JP7302529B2 - 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法 - Google Patents

積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法 Download PDF

Info

Publication number
JP7302529B2
JP7302529B2 JP2020090064A JP2020090064A JP7302529B2 JP 7302529 B2 JP7302529 B2 JP 7302529B2 JP 2020090064 A JP2020090064 A JP 2020090064A JP 2020090064 A JP2020090064 A JP 2020090064A JP 7302529 B2 JP7302529 B2 JP 7302529B2
Authority
JP
Japan
Prior art keywords
electrode layer
internal electrode
layer
circuit pattern
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090064A
Other languages
English (en)
Other versions
JP2021184448A (ja
Inventor
雄太 福富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2020090064A priority Critical patent/JP7302529B2/ja
Publication of JP2021184448A publication Critical patent/JP2021184448A/ja
Application granted granted Critical
Publication of JP7302529B2 publication Critical patent/JP7302529B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造に関し、特に、高容量の積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造に関する。
近年、電子製品の小型化および多機能化に従い、電子部品も小型化および高機能化される傾向にあるため、積層セラミックコンデンサにおいても、そのサイズが小さく、容量が大きい高容量の製品が要求されている。それに伴い、誘電体層および内部電極の厚さが薄くなり、積層数が増加する積層セラミックコンデンサが製造されている。
しかしながら、静電容量密度を向上させるために誘電体層を薄層化すると、単位厚さ当りの電圧が高くなるため、誘電体層に掛かる電界強度が高くなる。これにより絶縁破壊電圧(以下、BDVともいう)は低くなるため、低電圧を印加しても誘電体層の絶縁破壊が発生する可能性が大きくなる。一般的に、積層セラミックコンデンサに電圧を印加する場合、内部電極の長さ方向の中央部に比べて先端部は、積層方向の上下に位置する引出電極からの電界の回り込みが発生するため、中央部よりも高い電界強度となる。特に、内部電極の端部が積層方向に平行に形成されている長方形のパターンである場合、内部電極の積層体から露出していない側の内部電極端部(外部電極に接続されない側の内部電極の端部)と外部電極との間で電界強度がより高くなり、絶縁破壊電圧特性の劣化をもたらす。このように静電容量密度の確保と電界集中の抑制は相反する関係にある。
上記の課題を解決する技術として、たとえば、特許文献1に開示されるような積層セラミックコンデンサの構造とする場合がある。特許文献1の構造では、直列構造(いわゆる、シリーズ構造)であるため、素子厚を通常構造の1/2以下かつ積層枚数を通常構造の倍以上で作製することで、通常構造と同等の静電容量密度を確保しつつ、通常構造よりも、高いBDVを確保することが可能となる。なお、シリーズ構造とは、コンデンサ素子の内部において電気的に並列に接続された複数のコンデンサ要素のそれぞれについて、これをさらに電気的に直列に接続された複数のコンデンサ要素にて構成したものであり、このようなシリーズ構造を備えた素子とすることにより、直列に接続されたコンデンサ要素のうちの一方に絶縁破壊が生じた場合にも他方のコンデンサ要素によって電気的な絶縁が保たれることとなり、高い信頼性が得られることになる。
特開平8-37126号公報
しかしながら、より高容量な積層セラミックコンデンサが求められる中、特許文献1の構造において有効部の素子厚を薄くすること、または有効部の積み枚数を増やすことは、技術的な課題が大きく容易に実現することが難しい。また、更なる高性能化のためには、特許文献1のようなシリーズ構造よりも、静電容量密度とBDVとの両立可能な構造が必要となる。
それゆえに、この発明の主たる目的は、シリーズ構造よりも、静電容量密度の向上と高い絶縁破壊電圧を有しうる積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造を提供することである。
この発明にかかる積層セラミックコンデンサは、積層された複数の誘電体層と積層された複数の内部電極層とを含み、積層方向に互いに対向する第1の主面および第2の主面と、積層方向に直交する幅方向に互いに対向する第1の側面および第2の側面と、積層方向および幅方向に直行する長さ方向に互いに対向する第1の端面および第2の端面と、を有する積層体と、積層体上に配置される外部電極を有する積層セラミックコンデンサであって、外部電極は、第1の端面上に配置される第1の外部電極と、第2の端面上に配置される第2の外部電極と、少なくとも第1の側面または第2の側面のいずれかの面に配置される第3の外部電極、第4の外部電極、第5の外部電極および第6の外部電極とを有し、内部電極層は、誘電体層上に配置され、第1の外部電極に接続される第1の内部電極層と、第2の外部電極に接続される第2の内部電極層と、第3の外部電極層に接続される第3の内部電極層と、第4の外部電極に接続される第4の内部電極層と、第5の外部電極に接続される第5の内部電極層と、第6の外部電極に接続される第6の内部電極層とを有し、第1の内部電極層は、第2の内部電極層と対向する第1の対向電極部と、第1の端面に引き出される第1の引出部を有し、第2の内部電極層は、第1の内部電極層と対向する第2の対向電極部と、第2の端面に引き出される第2の引出部を有し、第3の内部電極層は、第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第1の内部電極層とは離れて配置され、第4の内部電極層は、第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第2の内部電極層とは離れて配置され、第5の内部電極層は、第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第1の内部電極層および第3の内部電極層とは離れて配置され、第6の内部電極層は、第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第2の内部電極層および第4の内部電極層とは離れて配置され、第3の内部電極層は、第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第1の内部電極層の第1の対向電極部の先端と第2の端面との間に位置する第1の延長部と、第1の延長部に接続され、第1の内部電極層の側辺と第1の側面または第2の側面との間に位置する第2の延長部と、第2の延長部に接続され、第3の外部電極に接続される第3の引出部と、を有し、第4の内部電極層は、第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第2の内部電極層の第2の対向電極部の先端と第1の端面との間に位置する第3の延長部と、第3の延長部に接続され、第2の内部電極層の側辺と第1の側面または第2の側面との間に位置する第4の延長部と、第4の延長部に接続され、第4の外部電極に接続される第4の引出部と、を有し、第5の内部電極層は、第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第1の内部電極層および第3の内部電極層とは離れて配置され、第1の内部電極層の第1の対向電極部の先端と第2の端面との間に位置する第5の延長部と、第5の延長部に接続され、第1の内部電極層の側辺と第1の側面または第2の側面との間に位置する第6の延長部と、第6の延長部に接続され、第5の外部電極に接続される第5の引出部と、を有し、第6の内部電極層は、第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第2の内部電極層の第2の対向電極部の先端と第1の端面との間に位置する第7の延長部と、第7の延長部に接続され、第2の内部電極層の側辺と第1の側面または第2の側面との間に位置する第8の延長部と、第8の延長部に接続され、第6の外部電極に接続される第6の引出部と、を有し、第1の内部電極層および第2の内部電極層に印加される電圧>第3の内部電極層および第5の内部電極層、ならびに第4の内部電極層および第6の内部電極層に印加される電圧、になるように、第1の内部電極層および第2の内部電極層に印加する電位と、第3の内部電極層および第4の内部電極層ならびに第5の内部電極層および第6の内部電極層に印加する電位を異ならせて用いる、ことを特徴とする、積層セラミックコンデンサである。
