
3. 塩基
本発明方法においては、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる。当該塩基により、ポリカーボネートが生成するまで反応が進行すると考えられる。
複素環式芳香族アミンは、少なくとも一つの複素環を含み且つ少なくとも一つのアミン官能基を有している化合物をいう。複素環式芳香族アミンとしては、例えば、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,5-ルチジン、2-クロロピリジン、3-クロロピリジン、4-クロロピリジンなどの、ピリジンおよびその誘導体などを挙げることができる。
「非求核性強塩基」とは、立体的な障害により窒素原子上の孤立電子対の求核性が弱い強塩基をいう。非求核性強塩基としては、例えば、アセトニトリル中における塩基性度(pKBH+)が20以上の非求核性強塩基を用いることができる。かかる非求核性強塩基としては、例えば、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD,pKBH+:25.98)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD,pKBH+:25.44)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU,pKBH+:24.33)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN,pKBH+:23.89)、および1,1,3,3-テトラメチルグアニジン(TMG,pKBH+:23.30)を挙げることができる。
無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化カルシウムなどのアルカリ土類金属水酸化物;水酸化マグネシウム;炭酸ナトリウムや炭酸カリウムなどのアルカリ金属炭酸塩;炭酸カルシウムなどアルカリ土類金属炭酸塩;炭酸マグネシウム;炭酸水素ナトリウムなどアルカリ金属炭酸水素塩などを挙げることができる。
無機塩基は、使用直前に微細化して反応液に添加してもよいが、その水溶液を添加することが好ましい。無機塩基水溶液の濃度は適宜調整すればよいが、例えば、0.05g/mL以上、2g/mL以下とすることができる。なお、無機塩基水溶液は、ホスゲンの分解に用いられる。具体的には、ホスゲンは水の存在により二酸化炭素と塩化水素に分解され、この塩化水素を無機塩基により中和することができる。よって、本発明者は本発明に係る反応はホスゲンを経由していると考えており、本発明反応は後記の実施例の通り無機塩基水溶液を使う場合でも進行することは驚くべきことであった。また、本発明に係る反応は無機塩基水溶液を使っても進行することから、ホスゲンを経由せずに進行している可能性もあり得る。
上記塩基は、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記塩基の使用量は、反応が良好に進行する範囲で適宜調整すればよいが、例えば、上記ジオール化合物に対して1.5倍モル以上100倍モル以下とすることができる。一般的に、上記塩基の使用量が多いほど収率が高くなるので、上記割合としては2.0倍モル以上が好ましく、3.0倍モル以上がより好ましく、4.0倍モル以上がよりさらに好ましい。
その他、触媒作用を示す化合物を反応液に添加してもよい。かかる触媒化合物としては、例えば、アルカリ金属およびアルカリ土類金属の有機酸塩、無機酸塩、酸化物、水素化物、アルコキシド;4級アンモニウム塩などが挙げられる。これら触媒化合物は、1種のみを単独で、または2種以上を組み合わせて用いることができる。
アルカリ金属の有機酸塩としては、例えば、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩、2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩、フェニルリン酸2ナトリウムが挙げられる。アルカリ金属の無機酸塩としては、例えば、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウムが用いられる。
アルカリ土類金属化合物の有機酸塩としては、例えば、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウムが挙げられる。
4級アンモニウム塩としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル基および/またはアリール基等を有する4級アンモニウムヒドロキシド類;2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類が挙げられる。
4. 反応条件
本発明方法は、上記C1-4ハロゲン化炭化水素、ジオール化合物、および塩基を含む組成物に、酸素存在下で光照射する工程を含む。
上記C1-4ハロゲン化炭化水素、ジオール化合物、および塩基の混合態様は特に限定されない。例えば、反応器中、各化合物の全量を予め混合しておいてもよいし、数回に分割して添加してもよいし、任意の速度で連続的に添加してもよい。また、上記C1-4ハロゲン化炭化水素とジオール化合物の一方または両方が常温常圧で液体でない場合には、これら原料化合物を適度に溶解でき、且つ本発明反応を阻害しない溶媒を用いてもよい。かかる溶媒としては、例えば、n-ヘキサンなどの脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン、クロロベンゼンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;アセトニトリルなどのニトリル系溶媒を挙げることができる。
酸素源としては、酸素を含む気体であればよく、例えば、空気や、精製された酸素を用いることができる。精製された酸素は、窒素やアルゴン等の不活性ガスと混合して使用してもよい。コストや容易さの点からは空気を用いることが好ましい。光照射によるC1-4ハロゲン化炭化水素の分解効率を高める観点からは、酸素源として用いられる気体中の酸素含有率は約15体積%以上100体積%以下であることが好ましい。酸素含有率は上記C1-4ハロゲン化炭化水素などの種類によって適宜決定すればよい。例えば、上記C1-4ハロゲン化炭化水素としてジクロロメタン、クロロホルム、テトラクロロエチレン等のC1-4クロロ炭化水素化合物を用いる場合は、酸素含有率15体積%以上100体積%以下が好ましく、ジブロモメタンやブロモホルムなどのC1-4ブロモ炭化水素化合物を用いる場合は、酸素含有率90体積%以上100体積%以下が好ましい。なお、酸素(酸素含有率100体積%)を用いる場合であっても、反応系内への酸素流量の調節により酸素含有率を上記範囲内に制御することができる。酸素を含む気体の供給方法は特に限定されず、流量調整器を取り付けた酸素ボンベから反応系内に供給してもよく、また、酸素発生装置から反応系内に供給してもよい。
なお、「酸素存在下」とは、上記各化合物が酸素と接している状態か、上記組成物中に酸素が存在する状態のいずれであってもよい。従って、本発明に係る反応は、酸素を含む気体の気流下で行ってもよいが、生成物の収率を高める観点からは、酸素を含む気体はバブリングにより上記組成物中へ供給することが好ましい。
酸素を含む気体の量は、上記C1-4ハロゲン化炭化水素の量や、反応容器の形状などに応じて適宜決定すればよい。例えば、反応容器中に存在する上記C1-4ハロゲン化炭化水素に対する、反応容器へ供給する1分あたりの気体の量を、5容量倍以上とすることが好ましい。当該割合としては、25容量倍以上がより好ましく、50容量倍以上がよりさらに好ましい。当該割合の上限は特に制限されないが、500容量倍以下が好ましく、250容量倍以下がより好ましく、150容量倍以下がよりさらに好ましい。また、反応容器中に存在する上記C1-4炭化水素化合物に対する、反応容器へ供給する1分あたりの酸素の量としては、5容量倍以上25容量倍以下とすることができる。気体の流量が多過ぎる場合には、上記C1-4炭化水素化合物が揮発してしまう虞があり得る一方で、少な過ぎると反応が進行し難くなる虞があり得る。酸素の供給速度としては、例えば、C1-4ハロゲン化炭化水素4mL当たり0.01L/分以上、10L/分以下とすることができる。
上記組成物に照射する光としては、短波長光を含む光が好ましく、紫外線を含む光がより好ましく、より詳細には180nm以上500nm以下の波長の光を含む光が好ましく、ピーク波長が180nm以上500nm以下の範囲に含まれる光がより好ましい。なお、光の波長またはピーク波長は上記C1-4ハロゲン化炭化水素の種類に応じて適宜決定すればよいが、400nm以下がより好ましく、300nm以下がよりさらに好ましい。照射光に上記波長範囲の光が含まれている場合には、上記C1-4ハロゲン化炭化水素を効率良く酸化的光分解できる。例えば、波長280nm以上315nm以下のUV-Bおよび/または180nm以上280nm以下のUV-Cを含む光またはピーク波長がこの範囲に含まれる光を用いることができ、波長180nm以上280nm以下のUV-Cを含む光またはピーク波長がこの範囲に含まれる光を用いることが好ましい。
光照射の手段は、上記波長の光を照射できるものである限り特に限定されないが、このような波長範囲の光を波長域に含む光源としては、例えば、太陽光、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ケミカルランプ、ブラックライトランプ、メタルハライドランプ、LEDランプ等が挙げられる。反応効率やコストの点から、低圧水銀ランプが好ましく用いられる。
照射光の強度や照射時間などの条件は、出発原料の種類や使用量によって適宜設定すればよい。例えば、光源から上記組成物の最短距離位置における所望の光の強度としては、1mW/cm2以上、50mW/cm2以下が好ましい。光の照射時間としては、0.5時間以上10時間以下が好ましく、1時間以上6時間以下がより好ましく、2時間以上4時間以下がよりさらに好ましい。光照射の態様も特に限定されず、反応開始から終了まで連続して光を照射する態様、光照射と光非照射とを交互に繰り返す態様、反応開始から所定の時間のみ光を照射する態様など、いずれの態様も採用できる。光照射と光非照射とを交互に繰り返す場合には、ジオール化合物のハロゲノカルボニル化と塩基による水酸基からのプロトンの引き抜きが交互に行われ、より一層の高分子化が期待できる。即ち、本発明方法では、更に、光照射せずに前記組成物を攪拌する工程を含むことが好ましい。また、光源とC1-4ハロゲン化炭化水素との最短距離としては、1m以下が好ましく、50cm以下がより好ましく、10cm以下または5cm以下がより更に好ましい。当該最短距離の下限は特に制限されないが、0cm、即ち、光源をC1-4ハロゲン化炭化水素中に浸漬してもよい。
反応時の温度も特に限定はされず、適宜調整すればよいが、例えば、0℃以上50℃以下とすることができる。当該温度としては、10℃以上がより好ましく、20℃以上がよりさらに好ましく、また、40℃以下がより好ましく、30℃以下がよりさらに好ましい。
本発明の製造方法に使用できる反応装置としては、反応容器に光照射手段を備えたものが挙げられる。反応装置には、攪拌装置や温度制御手段が備えられていてもよい。図1に、本発明の製造方法に使用できる反応装置の一態様を示す。図1に示す反応装置は、筒状反応容器6内に光照射手段1を有するものである。筒状反応容器6内に、上記各原料化合物を添加し、当該反応容器6内に酸素を含有する気体を供給または上記組成物に酸素を含有する気体をバブリングしながら(図示せず)、光照射手段1より光を照射して反応を行う。前記光照射手段1をジャケット2等で覆う場合、該ジャケットは、前記短波長光を透過する素材であることが好ましい。また、反応容器の外側から光照射を行ってもよく、この場合、反応容器は、前記短波長光を透過する素材であることが好ましい。前記短波長光を透過する素材としては、本発明の効果を妨げない限り特に限定されないが、石英ガラス等が好ましく挙げられる。
上記反応後の生成物は、従来公知の方法で精製をしてもよい。精製方法としては、蒸留、出発原料化合物の減圧留去、カラムクロマトグラフィー、分液、抽出、洗浄、再結晶などが挙げられる。
本発明方法によれば、ジオール化合物(I1)~(I6)に対応する下記ポリカーボネート(II1)~(II6)を安全かつ効率的に製造することができる。
Figure 0007366375000015
上記ポリカーボネート(II1)~(II6)は、一般の溶融重合法で得られたポリカーボネートよりも、重合時の加熱に起因する分岐構造が少なく高い品質を有する。
本願は、2018年11月15日に出願された日本国特許出願第2018-214976号に基づく優先権の利益を主張するものである。2018年11月15日に出願された日本国特許出願第2018-214976号の明細書の全内容が、本願に参考のため援用される。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
実施例1: BisP-CDEポリカーボネートの合成
Figure 0007366375000016
直径42mm、容量100mLの筒状反応容器内に、直径30mmの石英ガラスジャケットを装入し、更に石英ガラスジャケット内に低圧水銀ランプ(「UVL20PH-6」SEN Light社製,20W,φ24×120mm)を装入した反応システムを構築した。当該反応システムの模式図を図1に示す。なお、当該低圧水銀ランプからの照射光には波長254nmのUV-Cが含まれ、管壁から5mmの位置における波長254nmの光の照度は6.23~9.07mW/cm2であった。反応容器内に精製したクロロホルム(20mL)、4,4’-シクロドデシリデンビスフェノール(BisP-CDE,本州化学工業社製)(3.52g,10mmol)、BisP-CDEに対して5倍モルのピリジン(4.04mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、酸素ガスの吹き込みを継続したまま50℃で1時間攪拌した。メタノール(30mL)を追加し、沈殿物を濾取した。得られた不溶成分をクロロホルムに溶解し、蒸留水で洗浄した。得られたクロロホルム溶液を無水硫酸ナトリウムで乾燥した後、濃縮した。濃縮液にメタノールを添加して再沈殿した成分を濾取し、50℃で2時間減圧乾燥することにより、白色粉末を得た(収量:2.91g,収率:77%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたBisP-CDEポリカーボネートを下記の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表1に示す。
装置: 高速GPC装置(「HLC-8320GPC」東ソー社製)
カラム: 「SuperMultipoer HZ-M」(4.6mm×150mm,3本直列)東ソー社製)
移動相: クロロホルム 流速: 0.35mL/min
オーブン温度: 40℃ 濃度: 0.2w/v%
注入量: 10μL 分子量標準: ポリスチレン
検出器: RI
Figure 0007366375000017
実施例2: BisP-CDEポリカーボネートの合成
実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、BisP-CDE(3.52g,10mmol)、および水酸化ナトリウム水溶液(NaOH:8g,50mL,200mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを1時間照射した。
反応液にジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで脱水した後、濃縮することにより、茶色オイルを得た(収量:5.87g,収率:>100%)。得られた固体を1H NMRで分析したところ、ジクロロメタンが混入していたが、目的化合物が生成していることが確認された。なお、収率が100%を超えているのは、溶媒の残留による。
得られたBisP-CDEポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表2に示す。
Figure 0007366375000018
実施例3: TCDDMポリカーボネートの合成
Figure 0007366375000019