この発明にかかる積層セラミックコンデンサによれば、第3の内部電極層は、第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第1の内部電極層とは離れて配置され、第4の内部電極層は、第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第2の内部電極層とは離れて配置され、第5の内部電極層は、第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第1の内部電極層および第3の内部電極層とは離れて配置され、第6の内部電極層は、第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、第2の内部電極層および第4の内部電極層とは離れて配置される。
これにより、本発明にかかる積層セラミックコンデンサは、第1の内部電極層および第2の内部電極層に印加する電位と、第3の内部電極層および第4の内部電極層ならびに第5の内部電極層および第6の内部電極層に印加する電位を異ならせて用いることが可能となる。
したがって、第3の内部電極層および第5の内部電極層を第1の内部電極層に隣接させるように配置し、第4の内部電極層および第6の内部電極層を第2の内部電極層に隣接するように配置することで、第1の内部電極層の第1の引出部から、異なる誘電体層上に配置される第2の内部電極層の先端部への電界の回り込みと、第2の内部電極層の第2の引出部から、異なる誘電体層上に配置される第1の内部電極層の先端部への電界の回り込みと、を抑制することが可能となる。
この発明によれば、シリーズ構造よりも、静電容量密度の向上と高い絶縁破壊電圧を有しうる積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造が得られる。
この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。
本発明の実施の形態に係る積層セラミックコンデンサの一例を示す外観斜視図である。 本発明の実施の形態に係る積層セラミックコンデンサの一例を示す上面図である。 本発明の実施の形態に係る積層セラミックコンデンサの一例を示す左側面図である。 本発明の実施の形態に係る積層セラミックコンデンサの一例を示す右側面図である。 図1の線V-Vにおける断面図である。 図5の線VI-VIにおける断面図である。 図5の線VII-VIIにおける断面図である。 本発明の実施の形態にかかる積層セラミックコンデンサの実装構造を示す平面図である。 比較例1にかかる積層セラミックコンデンサの断面図である。 比較例2にかかる積層セラミックコンデンサの断面図である。
1.積層セラミックコンデンサ
この発明の実施の形態にかかる積層セラミックコンデンサ10について説明する。図1は、本発明の実施の形態に係る積層セラミックコンデンサの一例を示す外観斜視図である。図2は、本発明の実施の形態に係る積層セラミックコンデンサの一例を示す上面図である。図3は、本発明の実施の形態に係る積層セラミックコンデンサの一例を示す左側面図である。図4は、本発明の実施の形態に係る積層セラミックコンデンサの一例を示す右側面図である。図5は、図1の線V-Vにおける断面図である。図6は、図5の線VI-VIにおける断面図である。図7は、図5の線VII-VIIにおける断面図である。
図1ないし図4に示すように、積層セラミックコンデンサ10は、直方体状の積層体12と外部電極30とを含む。
積層体12は、積層された複数の誘電体層14と複数の内部電極層16とを有する。さらに、積層体12は、積層方向xに相対する第1の主面12aおよび第2の主面12bと、積層方向xに直交する幅方向yに相対する第1の側面12cおよび第2の側面12dと、積層方向xおよび幅方向yに直交する長さ方向zに相対する第1の端面12eおよび第2の端面12fとを有する。積層体12の第1の主面12aおよび第2の主面12bは、積層セラミックコンデンサ10が実装される面(実装面)と平行な面をさす。特に、第2の主面12bは、実際に実装面に実装される面である。
この積層体12には、角部および稜線部に丸みがつけられていることが好ましい。なお、角部とは、積層体の隣接する3面が交わる部分のことであり、稜線部とは、積層体の隣接する2面が交わる部分のことである。また、第1の主面12aおよび第2の主面12b、第1の側面12cおよび第2の側面12d、ならびに第1の端面12eおよび第2の端面12fの一部または全部に凹凸などが形成されていてもよい。さらに、積層体12の長さ方向zの寸法は、幅方向yの寸法よりも必ずしも長いとは限らない。
積層される誘電体層14の枚数は、特に限定されないが、10枚以上1000枚以下であることが好ましい(後述する外層部15b,15cも含む。)。
積層体12は、単数もしくは複数枚の誘電体層14とそれらの上に配置される複数枚の内部電極層16から構成される内層部15aと、複数枚の誘電体層14から構成される外層部15b,15cとを含む。外層部15bは、積層体12の第1の主面12a側に位置し、第1の主面12aと最も第1の主面12aに近い内部電極層16との間に位置する複数枚の誘電体層14の集合体である。外層部15cは、積層体12の第2の主面12b側に位置し、第2の主面12bと最も第2の主面12bに近い内部電極層16との間に位置する複数枚の誘電体層14の集合体である。そして、両外層部15b,15cに挟まれた領域が内層部15aである。外層部15b,15cの厚みは、たとえば、50μm以上400μm以下である。
積層体12の寸法は、特に限定されないが、長さ方向zの寸法は、0.2mm以上7.0mm以下、幅方向yの寸法は、0.1mm以上6.0mm以下、積層方向xの寸法は、0.1mm以上3.0mm以下であることが好ましい。
誘電体層14は、たとえば、誘電体材料により形成することができる。このような誘電体材料としては、たとえば、BaTiO3、CaTiO3、SrTiO3、またはCaZrO3などの成分を含む誘電体セラミックを用いることができる。上記の誘電体材料を主成分として含む場合、所望する積層体12の特性に応じて、たとえば、Mn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物などの主成分よりも含有量の少ない副成分を添加したものを用いてもよい。
焼成後の誘電体層14の厚みは、0.5μm以上30.0μm以下であることが好ましい。
積層された複数の内部電極層16は、図5に示すように、複数の第1の内部電極層16a、複数の第2の内部電極層16b、複数の第3の内部電極層16c、複数の第4の内部電極層16d、第5の内部電極層16eおよび第6の内部電極層16fを有する。
第1の内部電極層16aは後述される第1の外部電極30aに接続されている。
第2の内部電極層16bは後述される第2の外部電極30bに接続されている。
第3の内部電極層16cは後述される第3の外部電極30cに接続されている。
第4の内部電極層16dは後述される第4の外部電極30dに接続されている。
第5の内部電極層16eは後述される第5の外部電極30eに接続されている。
第6の内部電極層16fは後述される第6の外部電極30fに接続されている。
第1の内部電極層16aは、図5および図6に示すように、第2の内部電極層16bと対向する第1の対向電極部18aと、第1の内部電極層16aの一端側に位置し、第1の対向電極部18aから積層体12の第1の端面12eまでの第1の引出部20aを有する。第1の引出部20aは、その端部が第1の端面12eに引き出され、露出している。
第2の内部電極層16bは、図5および図7に示すように、第1の内部電極層16aと対向する第2の対向電極部18bと、第2の内部電極層16bの一端側に位置し、第2の対向電極部18bから積層体12の第2の端面12fまでの第2の引出部20bを有する。第2の引出部20bは、その端部が第2の端面12fに引き出され、露出している。
第1の内部電極層16aの第1の対向電極部18aと第2の内部電極層16bの第2の対向電極部18bの形状は、特に限定されないが、矩形状であることが好ましい。もっとも、コーナー部が丸められていたり、コーナー部が斜めに(テーパー状)形成されていたりしてもよい。
第1の内部電極層16aの第1の引出部20aと第2の内部電極層16bの第2の引出部20bの形状は、特に限定されないが、矩形状であることが好ましい。もっとも、コーナー部が丸められていたり、コーナー部が斜めに(テーパー状)形成されていたりしてもよい。
第1の内部電極層16aの第1の対向電極部18aの幅と第1の内部電極層16aの第1の引出部20aの幅とは、同じ幅に形成されていてもよく、どちらか一方が狭く形成されてもよい。同様に、第2の内部電極層16bの第2の対向電極部18bの幅と第2の内部電極層16bの第2の引出部20bの幅とは、同じ幅に形成されていてもよく、どちらか一方が狭く形成されてもよい。
第3の内部電極層16cは、図5および図6に示すように、第1の内部電極層16aとは離れて配置され、第1の内部電極層16aの第1の対向電極部18aの先端付近と、積層方向xに隣接する第2の内部電極層16bの第2の引出部20bとの間に位置する。具体的には、第3の内部電極層16cは、第1の内部電極層16aが配置される誘電体層14と同じ誘電体層14上に位置しており、かつ、第1の内部電極層16aの第1の対向電極部18aの先端付近と第2の端面12fとの間に位置する第1の延長部22aと、第1の延長部22aに接続され、第1の内部電極層16aの側辺と第1の側面12cまたは第2の側面12dとの間に位置する第2の延長部22bと、第2の延長部22bに接続され、第3の外部電極30cに接続される第3の引出部20cと、を有する。
第1の延長部22aは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延び、第2の延長部22bは、第1の端面12eおよび第2の端面12fを結ぶ長さ方向zに延び、第3の引出部20cは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延びる。
第4の内部電極層16dは、図5および図7に示すように、第2の内部電極層16bとは離れて配置され、第2の内部電極層16bの第2の対向電極部18bの先端付近と、積層方向xに隣接する第1の内部電極層16aの第1の引出部20aとの間に位置する。具体的には、第4の内部電極層16dは、第2の内部電極層16bが配置される誘電体層14と同じ誘電体層14上に位置しており、かつ、第2の内部電極層16bの第2の対向電極部18bの先端付近と第1の端面12eとの間に位置する第3の延長部22cと、第3の延長部22cに接続され、第2の内部電極層16bの側辺と第1の側面12cまたは第2の側面12dとの間に位置する第4の延長部22dと、第4の延長部22dに接続され、第4の外部電極30dに接続される第4の引出部20dと、を有する。
第3の延長部22cは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延び、第4の延長部22dは、第1の端面12eおよび第2の端面12fを結ぶ長さ方向zに延び、第4の引出部20dは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延びる。
第5の内部電極層16eは、図5および図6に示すように、第1の内部電極層16aおよび第3の内部電極層16cとは離れて配置され、第3の内部電極層16cの第1の延長部22aにおける第2の端面12f側の端辺と、積層方向xに隣接する第2の内部電極層16bの第2の引出部20bとの間に位置する。具体的には、第5の内部電極層16eは、第1の内部電極層16aが配置される誘電体層14と同じ誘電体層14上に位置しており、かつ、第1の内部電極層16aの第1の対向電極部18aの先端付近と第2の端面12fとの間に位置する第5の延長部22eと、第5の延長部22eに接続され、第1の内部電極層16aの側辺と第1の側面12cまたは第2の側面12dとの間に位置する第6の延長部22fと、第6の延長部22fに接続され、第5の外部電極30eに接続される第5の引出部20eと、を有する。
第5の延長部22eは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延び、第6の延長部22fは、第1の端面12eおよび第2の端面12fを結ぶ長さ方向zに延び、第5の引出部20eは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延びる。
第6の内部電極層16fは、図5および図7に示すように、第2の内部電極層16bおよび第4の内部電極層16dとは離れた配置され、第4の内部電極層16dの第3の延長部22cにおける第1の端面12e側の端辺と、積層方向xに隣接する第1の内部電極層16aの第1の引出部20aとの間に位置する。具体的には、第6の内部電極層16fは、第2の内部電極層16bが配置される誘電体層14と同じ誘電体層14上に位置しており、かつ、第2の内部電極層16bの第2の対向電極部18bの先端付近と第1の端面12eとの間に位置する第7の延長部22gと、第7の延長部22gに接続され、第2の内部電極層16bの側辺と第1の側面12cまたは第2の側面12bとの間に位置する第8の延長部22hと、第8の延長部22hに接続され、第6の外部電極30fに接続される第6の引出部20fと、を有する。
第7の延長部22gは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延び、第8の延長部22hは、第1の端面12eおよび第2の端面12fを結ぶ長さ方向zに延び、第6の引出部20fは、第1の側面12cおよび第2の側面12dを結ぶ幅方向yに延びる。
内部電極層16が、上述したような構成であることで、積層セラミックコンデンサ10は、第1の内部電極層16aおよび第2の内部電極層16bに印加する電位と、第3の内部電極層16cおよび第4の内部電極層16dに印加する電位、さらには、第5の内部電極層16eおよび第6の内部電極層16fに印加する電位とを異ならせて用いることが可能となる。これにより、第1の内部電極層16aおよび第2の内部電極層16bと、第3の内部電極層16cおよび第4の内部電極層16d、さらには、第5の内部電極層16eおよび第6の内部電極層16fに異なる電位を印加することで、積層体12の端面に引き出されない側の内部電極層16の先端部に集中する電界を緩和することが可能となる。
具体的には、第3の内部電極層16cおよび第5の内部電極層16eを第2の内部電極層16bに隣接させるように配置し、第4の内部電極層16dおよび第6の内部電極層16fを第1の内部電極層16aに隣接させるように配置することで、第1の内部電極層16aの第1の引出部20aから、異なる誘電体層14上に配置される第2の内部電極層16bの先端部への電界の回り込みと、第2の内部電極層16bの第2の引出部20bから、異なる誘電体層14上に配置される第1の内部電極層16aの先端部への電界の回り込みと、を抑制することができる。
一方、第3の内部電極層16cの第1の端面12eおよび第2の端面12fと対向する部分の先端部および第5の内部電極層16eの第1の端面12eおよび第2の端面12fと対向する部分の先端部、第4の内部電極層16dの第1の端面12eおよび第2の端面12fと対向する部分の先端部および第6の内部電極層16fの第1の端面12eおよび第2の端面12fと対向する部分の先端部においても、電界の回り込みが発生し、電界集中が生じる。しかしながら、「第1の内部電極層16aおよび第2の内部電極層16bに印加される電圧>第3の内部電極層16cおよび第5の内部電極層16e」、ならびに「第1の内部電極層16aおよび第2の内部電極層16bに印加される電圧>第4の内部電極層16dおよび第6の内部電極層16f」、の関係であるため、「第3の内部電極層16cおよび第5の内部電極層16e、第4の内部電極層16dおよび第6の内部電極層16fを用いない場合の第1の内部電極層16aおよび第2の内部電極層16bの先端の電界強度>第3の内部電極層16cおよび第5の内部電極層16e、第4の内部電極層16dおよび第6の内部電極層16fを用いた場合の第1の内部電極層16aおよび第2の内部電極層16bの先端の電界強度」の関係となり、電界強度を抑えることができる。
このように、第1の内部電極層16aおよび第2の内部電極層16bに印加する電位と、第3の内部電極層16cおよび第4の内部電極層16dに印加する電位、さらには、第5の内部電極層16eおよび第6の内部電極層16fに異なる電位を印加することで、積層体12の第1の端面12eおよび第2の端面12fに引き出されない側の第1の内部電極層16aの先端部および第2の内部電極層16bの先端部への電界集中が緩和され、第1の内部電極層16aの先端部および第2の内部電極層16bの先端部における電圧破壊が起こりにくくなり、静電容量密度を変えることなく、絶縁破壊電圧(BDV)を向上させることが可能となる。
また、第3の内部電極層16cおよび第5の内部電極層16eは、第1の内部電極層16aが配置されている誘電体層14と同じ誘電体層14上に位置する。
同様に、第4の内部電極層16dおよび第6の内部電極層16fは、第2の内部電極層16bが配置されている誘電体層14と同じ誘電体層14上に位置する。
これにより、第3の内部電極層16cおよび第5の内部電極層16eは、第1の内部電極層16aとは別層に配置する必要がなくなり、第4の内部電極層16dおよび第6の内部電極層16fを第2の内部電極層16bとは別層に配置する必要が無くなるため、積層枚数の低減に繋がり、コストダウンに寄与できる。