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、トリシクロ[5.2.1.02,6]デカンジメタノール(TCDDM,オクセア社製)(1.96g,10mmol)、およびTCDDMに対して5倍モルのピリジン(4.04mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。水とジクロロメタンを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、濃縮した。濃縮液にメタノールとクロロホルムを添加して再沈殿した成分を濾取し、50℃で1時間減圧乾燥することにより、茶色粉末を得た(収量:1.35g,収率:61%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたTCDDMポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表3に示す。
Figure 0007366375000020
実施例4: TCDDMポリカーボネートの合成
実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、TCDDM(1.96g,10mmol)、および水酸化ナトリウム水溶液(NaOH:8g,50mL,200mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを1時間照射した。
次いで、上記低圧水銀ランプの電源を切り、水酸化ナトリウム水溶液(NaOH:8g,50mL,200mmol)を追加し、0℃で2時間攪拌した後、更に常温で18時間攪拌した。
反応液にジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで脱水した後、濃縮した。濃縮液にメタノールを添加して再沈殿した成分を濾取し、常温で2時間減圧乾燥することにより、白色固体を得た(収量:1.51g,収率:68%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたTCDDMポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表4に示す。
Figure 0007366375000021
実施例5: BPEFポリカーボネートの合成
Figure 0007366375000022