さらに、第3の内部電極層16cおよび第5の内部電極層16eは、第1の内部電極層16aが配置されている誘電体層14と同じ誘電体層14上に位置することで、同じ印刷パターン(印刷版)を用いて、第1の内部電極層16a、第3の内部電極層16cおよび第5の内部電極層16eを同時に印刷することができる。
同様に、第4の内部電極層16dおよび第6の内部電極層16fは、第2の内部電極層16bが配置されている誘電体層14と同じ誘電体層14上に位置することで、同じ印刷パターン(印刷版)を用いて第2の内部電極層16b、第4の内部電極層16dおよび第6の内部電極層16fを同時に印刷することができる。
これにより、それぞれ内部電極層16の位置について精度よく印刷することが可能となる。したがって、第1の内部電極層16aと第3の内部電極層16cおよび第5の内部電極層16eとの間の距離、および第2の内部電極層16bと第4の内部電極層16dおよび第6の内部電極層16fとの間の距離を一定に保つことが容易となり、安定したBDVの低減効果を発現することができる。
このとき、第3の内部電極層16cの第1の延長部22aの第1の端面12e側の辺と、第1の内部電極層16aの第1の対向電極部18aの第2の端面12f側の端部の辺との間隔は、5μm以上100μm以下であることが好ましい。これにより、第1の内部電極層16aの第1の対向電極部18aの第2の側面12d側の端部の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
また、第5の内部電極層16eの第5の延長部22eの第1の端面12e側の辺と、第3の内部電極層16cの第1の延長部22aの第2の端面f側の辺との間隔は、5μm以上100μm以下であることが好ましい。
これにより、第3の内部電極層16cの第1の延長部22aの第2の端面12f側の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
さらに、第3の内部電極層16cの第2の延長部22bの第2の側面12d側の辺と第1の内部電極層16aの第1の側面12c側の辺との間隔は、5μm以上100μm以下であることが好ましい。これにより、第1の内部電極層16aの第1の側面12c側の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
また、さらに、第5の内部電極層16eの第6の延長部22fの第2の側面12d側の辺と、第3の内部電極層16cの第2の延長部22bの第1の側面12c側の辺との間隔は、5μm以上100μm以下であることが好ましい。これにより、第3の内部電極層16cの第2の延長部22bの第1の側面12c側の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
また、第4の内部電極層16dの第3の延長部22cの第2の端面12b側の辺と、第2の内部電極層16bの第2の対向電極部18bの第1の端面12e側の端部の辺との間隔は、5μm以上100μm以下であることが好ましい。これにより、第2の内部電極層16bの第2の対向電極部18bの第1の側面12c側の端部の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
また、第6の内部電極層16fの第7の延長部22gの第2の端面12f側の辺と、第4の内部電極層16dの第3の延長部22cの第1の端面12e側の辺との間隔は、5μm以上100μm以下であることが好ましい。
これにより、第4の内部電極層16dの第3の延長部22cの第1の端面12e側の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
さらに、第4の内部電極層16dの第4の延長部22dの第1の側面12c側の辺と、第2の内部電極層16bの第2の側面12d側の辺との間隔は、5μm以上100μm以下であることが好ましい。これにより、第2の内部電極層16bの第2の側面12d側の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
また、さらに、第6の内部電極層16fの第8の延長部22hの第1の側面12c側の辺と、第4の内部電極層16dの第4の延長部22dの第2の側面12d側の辺との間隔は、5μm以上100μm以下であることが好ましい。
これにより、第4の内部電極層16dの第4の延長部22dの第2の側面12d側の辺に集中する電界を和らげることができるため、本施策を導入しない構造と比較してBDVの向上による静電容量密度×BDVの値の向上の効果を得ることができる。
積層体12は、第1の対向電極部18aおよび第2の対向電極部18bの幅方向yの一端と第1の側面12cとの間に形成される積層体12の側部(Wギャップ)24aを含み、第1の対向電極部18aおよび第2の対向電極部18bの幅方向yの他端と第2の側面12dとの間に形成される積層体12の側部(Wギャップ)24bを含む。
さらに、積層体12は、第1の内部電極層16aの第1の引出部20aとは反対側の端部と第2の端面12fとの間に形成される積層体12の端部(Lギャップ)26aを含み、および第2の内部電極層16bの第2の引出部20bとは反対側の端部と第1の端面12eとの間に形成される積層体12の端部(Lギャップ)26bを含む。
内部電極層16は、Ni、Cu、Ag、Pd、Auなどの金属や、Ag-Pd合金等の、それらの金属の少なくとも一種を含む合金などの適宜の導電材料により構成することができる。
本発明の実施の形態である積層セラミックコンデンサ10では、第1の内部電極層16aおよび第2の内部電極層16bが誘電体層14を介して対向することにより容量が形成され、コンデンサの特性が発現する。
内部電極層16の厚みは、例えば、0.2μm以上2.0μm以下程度であることが好ましい。
内部電極層16の総枚数は、例えば、5枚以上1000枚以下であることが好ましい。
外部電極30は、第1の外部電極30a、第2の外部電極30b、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fを有する。
第1の外部電極30aは、積層体12の第1の端面12eの表面に配置され、第1の端面12eから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。この場合、第1の外部電極30aは、第1の内部電極層16aの第1の引出部20aと電気的に接続される。なお、第1の外部電極30aは、少なくとも、実装面側に位置する積層体12の第1の主面12aの一部もしくは第2の主面12bの一部にまで延びて形成されていることが好ましい。また、第1の主面12aの一部、第2の主面12bの一部、第1の側面12cの一部および第2の側面12dの一部の形成される第1の外部電極30aの形状は特に限定されない。
第2の外部電極30bは、積層体12の第2の端面12fの表面に配置され、第2の端面12fから延伸して第1の主面12a、第2の主面12b、第1の側面12cおよび第2の側面12dのそれぞれの一部分を覆うように形成される。この場合、第2の外部電極30bは、第2の内部電極層16bの第2の引出部20bと電気的に接続される。なお、第2の外部電極30bは、少なくとも、実装面側に位置する積層体12の第1の主面12aの一部もしくは第2の主面12bの一部にまで延びて形成されていることが好ましい。また、第1の主面12aの一部、第2の主面12bの一部、第1の側面12cの一部および第2の側面12dの一部の形成される第2の外部電極30bの形状は特に限定されない。
第3の外部電極30cは、少なくとも第1の側面12cまたは第2の側面12dのいずれかの面に配置されている。本実施の形態では、第3の外部電極30cは、第3の内部電極層16cに接続され、第1の側面12c上および第1の主面12aの一部、第2の主面12bの一部にまで延びるように形成される。なお、第3の外部電極30cは、第1の側面12cまたは第2の側面12dのみに形成されていてもよい。また、第1の主面12aの一部、第2の主面12bの一部に形成される第3の外部電極30cの形状は特に限定されない。
第4の外部電極30dは、少なくとも第1の側面12cまたは第2の側面12dのいずれかの面に配置されている。本実施の形態では、第4の外部電極30dは、第4の内部電極層16dに接続され、第2の側面12d上および第1の主面12aの一部、第2の主面12bの一部にまで延びるように形成される。なお、第4の外部電極30dは、第1の側面12cまたは第2の側面12dのみに形成されていてもよい。また、第1の主面12aの一部、第2の主面12bの一部に形成される第4の外部電極30dの形状は特に限定されない。
第5の外部電極30eは、少なくとも第1の側面12cまたは第2の側面12dのいずれかの面に配置されている。本実施の形態では、第5の外部電極30eは、第5の内部電極層16eに接続され、第1の側面12c上および第1の主面12aの一部、第2の主面12bの一部にまで延びるように形成される。なお、第5の外部電極30eは、第1の側面12cまたは第2の側面12dのみに形成されていてもよい。また、第1の主面12aの一部、第2の主面12bの一部に形成される第5の外部電極30eの形状は特に限定されない。
第6の外部電極30fは、少なくとも第1の側面12cまたは第2の側面12dのいずれかの面に配置されている。本実施の形態では、第6の外部電極30fは、第4の内部電極層16dに接続され、第2の側面12c上および第1の主面12aの一部、第2の主面12bの一部にまで延びるように形成される。なお、第6の外部電極30fは、第1の側面12cまたは第2の側面12dのみに形成されていてもよい。また、第1の主面12aの一部、第2の主面12bの一部に形成される第6の外部電極30fの形状は特に限定されない。
第1の外部電極30aは、積層体12の上に配置される第1の下地電極層32aと、第1の下地電極層32aの表面を覆うように配置される第1のめっき層34aとを含む。
第2の外部電極30bは、積層体12の上に配置される第2の下地電極層32bと、第2の下地電極層32bの表面を覆うように配置される第2のめっき層34bとを含む。
第3の外部電極30cは、積層体12の上に配置される第3の下地電極層32cと、第3の下地電極層32cの表面を覆うように配置される第3のめっき層34cとを含む。
第4の外部電極30dは、積層体12の上に配置される第4の下地電極層32dと、第4の下地電極層32dの表面を覆うように配置される第4のめっき層34dとを含む。
第5の外部電極30eは、積層体12の上に配置される第5の下地電極層32eと、第5の下地電極層32eの表面を覆うように配置される第5のめっき層34eとを含む。
第6の外部電極30fは、積層体12の上に配置される第6の下地電極層32fと、第6の下地電極層32fの表面を覆うように配置される第6のめっき層34fとを含む。
第1の下地電極層32a、第2の下地電極層32b、第3の下地電極層32c、第4の下地電極層32d、第5の下地電極層32eおよび第6の下地電極層32f(以下、単に下地電極層ともいう)は、それぞれ、焼付け層、導電性樹脂層、薄膜層などから選ばれる少なくとも1つを含む。
まず、下地電極層が、焼付け層で形成された第1の下地電極層32a、第2の下地電極層32b、第3の下地電極層32c、第4の下地電極層32d、第5の下地電極層32eおよび第6の下地電極層32fについて説明する。
焼付け層は、ガラスと金属とを含む。焼付け層の金属としては、たとえば、Cu、Ni、Ag、Pd、Ag-Pd合金、Au等から選ばれる少なくとも1つを含む。また、焼付け層のガラスとしては、B、Si、Ba、Mg、Al、Li等から選ばれる少なくとも1つを含む。焼付け層は、複数層であってもよい。焼付け層は、ガラスおよび金属を含む導電性ペーストを積層体12に塗布して焼き付けたものであり、誘電体層14および内部電極層16と同時に焼成したものでもよく、誘電体層14および内部電極層16を焼成した後に焼き付けたものでもよい。
第1の端面12eおよび第2の端面12fに位置する下地電極層の高さ方向中央部におけるそれぞれの焼付け層の厚みは、5μm以上300μm以下であることが好ましい。
また、第1の主面12aおよび第2の主面12b、ならびに第1の側面12cおよび第2の側面12dの表面に下地電極層を設ける場合には、第1の主面12aおよび第2の主面12b、ならびに第1の側面12cおよび第2の側面12dの表面に位置する第1の下地電極層32aおよび第2の下地電極層32bである長さ方向zの中央部におけるそれぞれの焼付け層の厚みは、たとえば、5μm以上300μm以下程度であることが好ましい。
次に、下地電極層が、導電性樹脂層で形成された第1の下地電極層32a、第2の下地電極層32b、第3の下地電極層32c、第4の下地電極層32d、第5の下地電極層32eおよび第6の下地電極層32fについて説明する。
導電性樹脂層は、焼付け層の表面に焼付け層を覆うように配置されるか、積層体12の表面に直接配置されてもよい。また、導電性樹脂層は、複数層であってもよい。
導電性樹脂層は、熱硬化性樹脂および金属を含む。導電性樹脂層は、熱硬化性樹脂を含むため、たとえば、めっき膜や導電性ペーストの焼成物からなる導電層よりも柔軟性に富んでいる。このため、積層セラミックコンデンサに物理的な衝撃や熱サイクルに起因する衝撃が加わった場合であっても、導電性樹脂層が緩衝層として機能し、積層セラミックコンデンサへのクラックを防止することができる。
導電性樹脂層に含まれる金属としては、Ag、Cu、またはそれらの合金を使用することができる。また、金属粉の表面にAgコーティングされたものを使用することができる。金属粉の表面にAgコーティングされたものを使用する際には金属粉としてCuやNiを用いることが好ましい。また、Cuに酸化防止処理を施したものを使用することもできる。特に、導電性樹脂層に含まれる金属としてAgの導電性金属粉を用いることは、Agは金属の中でもっとも比抵抗が低いため電極材料に適しており、Agは貴金属であるため酸化せず耐候性が高いため、好ましい。なお、導電性樹脂層に含まれる金属としてAgコーティングされた金属を用いることは、上記のAgの特性を保ちつつ、母材の金属を安価なものにすることが可能になるため、好ましい。
導電性樹脂層に含まれる金属は、導電性樹脂全体の体積に対して、35vol%以上75vol%以下で含まれていることが好ましい。
導電性樹脂層に含まれる金属(導電性フィラー)の形状は、特に限定されない。導電性フィラーは、球形状、扁平状などのものを用いることができるが、球形状金属粉と扁平状金属粉とを混合して用いるのが好ましい。
導電性樹脂層に含まれる金属(導電性フィラー)の平均粒径は、特に限定されない。導電性フィラーの平均粒径は、たとえば、0.3μm以上10μm以下程度であってもよい。
導電性樹脂層に含まれる金属(導電性フィラー)は、主に導電性樹脂層の通電性を担う。具体的には、導電性フィラーどうしが接触することにより、導電性樹脂層内部に通電経路が形成される。
導電性樹脂層の樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの公知の種々の熱硬化性樹脂を使用することができる。その中でも、耐熱性、耐湿性、密着性などに優れたエポキシ樹脂は、最も適切な樹脂の一つである。
導電性樹脂層に含まれる樹脂は、導電性樹脂全体の体積に対して、25vol%以上65vol%以下で含まれていることが好ましい。
また、導電性樹脂層には、熱硬化性樹脂とともに、硬化剤を含むことが好ましい。ベース樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂の硬化剤としては、フェノール樹脂、アミン系、酸無水物系、イミダゾール系など公知の種々の化合物を使用することができる。
第1の端面12eおよび第2の端面12fに位置する下地電極層の高さ方向xの中央部におけるそれぞれの導電性樹脂層の厚みは、たとえば、5μm以上300μm以下程度であることが好ましい。
また、第1の主面12aおよび第2の主面12b、ならびに第1の側面12cおよび第2の側面12dの表面に下地電極層を設ける場合には、第1の主面12aおよび第2の主面12b、ならびに第1の側面12cおよび第2の側面12dの表面に位置する下地電極層である長さ方向zの中央部におけるそれぞれの導電性樹脂層の厚みは、5μm以上300μm以下程度であることが好ましい。
また、下地電極層が薄膜層の場合、薄膜層は、スパッタ法または蒸着法等の薄膜形成法により形成され、金属粒子が堆積された1μm以下の層である。
また、第1のめっき層34a、第2のめっき層34b、第3のめっき層34c、第4のめっき層34d、第5のめっき層34eおよび第6のめっき層34f(以下、単にめっき層ともいう)としては、たとえば、Cu、Ni、Sn、Ag、Pd、Ag-Pd合金、Au等から選ばれる少なくとも1つを含む。
めっき層は、複数層によって形成されてもよい。この場合、めっき層は、Niめっき層とSnめっき層の2層構造であることが好ましい。Niめっき層が、下地電極層の表面を覆うように設けられることで、積層セラミックコンデンサ10を実装する際に、実装に用いられる半田によって下地電極層が侵食されることを防止することができる。また、Niめっき層の表面に、Snめっき層を設けることにより、積層セラミックコンデンサ10を実装する際に、実装に用いられる半田の濡れ性を向上させ、容易に実装することができる。
めっき層一層あたりの厚みは、0.5μm以上10.0μm以下であることが好ましい。
なお、下地電極層を設けずに、めっき層だけで外部電極30を形成してもよい。以下、下地電極層を設けずに、めっき層を設ける構造について説明する。
第1の外部電極30a、第2の外部電極30b、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fのそれぞれは、下地電極層が設けられず、めっき層が積層体12の表面に直接形成されていてもよい。すなわち、積層セラミックコンデンサ10は、内部電極層16に電気的に接続されるめっき層を含む構造であってもよい。このような場合、前処理として積層体12の表面に触媒を配設した後で、めっき層が形成されてもよい。