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF,田岡化学工業社製)(2.19g,5mmol)、およびBPEFに対して10倍モルのピリジン(4.04mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。水とクロロホルムを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、濃縮した。濃縮液にメタノールを添加して再沈殿した成分を濾取し、50℃で2時間減圧乾燥することにより、黄白色粉末を得た(収量:1.01g,収率:43%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたBPEFポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表5に示す。
Figure 0007366375000023
実施例6: BPEFポリカーボネートの合成
実施例1で用いた反応システムの反応容器内に、精製クロロホルム(40mL)、BPEF(2.19g,5mmol)、および水酸化ナトリウム水溶液(40mL,200mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを30分照射した後、非照射で30分攪拌するという操作を2回繰り返し、計2時間反応を行った。
次いで、水酸化ナトリウム水溶液(40mL,200mmol)を追加し、上記光照射-非照射の操作を2回繰り返し、計2時間反応を行った。
反応液にジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで脱水した後、濃縮した。濃縮液にメタノールを添加して再沈殿した成分を濾取し、常温で2時間減圧乾燥することにより、黄白色固体を得た(収量:1.06g,収率:46%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたBPEFポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表6に示す。
Figure 0007366375000024
実施例7: PCPDMポリカーボネートの合成
Figure 0007366375000025