めっき層は、積層体12の表面に形成される下層めっき電極と、下層めっき電極の表面に形成される上層めっき電極とを含むことが好ましい。
下層めっき電極および上層めっき電極はそれぞれ、たとえば、Cu、Ni、Sn、Pb、Au、Ag、Pd、BiまたはZnなどから選ばれる少なくとも1種の金属または当該金属を含む合金を含むことが好ましい。
下層めっき電極は、はんだバリア性能を有するNiを用いて形成されることが好ましく、上層めっき電極は、はんだ濡れ性が良好なSnやAuを用いて形成されることが好ましい。また、たとえば、内部電極層16がNiを用いて形成される場合、下層めっき電極は、Niと接合性のよいCuを用いて形成されることが好ましい。なお、上層めっき電極は、必要に応じて形成されればよく、第1の外部電極30a、第2の外部電極30b、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fはそれぞれ、下層めっき電極のみで構成されてもよい。
めっき層は、上層めっき電極を最外層としてもよいし、上層めっき電極の表面にさらに他のめっき電極を形成してもよい。
下地電極層を設けずに配置するめっき層の1層あたりの厚みは、1μm以上15μm以下であることが好ましい。めっき層は、ガラスを含まないことが好ましい。めっき層の単位体積あたりの金属割合は、99vol%以上であることが好ましい。
積層体12、外部電極30を含む積層セラミックコンデンサ10の長さ方向zの寸法をL寸法とし、積層体12、外部電極30を含む積層セラミックコンデンサ10の積層方向xの寸法をT寸法とし、積層体12、外部電極30を含む積層セラミックコンデンサ10の幅方向yの寸法をW寸法とする。
積層セラミックコンデンサ10の寸法は、長さ方向zのL寸法が0.2mm以上7.0mm以下、幅方向yのW寸法が0.1mm以上3.0mm以下、積層方向xのT寸法が0.1mm以上6.0mm以下であることが好ましい。
図1に示す積層セラミックコンデンサ10によれば、第3の内部電極層16cは、図5および図6に示すように、第1の内部電極層16aとは離れて配置され、第1の内部電極層16aの第1の対向電極部18aの先端付近と、積層方向xに隣接する第2の内部電極層16bの第2の引出部20bとの間に位置しており、第4の内部電極層16dは、図5および図7に示すように、第2の内部電極層16bとは離れて配置され、第2の内部電極層16bの第2の対向電極部18bの先端付近と、積層方向xに隣接する第1の内部電極層16aの第1の引出部20aとの間に位置する。
また、図1に示す積層セラミックコンデンサ10によれば、第5の内部電極層16eは、図5および図6に示すように、第1の内部電極層16aおよび第3の内部電極層16cとは離れて配置され、第3の内部電極層16cの第1の延長部22aにおける第2の端面12f側の端辺と、積層方向xに隣接する第2の内部電極層16bの第2の引出部20bとの間に位置しており、第6の内部電極層16fは、図5および図7に示すように、第2の内部電極層16bおよび第4の内部電極層16dとは離れた配置され、第4の内部電極層16dの第3の延長部22cにおける第1の端面12e側の端辺と、積層方向xに隣接する第1の内部電極層16aの第1の引出部20aとの間に位置する。
これにより、図1に示す積層セラミックコンデンサ10は、第1の内部電極層16aおよび第2の内部電極層16bに印加する電位と、第3の内部電極層16cおよび第4の内部電極層16dならびに第5の内部電極層16eおよび第6の内部電極層16fに印加する電位を異ならせて用いることが可能となる。
したがって、第3の内部電極層16cおよび第5の内部電極層16eを第1の内部電極層16aに隣接させるように配置し、第4の内部電極層16dおよび第6の内部電極層16fを第2の内部電極層16bに隣接するように配置することで、第1の内部電極層16aの第1の引出部20aから、異なる誘電体層14上に配置される第2の内部電極層16bの先端部への電界の回り込みと、第2の内部電極層16bの第2の引出部20bから、異なる誘電体層14上に配置される第1の内部電極層16aの先端部への電界の回り込みと、を抑制することが可能となる。
一方、第3の内部電極層16cの第1の端面12eおよび第2の端面12fと対向する部分の先端部、および第5の内部電極層16eの第1の端面12eおよび第2の端面12fと対向する部分の先端部、第4の内部電極層16dの第1の端面12eおよび第2の端面12fと対向する部分の先端部、および第6の内部電極層16fの第1の端面12eおよび第2の端面12fと対向する部分の先端部においても、電界の回り込みが発生することで電界集中が生じるものの、
第1の内部電極層16aおよび第2の内部電極層16bに印加される電圧>第3の内部電極層16cおよび第5の内部電極層16e、第4の内部電極層16dおよび第6の内部電極層16fに印加される電圧、
の関係であるため、
第3の内部電極層16cおよび第5の内部電極層16e、第4の内部電極層16dおよび第6の内部電極層16fを用いない第1の内部電極層16aの先端部および第2の内部電極層16bの先端部における電界強度>第3の内部電極層16cおよび第5の内部電極層16e、第4の内部電極層16dおよび第6の内部電極層16fを用いた場合の第1の内部電極層16aの先端部および第2の内部電極層16bの先端部における電界強度、
の関係となり、電界強度を抑制することができる。
このように、第1の内部電極層16aおよび第2の内部電極層16bに印加する電位と、第3の内部電極層16cおよび第4の内部電極層16d、さらには第5の内部電極層16eおよび第6の内部電極層16fに異なる電位を印加することで、積層体12の第1の端面12eおよび第2の端面12fに引き出されない側の第1の内部電極層16aの先端部および第2の内部電極層16bの先端部への電界集中が緩和されることから、第1の内部電極層16aの先端部および第2の内部電極層16bの先端部における電圧破壊が起こりにくくなり、静電容量密度を変えることなく、絶縁破壊電圧(BDV)を向上させることが可能となる。
また、いわゆるシリーズ構造により構成された積層セラミックコンデンサと比較して、図1に示す積層セラミックコンデンサ10は、有効部の誘電体層14の厚みを厚くすることができ、有効部の誘電体層14の積み枚数を減らすことが可能となるため、シリーズ構造により構成された積層セラミックコンデンサに対して同様の効果を実現させるよりも、技術的な難易度を克服することができる。
以上のことから、図1に示す積層セラミックコンデンサ10によれば、シリーズ構造よりも、静電容量密度の向上と高い絶縁破壊電圧を有しうる積層セラミックコンデンサを提供しうる。
2.積層セラミックコンデンサの実装構造
次に、上記した積層セラミックコンデンサの実装構造40について、特に、たとえば図8を参照しながら、詳細に説明する。図8は、本発明の実施の形態にかかる積層セラミックコンデンサの実装構造を示す平面図である。
この積層セラミックコンデンサの実装構造40は、たとえば図8に示すように、表面実装型の2つの第1の抵抗素子70a,70b、表面実装型の2つの第2の抵抗素子72a,72b、表面実装型の2つの第3の抵抗素子74a,74bおよび表面実装型の2つの第4の抵抗素子76a,76bと、複数の積層セラミックコンデンサ10と、実装基板42とを含む。実装基板42は、基板本体44を含む。基板本体44は、たとえばガラスエポキシ樹脂、あるいはアルミナ素材で作製されたものを用いることができる。基板本体44は、たとえば、積層された複数の絶縁体層で形成されうる。
また、実装基板42の一方主面には、実装面46を有する。また、実装基板42の実装面46には、高電位が印加される第1の回路パターン50と、接地された第2の回路パターン52と、第1の回路パターン50と第2の回路パターン52との間に並置される第3の回路パターン54および第4の回路パターン56ならびに第5の回路パターン58および第6の回路パターン60とを表面に設けている。第3の回路パターン54および第4の回路パターン56は、第5の回路パターン58と第6の回路パターン60との間に並置される。
第1の回路パターン50、第2の回路パターン52、第3の回路パターン54、第4の回路パターン56、第5の回路パターン58および第6の回路パターン60の材料としては、CuやAg、Al、Auなどの導体材料が用いられる。
2つの第1の抵抗素子70a,70b、2つの第2の抵抗素子72a,72b、2つの第3の抵抗素子74a,74bおよび2つの第4の抵抗素子76a,76bは、たとえば、チップ型の抵抗素子である。2つの第1の抵抗素子70a,70b、2つの第2の抵抗素子72a,72b、2つの第3の抵抗素子74a,74bおよび2つの第4の抵抗素子76a,76bは、それぞれが、直方体状の抵抗素体と、その抵抗素体の両端面に形成された外部電極とを含む。