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ペンタシクロペンタデカン ジメタノール(PCPDM,三菱瓦斯化学社製)(2.62g,10mmol)、およびPCPDMに対して5倍モルのピリジン(4.04mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを2時間照射した。
次いで、ピリジン(4.04mL)を追加し、20℃で1L/minの酸素ガスをバブリングで吹き込みつつ、上記低圧水銀ランプを2時間照射した。更に、ピリジン(8.08mL)を追加し、20℃で1L/minの酸素ガスをバブリングで吹き込みつつ、上記低圧水銀ランプを4時間照射した。
上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。水とクロロホルムを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、濃縮した。濃縮液にメタノールを添加して再沈殿した成分を濾取し、50℃で2時間減圧乾燥することにより、茶色粉末を得た(収量:0.46g,収率:16%)。得られた固体を1H NMRで分析したところ、原料化合物が残留していたものの、目的化合物が生成していることが確認された。
得られたPCPDMポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表7に示す。
Figure 0007366375000026
実施例8: PCPDMポリカーボネートの合成
実施例1で用いた反応システムの反応容器内に、精製クロロホルム(40mL)、PCPDM(2.62g,10mmol)、および水酸化ナトリウム水溶液(50mL,200mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、水酸化ナトリウム水溶液(50mL,200mmol)を追加して、酸素ガスの吹き込みを継続したまま20℃で7時間攪拌した。再び上記低圧水銀ランプを照射し、20℃で1L/minの酸素ガスをバブリングで吹き込みつつ、15分間撹拌した。更に、上記低圧水銀ランプの電源を切り、水酸化ナトリウム水溶液(25mL,100mmol)を追加して、酸素ガスの吹き込みを継続したまま20℃で12時間45分攪拌した。
反応液にクロロホルムを加えて分液し、有機相を無水硫酸ナトリウムで脱水した後、濃縮した。濃縮液にメタノールを添加して再沈殿した成分を濾取し、常温で3時間減圧乾燥することにより、白色固体を得た(収量:2.03g,収率:70%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたPCPDMポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表8に示す。
Figure 0007366375000027
実施例9: ISBポリカーボネートの合成
Figure 0007366375000028