一方の第1の抵抗素子70aは、第1の回路パターン50と第5の回路パターン58との間に外部電極を介して接続されると共に、他方の第1の抵抗素子70bは、第2の回路パターン52と第6の回路パターン60との間に外部電極を介して接続される。
一方の第2の抵抗素子72aは、第2の回路パターン52と第5の回路パターン58との間に外部電極を介して接続されると共に、他方の第2の抵抗素子72bは、第1の回路パターン50と第6の回路パターン60との間に外部電極を介して接続される。
一方の第3の抵抗素子74aは、第1の回路パターン50と第3の回路パターン54との間に外部電極を介して接続されると共に、他方の第3の抵抗素子74bは、第2の回路パターン52と第4の回路パターン56との間に外部電極を介して接続される。
一方の第4の抵抗素子76aは、第2の回路パターン52と第3の回路パターン54との間に外部電極を介して接続されると共に、他方の第4の抵抗素子76bは、第1の回路パターン50と第4の回路パターン56との間に外部電極を介して接続される。
2つの第1の抵抗素子70a,70b、2つの第2の抵抗素子72a,72b、2つの第3の抵抗素子74a,74bおよび2つの第4の抵抗素子76a,76bの抵抗としては、絶縁材料を用いた抵抗器であり表面実装型のものが望ましい。また、2つの第1の抵抗素子70a,70b、2つの第2の抵抗素子72a,72b、2つの第3の抵抗素子74a,74bおよび2つの第4の抵抗素子76a,76bの抵抗の抵抗値は、10Ω以上1MΩ以下の範囲が望ましい。
複数の積層セラミックコンデンサ10はそれぞれ、第1の外部電極30aが第1の回路パターン50に接続され、第2の外部電極30bが第2の回路パターン52に接続され、第3の外部電極30cが第3の回路パターン54に接続され、第4の外部電極30dが第4の回路パターン56に接続され、第5の外部電極30eが第5の回路パターン58に接続され、第6の外部電極30fが第6の回路パターン60に接続される。
第1の回路パターン50に印加された電圧は、第1の抵抗素子70a,70b、第2の抵抗素子72a,72b、第3の抵抗素子74a,74bおよび第4の抵抗素子76a,76bによって分圧されて、第3の回路パターン54、第4の回路パターン56、第5の回路パターン58および第6の回路パターン60に電圧が印加されるように構成されている。
図8に示す積層セラミックコンデンサの実装構造40において、複数の積層セラミックコンデンサ10はそれぞれ、高電圧が印加される第1の回路パターン50に第1の外部電極30aが接続され、グラウンドにつながる第2の回路パターン52に第2の外部電極30bが接続される。そして、第1の抵抗素子70a,70b、第2の抵抗素子72a,72b、第3の抵抗素子74a,74bおよび第4の抵抗素子76a,76bは、適当な抵抗が選択され、抵抗による分圧を利用することで、第3の回路パターン54および第4の回路パターン56、ならびに第5の回路パターン58および第6の回路パターン60に印加される電圧を任意に調整できる。
これにより、本発明の積層セラミックコンデンサ10は、第1の内部電極層16aおよび第2の内部電極層16bに印加する電位と、第3の内部電極層16cおよび第4の内部電極層16dに印加する電位、ならびに第5の内部電極層16eおよび第6の内部電極層16fに印加する電位とを異ならせて用いることが可能となるため、第3の内部電極層16cおよび第4の内部電極層16d、ならびに第5の内部電極層16eおよび第6の内部電極層16fに異なる電位を印加することで、積層体12の端面に引き出されない側の内部電極層の先端部に集中する電界を緩和することが可能となる。
なお、図8に示す積層セラミックコンデンサの実装構造40では、第1の抵抗素子70a,70b、第2の抵抗素子72a,72b、第3の抵抗素子74a,74b、第4の抵抗素子76a,76bを用いて、第3の回路パターン54および第4の回路パターン56、ならびに第5の回路パターン58および第6の回路パターン60にそれぞれ異なる電圧を任意に印加できるように構成されているが、これに限るものではなく、別の電源を用いて、第3の回路パターン54および第4の回路パターン56、ならびに第5の回路パターン58および第6の回路パターン60にそれぞれ電圧を直接印加するような構成にされていてもよい。
3.積層セラミックコンデンサの製造方法
次に、本発明にかかる積層セラミックコンデンサの製造方法について説明する。
まず、セラミックグリーンシート、内部電極用の導電性ペーストを準備する。セラミックグリーンシートや内部電極用の導電性ペーストには、バインダおよび溶剤が含まれるが、公知の有機バインダや有機溶剤を用いることができる。
次に、セラミックグリーンシート上に、例えば、スクリーン印刷やグラビア印刷などにより所定のパターンで内部電極用の導電性ペーストを印刷し、内部電極パターンを形成する。
続いて、内部電極パターンが印刷されていない外層用のセラミックグリーンシートが所定枚数積層され、その上に、内部電極パターンが印刷されたセラミックグリーンシートが順次積層され、さらに、内部電極パターンが印刷されていない外層用のセラミックグリーンシートが所定枚数積層され、積層シートが作製される。
そして、積層シートは、静水圧プレスなどの手段により積層方向に圧着され、積層ブロックが作製される。
その後、積層ブロックは、所定の形状寸法に切断され、生の積層体チップが切り出される。
続いて、生の積層体チップが焼成され、積層体12が製造される。焼成温度は、誘電体や内部電極層の材料にもよるが、900℃以上1300℃以下であることが好ましい。
続いて、積層体12に外部電極30を形成する。
まず、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fを形成する。
第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fにおける下地電極層が焼き付け層であるときの、下地電極層の形成方法を説明する。
第3の外部電極30cの焼付け層を形成するために、たとえば、積層体の表面に第1の側面から露出している第3の内部電極層の第3の引出部の露出部分にガラス成分と金属とを含む外部電極用の導電性ペーストが塗布されて焼き付けられ、第3の下地電極層が形成される。また、同様に、第4の外部電極30dの焼付け層を形成するために、たとえば、積層体の第2の側面から露出している第4の内部電極層の第4の引出部の露出部分にガラス成分と金属とを含む外部電極用導電性ペーストが塗布されて焼き付けられ、第4の下地電極層が形成される。
さらに、第5の外部電極30eの焼付け層を形成するために、たとえば、積層体の表面に第1の側面から露出している第5の内部電極層の第5の引出部の露出部分にガラス成分と金属とを含む外部電極用の導電性ペーストが塗布されて焼き付けられ、第5の下地電極層が形成される。また、同様に、第6の外部電極30fの焼付け層を形成するために、たとえば、積層体の第2の側面から露出している第6の内部電極層の第6の引出部の露出部分にガラス成分と金属とを含む外部電極用導電性ペーストが塗布されて焼き付けられ、第6の下地電極層が形成される。
このとき、焼付け処理の温度は、700℃以上900℃以下であることが好ましい。
ここで、焼付け層の形成方法としては、様々な方法を用いることができる。
例えば、導電性ペーストをスリットから押し出して塗布する工法を用いることができる。この工法の場合、導電性ペーストの押し出し量を多くすることで、折返し部の長さを長くすることができる。
他には、ローラー転写法を用いることができる。ローラー転写法の場合、折返し部の長さは、ローラー転写の際の押し付け圧力を強くすることで長くすることができる。
次に、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fにおける下地電極層が導電性樹脂層で形成するときに、下地電極層の形成方法を説明する。
なお、下地電極層を導電性樹脂層で形成する場合は、以下の方法で導電性樹脂層を形成することができる。なお、導電性樹脂層は、焼付け層の表面に形成されてもよく、焼付け層を形成せずに導電性樹脂層を単体で積層体上に直接形成してもよい。
導電性樹脂層の形成方法としては、熱硬化性樹脂および金属成分を含む導電性樹脂ペーストを焼き付け層上もしくは積層体上に塗布し、250以上550℃以下の温度で熱処理を行い、樹脂を熱硬化させ、導電性樹脂層を形成する。この時の熱処理時の雰囲気は、N2雰囲気であることが好ましい。また、樹脂の飛散を防ぎ、かつ、各種金属成分の酸化を防ぐため、酸素濃度は100ppm以下に抑えることが好ましい。
この時の導電性樹脂ペーストの塗布方法としては、上記で記載した導電性樹脂ペーストをスリットから押し出して塗布する工法や、ローラー転写法を用いることができる。
また、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fにおける下地電極層が薄膜層で形成するときの、下地電極層の形成方法を説明する。
下地電極層を薄膜層で形成する場合は、スパッタ法または蒸着法等の薄膜形成法により下地電極層を形成することができる。薄膜層で形成された下地電極層は金属粒子が堆積された1μm以下の層とする。