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(30mL)、イソソルビド(ISB,三光化学工業社製)(1.46g,10mmol)、およびイソソルビドに対して5倍モルのピリジン(4.0mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを6時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。溶媒を減圧留去し、残渣にクロロホルムとメタノールを添加して沈殿した成分を減圧下で濾取し、50℃で1時間減圧乾燥することにより、淡黄色固体を得た(収量:1.82g,収率:>99%)。得られた固体を1H NMRで分析したところ、目的とするISBポリカーボネートが生成していることが確認された。
得られたISBポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表9に示す。
Figure 0007366375000029
実施例10: PTMGポリカーボネートの合成
Figure 0007366375000030

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ポリ(テトラメチレンエーテル)グリコール(「PolyTHF2000S」BASF社製,分子量:2000g/mol,上記式中の「k」は、繰り返しを示す。)(2.06g,1.03mmol)、およびポリ(テトラメチレンエーテル)グリコールに対して50倍モルのピリジン(4.04mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを3.5時間照射した。
上記低圧水銀ランプの電源を切り、40℃で1時間攪拌した。水とクロロホルムを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮し、50℃で2時間減圧乾燥することにより、茶色オイルを得た(収量:1.29g,収率:62%)。得られた固体を1H NMRで分析したところ、目的化合物が生成していることが確認された。
得られたPTMGポリカーボネートの分子量を実施例1と同様の条件により求めた。結果を表10に示す。
Figure 0007366375000031
実施例11: 共重合ポリカーボネートの合成
Figure 0007366375000032

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ビスフェノールA(BPA,富士フィルム和光純薬社製)(0.46g,2.0mmol)とポリ(テトラメチレンエーテル)グリコール(「PTMG1500」三菱ケミカル社製,分子量:1500g/mol)(3.0g,2.0mmol)、およびBPAとPTMG1500の合計に対して5倍モルのピリジン(1.6mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、50℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプからUV-Cを含む高エネルギー光を2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で2時間攪拌した。反応液に水とクロロホルムを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。濃縮液にクロロホルムとメタノールを添加することにより再沈殿した成分をデカンテーションにより分離し、50℃で2時間減圧乾燥することにより、粘性の高い茶色オイル状精製物を得た(収量:3.33g,収率:99%)。得られた生成物を下記の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表11に示す。
装置: 高速液体クロマトグラフシステム(「MD-2060」,「PU-2089」,「LC-NetII/ADC」,「CO-2060」日本分光社製)
カラム: 「TSKgel G3000HR」(7.8mm×300mm),「TSKgel G4000HR」(7.8mm×300mm,2本直列)東ソー社製
移動相: THF 流速: 0.5mL/min
オーブン温度: 20℃ 濃度: 0.2w/v%
注入量: 10μL 分子量標準: ポリスチレン
検出器: PDA
Figure 0007366375000033
芳香族ジオール化合物と脂肪族ジオール化合物とでは反応性が大きく異なり、主生成物としてホモポリマーが得られることも予想されたが、上記結果の通り共重合体が容易に得られたことは驚くべき結果であった。
実施例12: 共重合ポリカーボネートの合成
Figure 0007366375000034

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ビスフェノールA(BPA)(0.46g,2.0mmol)と9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)(0.88g,2.0mmol)、およびBPAとBPEFの合計に対して5倍モルのピリジン(1.6mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、50℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプからUV-Cを含む高エネルギー光を2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。反応液に水とクロロホルムを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。濃縮液にクロロホルムとメタノールを添加することにより再沈殿した成分をデカンテーションにより分離し、50℃で2時間減圧乾燥することにより、肌色固体を得た。得られた生成物を1H NMRで分析したところ、目的とするBPA-BPEF共重合ポリカーボネートが生成していることが確認された(収量:1.13g,収率:65%)。この様に、本発明方法において2種以上のジオール化合物を用いることにより、共重合体が良好に得られることが証明された。得られた生成物を実施例11と同様の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表12に示す。
Figure 0007366375000035
実施例13: 共重合ポリカーボネートの合成
Figure 0007366375000036

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ビスフェノールA(BPA)(0.46g,2.0mmol)とトリシクロ[5.2.1.0(2,6)]デカンジメタノール(TCDDM)(0.39g,2.0mmol)、およびBPAとTCDDMの合計に対して5倍モルのピリジン(1.6mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、50℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプからUV-Cを含む高エネルギー光を2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。反応液にメタノールを加えることにより生じた沈殿をデカンテーションにより分離し、50℃で2時間減圧乾燥することにより、白色固体を得た。得られた生成物を1H NMRで分析したところ、目的とするBPA-TCDDM共重合ポリカーボネートが生成していることが確認された(収量:1.11g,収率:89%)。この様に、本発明方法において2種以上のジオール化合物を用いることにより、共重合体が良好に得られることが証明された。得られた生成物を実施例11と同様の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表13に示す。
Figure 0007366375000037
実施例14: 共重合ポリカーボネートの合成
Figure 0007366375000038

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ビスフェノールA(BPA)(0.46g,2.0mmol)、1,6-ヘキサンジオール(東京化成工業社製)(0.24g,2.0mmol)、およびこれらジオールの合計に対して5倍モルのピリジン(1.6mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、50℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプからUV-Cを含む高エネルギー光を2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。反応液にジクロロメタンとメタノールを加えることにより生じた沈殿をデカンテーションにより分離し、100℃で1時間減圧乾燥することにより、黄白色固体を得た。得られた生成物を1H NMRで分析したところ、目的とするビスフェノールA-ヘキサンジオール共重合ポリカーボネートが生成していることが確認された(収量:0.42g,収率:52%)。この様に、本発明方法において2種以上のジオール化合物を用いることにより、共重合体が良好に得られることが証明された。得られた生成物を実施例11と同様の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表14に示す。
Figure 0007366375000039
実施例15: 共重合ポリカーボネートの合成
Figure 0007366375000040

実施例1で用いた反応システムの反応容器内に、精製クロロホルム(20mL)、ポリ(テトラメチレンエーテル)グリコール(PTMG1500,3.0g,2.0mmol)、ビスフェノールZ[1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン,東京化成工業社製](0.54g,2.0mmol)、およびこれらジオールの合計に対して5倍モルのピリジン(1.6mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、50℃で1L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプからUV-Cを含む高エネルギー光を2時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。反応液に水とクロロホルムを添加した後、分液した。有機相を無水硫酸ナトリウムで乾燥した後、濃縮した。得られた残渣を100℃で1時間減圧乾燥することにより、粘性の高い薄茶色のオイル状生成物を得た。得られた生成物を1H NMRで分析したところ、目的とするPTMG1500-ビスフェノールZ共重合ポリカーボネートが生成していることが確認された(収量:2.4g,収率:66%)。この様に、本発明方法において2種以上のジオール化合物を用いることにより、共重合体が良好に得られることが証明された。得られた生成物を実施例11と同様の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表15に示す。
Figure 0007366375000041
実施例16: 共重合ポリカーボネートの合成
Figure 0007366375000042

実施例1で用いた反応システムの反応容器内に精製したクロロホルム(30mL)、ビスフェノールA(BPA)(1.14g,5.0mmol)、イソソルビド(ISB)(0.73g,5.0mmol)、およびBPAとISBに対して2.5倍モルのピリジン(2mL)を入れ、攪拌混合した。当該サンプル溶液を攪拌しつつ、50℃で1.0L/minの酸素ガスをバブリングで吹き込み、UV-Cを含む高エネルギー光を1.5時間照射した。
次いで、上記低圧水銀ランプの電源を切り、50℃で1時間攪拌した。溶媒を減圧留去し、クロロホルムとメタノールを添加して沈殿した成分を吸引ろ過によって分離し、50℃で2時間減圧乾燥することにより、薄肌色の固体を得た(収量:2.01g,収率:>99%)。得られた固体を1H NMRで分析したところ、目的とするBPA-IBS共重合ポリカーボネートが得られたことが確認された。
得られたISBポリカーボネートの分子量を実施例11と同様の条件により求めた。結果を表16に示す。
Figure 0007366375000043
1: 光照射手段, 2: ジャケット, 3: ウォーターバス,
4: 撹拌子, 5: 熱媒または冷媒, 6: 筒状反応容器

Claims (10)

  1. ポリカーボネートを製造するための方法であって、
    1-4ハロゲン化炭化水素、ジオール化合物、および塩基を含む組成物に酸素存在下で光照射する工程を含み、
    前記塩基として、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用い、
    前記ジオール化合物が、下記式(I1)~(I6)のいずれかで表される化合物であることを特徴とする方法。
    Figure 0007366375000044
    [式中、
    1とR2は、独立して-(CR56q1-または-(-O-(CR56q2-)q3-(式中、R5とR6は、独立して、HまたはC1-6アルキル基を表し、q1は0以上、10以下の整数を表し、q2は1以上、10以下の整数を表し、q3は1以上、10以下の整数を表し、q1またはq2が2以上の整数である場合、複数のR5またはR6は互いに同一であっても異なっていてもよい)を表し、
    3とR4は、独立して、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、C1-20脂肪族炭化水素基、C1-20アルコキシル基、C3-20シクロアルキル基、C6-20芳香族炭化水素基、C7-20アラルキル基、C6-20芳香族炭化水素オキシ基、またはC3-20シクロアルコキシル基を表し、
    1は下記に示す基を表し、
    Figure 0007366375000045
    (式中、
    7とR8は、独立して、H、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、置換基αを有してもよいC1-20脂肪族炭化水素基、置換基αを有してもよいC1-20アルコキシル基、置換基βを有してもよいC6-20芳香族炭化水素基を表すか、或いはR7とR8が結合して、C3-20炭素環または5-12員複素環を形成してもよく、
    9とR10は、独立して、HまたはC1-6アルキル基を表し、r1が2以上の整数である場合、複数のR9またはR10は互いに同一であっても異なっていてもよく、
    11~R18は、独立して、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、置換基αを有してもよいC1-20脂肪族炭化水素基、置換基αを有してもよいC1-20アルコキシル基、または置換基βを有してもよいC6-12芳香族炭化水素基を表し、
    19は置換基αを有してもよいC1-9アルキレン基を表し、
    r1は1以上、20以下の整数を表し、
    r2は1以上、500以下の整数を表す。)
    p1とp2は、独立して、0以上、4以下の整数を表し、
    置換基αは、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基であり、
    置換基βは、C1-6アルキル基、C1-6アルコキシル基、C1-7アシル基、クロロ、ブロモおよびヨードからなる群より選択される1種以上のハロゲノ基、アミノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基である。
    但し、前記式(I 1 )で表される化合物から、ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールTMC、ビスフェノールZを除外する。
    Figure 0007366375000046
    [式中、R1とR2は上記と同義を表し、X2はX1と同義を表す。]
    HO-R1-X3-R2-OH (I3
    [式中、R1とR2は上記と同義を表し、X3はC15-32二価芳香族炭化水素基を表す。]
    HO-R20-X4-R21-OH (I4
    [式中、R20とR21は、独立して-(CR56m1-または-(-O-(CR56m2-)m3-(式中、R5とR6は前記と同義を表し、m1は1以上、10以下の整数を表し、m2は1以上、10以下の整数を表し、m3は1以上、10以下の整数を表し、m1またはm2が2以上の整数である場合、複数のR5またはR6は互いに同一であっても異なっていてもよい)を表し、
    4は、1以上の炭化水素環またはヘテロ環を含む二価の基を表す。]
    HO-R1-X5-R2-OH (I5
    [式中、R1とR2は上記と同義を表し、X5は、二価飽和ヘテロ環基を表す。]
    Figure 0007366375000047
    [式中、
    6はC 2-10アルキレン基を表し、
    nは13以上、50以下の整数を表す。]
  2. 前記C1-4ハロゲン化炭化水素がC1-4ポリハロゲン化炭化水素である請求項1に記載の方法。
  3. 前記C1-4ハロゲン化炭化水素がクロロホルムである請求項1に記載の方法。
  4. 前記複素環式芳香族アミンが、ピリジン、ピコリンまたはルチジンである請求項1~3のいずれかに記載の方法。
  5. 前記非求核性強塩基が、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンまたは1,1,3,3-テトラメチルグアニジンである請求項1~4のいずれかに記載の方法。
  6. 前記無機塩基が、アルカリ金属水酸化物、アルカリ金属炭酸水素塩またはアルカリ金属炭酸塩である請求項1~5のいずれかに記載の方法。
  7. 前記C1-4ハロゲン化炭化水素に対して0.001倍モル以上1倍モル以下の前記ジオール化合物を用いる請求項1~6のいずれかに記載の方法。
  8. 前記ジオール化合物に対して1.5倍モル以上100倍モル以下の前記塩基を用いる請求項1~7のいずれかに記載の方法。
  9. 前記組成物に照射する光が180nm以上280nm以下の波長の光を含む請求項1~8のいずれかに記載の方法。
  10. 2種以上の前記ジオール化合物を用いる請求項1~9のいずれかに記載の方法。
JP2020556163A 2018-11-15 2019-11-14 ポリカーボネートの製造方法 Active JP7366375B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018214976 2018-11-15
JP2018214976 2018-11-15
PCT/JP2019/044686 WO2020100975A1 (ja) 2018-11-15 2019-11-14 ポリカーボネートの製造方法

Publications (2)

Publication Number Publication Date
JPWO2020100975A1 JPWO2020100975A1 (ja) 2021-09-30
JP7366375B2 true JP7366375B2 (ja) 2023-10-23

Family

ID=70730736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556163A Active JP7366375B2 (ja) 2018-11-15 2019-11-14 ポリカーボネートの製造方法

Country Status (7)

Country Link
US (1) US20210388159A1 (ja)
JP (1) JP7366375B2 (ja)
KR (1) KR20210091204A (ja)
CN (1) CN113166392B (ja)
SG (1) SG11202104285QA (ja)
TW (1) TWI825220B (ja)
WO (1) WO2020100975A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080938A1 (ko) * 2020-10-16 2022-04-21 주식회사 엘지화학 폴리카보네이트 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181028A (ja) 2012-03-05 2013-09-12 Kobe Univ ハロゲン化炭化水素に光照射して得られる混合物の使用
WO2015156245A1 (ja) 2014-04-09 2015-10-15 国立大学法人神戸大学 ハロゲン化カルボン酸エステルの製造方法
JP7041925B2 (ja) 2017-05-16 2022-03-25 国立大学法人神戸大学 カーボネート誘導体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710811A (ja) 1993-06-24 1995-01-13 Mitsubishi Chem Corp ジアルキルカーボネートの製造方法
JP2001129397A (ja) 1999-11-09 2001-05-15 Lion Corp 炭酸エステル化触媒、および環状炭酸エステルの製造方法
US7491346B2 (en) * 2004-05-20 2009-02-17 Idemitsu Kosan Co., Ltd. Polycarbonate resin and electrophotographic photosensitive member using same
JPWO2012073970A1 (ja) * 2010-11-30 2014-05-19 出光興産株式会社 ポリカーボネート樹脂塗布液及びその用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181028A (ja) 2012-03-05 2013-09-12 Kobe Univ ハロゲン化炭化水素に光照射して得られる混合物の使用
WO2015156245A1 (ja) 2014-04-09 2015-10-15 国立大学法人神戸大学 ハロゲン化カルボン酸エステルの製造方法
JP7041925B2 (ja) 2017-05-16 2022-03-25 国立大学法人神戸大学 カーボネート誘導体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
桑原佑貴ほか,ハロメタンの光リサイクル反応(2):クロロホルムとフェノール類からの炭酸エステル誘導体の合成,日本化学会第92春季年会(2012)講演予稿集IV,2012年,p.1251
津田明彦ほか,クロロホルムの光リサイクル反応:ウレア、カーボネート、カルバメートへの変換,日本化学会第93春季年会(2013)講演予稿集IV,2013年,p.1288

Also Published As

Publication number Publication date
TWI825220B (zh) 2023-12-11
CN113166392A (zh) 2021-07-23
EP3882296A1 (en) 2021-09-22
WO2020100975A1 (ja) 2020-05-22
US20210388159A1 (en) 2021-12-16
JPWO2020100975A1 (ja) 2021-09-30
SG11202104285QA (en) 2021-05-28
CN113166392B (zh) 2023-07-14
TW202030223A (zh) 2020-08-16
KR20210091204A (ko) 2021-07-21

Similar Documents

Publication Publication Date Title
ES2637695T3 (es) Reticulación de polietercarbonatopolioles que contienen dobles enlaces mediante adición de compuestos mercapto
JP5781939B2 (ja) 調整可能なポリマー組成物
JP6057449B2 (ja) ハロゲン化蟻酸エステルの製造方法
JP7366375B2 (ja) ポリカーボネートの製造方法
US11167259B2 (en) Fluorinated carbonate derivative production method
WO2020100970A1 (ja) ハロゲノギ酸ハロゲン化アルキルエステルの製造方法
KR101618179B1 (ko) 방향족 폴리아세탈 및 이를 포함하는 제품
WO2020100971A1 (ja) イソシアネート化合物の製造方法
RU2798088C2 (ru) Способ получения поликарбоната
JP7421772B2 (ja) カーボネート誘導体の製造方法
JP2015021131A (ja) ポリアリールポリマーを形成する方法
RU2798090C2 (ru) Способ получения карбонатного производного
ES2376550T3 (es) Compuestos polic�?clicos curables y proceso para su producción.
ES2882510T3 (es) Procedimiento electroquímico para la preparación de carbonatos de arilalquilo y carbonatos de diarilo
Nishikubo et al. Synthesis and photochemical reaction of cyclic oligomers: Synthesis and photopolymerization of novel C‐methylcalix [4] resorcinarene and p‐alkylcalix [n] arene derivatives containing spiro ortho ether groups
Farah et al. Sym-difluorotetrachloroacetone as a Source of Chlorofluorocarbene
Abd‐El‐Aziz et al. Synthesis of norbornenes containing cationic mono‐and di (cyclopentadienyliron) arene complexes and their ring‐opening metathesis polymerization
JP2024501410A (ja) ハロゲン化ジアリールカーボネートを用いたポリカーボネートを製造する方法
US11098154B2 (en) Flame-retardant phosphorus-functional polyether carbonate polyol and method for production thereof
WO2019170946A1 (es) Procedimiento para la obtención de aril cetonas
JP2022021138A (ja) エステル化合物およびアセタール化合物の製造方法並びにBoc基の切断方法
Massoudi et al. Synthesis, Characterization and Epoxidation of cis-Enriched New Polycarbonates Catalyzed by Efficient Organotin Compound
Am for the OGE measurement to get even better quality signals. 17
JP2003246855A (ja) 芳香族炭酸エステル又は芳香族ポリカーボネートの製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20210421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7366375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150