さらに、第3の外部電極30c、第4の外部電極30d、第5の外部電極30eおよび第6の外部電極30fにおいて、下地電極層を設けずに積層体の内部電極層の露出部にめっき層を設けてもよい。その場合は、以下の方法で形成することができる。
積層体の第1の側面および第2の側面の第3の内部電極層、第4の内部電極層、第5の内部電極層および第6の内部電極層上にめっき処理を施し、内部電極層の露出部上に下地めっき膜を形成する。めっき処理を行うにあたっては、電解めっき、無電解めっきのどちらを採用してもよいが、無電解めっきはめっき析出速度を向上させるために、触媒などによる前処理が必要となり、工程が複雑化するというデメリットがある。したがって、通常は、電解めっきを採用することが好ましい。めっき工法としては、バレルめっきを用いることが好ましい。また、必要に応じて、下層めっき電極の表面に形成される上層めっき電極を同様に形成してもよい。ただし、第3の下地電極層、第4の下地電極層、第5の下地電極層および第6の下地電極層を第1の主面の一部、第2の主面の一部にまで形成する場合には、無電解めっきを用いる。
その後、第3の外部電極、第4の外部電極、第5の外部電極および第6の外部電極における下地電極層の表面、導電性樹脂層の表面もしくは下地めっき層の表面、上層めっき層の表面に、めっき層が形成される。本実施形態では焼き付け層上にNiめっき層およびSnめっき層を形成した。Niめっき層およびSnめっき層は、たとえばバレルめっき法により、順次形成される。
続いて、第1の外部電極30aおよび第2の外部電極30bを形成する。
第1の外部電極30aおよび第2の外部電極30bにおける下地電極層が焼付け層であるときの、下地電極層の形成方法を説明する。
第1の外部電極30aおよび第2の外部電極30bの焼付け層を形成するために、たとえば、積層体の表面に第1の端面から露出している第1の内部電極層の第1の引出部の露出部分にガラス成分と金属とを含む外部電極用の導電性ペーストがディッピングなどの方法により塗布されて焼き付けられ、第1の下地電極層が形成される。また、同様に、外部電極の焼付け層を形成するために、たとえば、積層体の第2の端面から露出している第2の内部電極層の第2の引出部の露出部分にガラス成分と金属とを含む外部電極用導電性ペーストがディッピングなどの方法により外部電極用の導電性ペーストが塗布されて焼き付けられ、第2の下地電極層が形成される。このとき、焼き付け処理の温度は、700℃以上900℃以下であることが好ましい。
次に、第1の外部電極30aおよび第2の外部電極30bにおける下地電極層が導電性樹脂層で形成するときの、下地電極層の形成方法を説明する。
なお、導電性樹脂層は、焼付け層の表面に形成されてもよく、焼付け層を形成せずに、導電性樹脂層を単体で積層体の表面に直接形成してもよい。
導電性樹脂層の形成方法としては、熱硬化性樹脂および金属成分を含む導電性樹脂ペーストを焼付け層もしくは積層体の表面に塗布し、250℃以上550℃以下の温度で熱処理を行い、樹脂を熱硬化させ、導電性樹脂層が形成される。この時の熱処理時の雰囲気は、N2雰囲気であることが好ましい。また、樹脂の飛散を防ぎ、かつ、各種金属成分の酸化を防ぐため、酸素濃度は100ppm以下に抑えることが好ましい。
また、第1の外部電極30aおよび第2の外部電極30bにおける下地電極層が薄膜層で形成するときの、下地電極層の形成方法を説明する。
下地電極層が薄膜層で形成する場合は、スパッタ法または蒸着法等の薄膜形成法により下地電極層を形成することができる。薄膜層で形成された下地電極層は金属粒子が堆積された1μm以下の層とされる。
さらに、第1の外部電極30aおよび第2の外部電極30bにおいて、下地電極層を設けずに、積層体の内部電極層の露出部にめっき層を設けてもよい。その場合は、以下の方法で形成することができる。
積層体の第1の端面および第2の端面にめっき処理を施し、内部電極層の露出部上に下地めっき電極を形成する。めっき処理を行うにあたっては、電解めっき、無電解めっきのどちらを採用してもよいが、無電解めっきはめっき析出速度を向上させるために、触媒などによる前処理が必要となり、工程が複雑化するデメリットがある。したがって、通常は、電解めっきを採用することが好ましい。めっき工法としては、バレルめっきを用いることが好ましい。また、必要に応じて、下層めっき電極の表面に上層めっき電極を同様に形成してもよい。
その後、下地電極層の表面、導電性樹脂層の表面もしくは下地めっき層の表面、上層めっき層の表面に、めっき層が形成され、外部電極が形成される。
各積層セラミックコンデンサは、焼付け層の表面にめっき層として、Niめっき層およびSnめっき層が形成される。Niめっき層およびSnめっき層は、たとえばバレルめっき法により、順次形成される。
上述のようにして、積層セラミックコンデンサ10が製造される。
4.実験例
次に、上述した本発明にかかる積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造の効果を確認するための実験を行った。試料である積層セラミックコンデンサの効果の確認は、静電容量密度とBDVを測定することにより行った。
(1)実施例における試料の仕様
まず、上述した積層セラミックコンデンサの製造方法にしたがって、以下のような仕様の実施例にかかる積層セラミックコンデンサを作製した。
・積層セラミックコンデンサのサイズL×W×T(設計値を含む):5.7mm×5.0mm×1.5mm
・容量:表1を参照
・誘電体層の材料:BaTiO3
・誘電体層の厚み:表1を参照
・内部電極層の材料:Ni
・内部電極層の厚み:表1を参照
・外部電極の構造
下地電極層:導電性金属(Cu)とガラス成分を含む電極
めっき層:Niめっき層とSnめっき層の2層構造
なお、実施例の試料にかかる積層セラミックコンデンサにおける内部電極層の構造は、図2に示す構造とした。第1の内部電極層、第3の内部電極層および第5の内部電極層は、図6に示すように、同じ誘電体層上に配置されており、第2の内部電極層、第4の内部電極層および第6の内部電極層は、図7に示すように、同じ誘電体層上に配置される。
また、実験に用いた積層セラミックコンデンサの実装構造において、実装される第1の抵抗素子の抵抗は200Ωとし、第2の抵抗素子の抵抗は800Ωとし、第3の抵抗素子の抵抗は400Ωとし、第4の抵抗素子の抵抗は600Ωとした。したがって、第3の回路パターンに印加される電圧と第4の回路パターンに印加される電圧の比は、3:2であり、第5の回路パターンに印加される電圧と第6の回路パターンに印加される電圧の比は、4:1である。
(2)比較例における試料の仕様
比較例1に用いた積層セラミックコンデンサ100は、図9に示す積層セラミックコンデンサとした。すなわち、積層セラミックコンデンサ100は、積層体112と、第1の外部電極130aおよび第2の外部電極130bとを含む。積層体112の内部には、複数の第1の内部電極層116aと複数の第2の内部電極層116bとが交互に積層されて配置される。第1の内部電極層116aは、第1の外部電極130aと電気的に接続され、第2の内部電極層116bは、第2の外部電極130bと電気的に接続される。
また、比較例2に用いた積層セラミックコンデンサ110は、図10に示す積層セラミックコンデンサとした。すなわち、積層セラミックコンデンサ110は、積層体112と、第1の外部電極130aおよび第2の外部電極130bとを含む。積層体112の内部には、複数の第1の内部電極層116aと複数の第2の内部電極層116bと複数の浮き電極層116cとが配置される。第1の内部電極層116aは、第1の外部電極130aと電気的に接続され、第2の内部電極層116bは、第2の外部電極層130bと電気的に接続される。そして、浮き内部電極層116cによって、対向電極部が複数個に分割される。
また、比較例1および比較例2の上述した構造以外の仕様は、実施例と同様の以下のような仕様とした。
・積層セラミックコンデンサのサイズL×W×T(設計値を含む):5.7mm×5.0mm×1.5mm
・容量:表1を参照
・誘電体層の材料:BaTiO3
・誘電体層の厚み:表1を参照
・内部電極層の材料:Ni
・内部電極層の厚み:表1を参照
・外部電極の構造
下地電極層:導電性金属(Cu)とガラス成分を含む電極
めっき層:Niめっき層とSnめっき層の2層構造
(3)容量の測定方法
積層セラミックコンデンサの静電容量は、LCRメーター(自動平衡ブリッジ方式)を使用して、温度が25℃、交流電界が1.0Vr.m.s、および測定周波数が1kHzの条件で測定し、30個の平均値を静電容量とした。
(4)静電容量密度の算出方法
試料となる積層セラミックコンデンサの容量を有効部体積で割ることで算出した。
(5)平均絶縁破壊電圧(平均BDV)の測定方法
BDVの測定方法は、以下の順序で行った。
(i)試料となる積層セラミックコンデンサを、図8に示す回路パターン上に所定の4種類の抵抗素子と共に1個実装した。なお、比較例1および比較例2での実装構造では、第1の抵抗素子、第2の抵抗素子、第3の抵抗素子および第4の抵抗素子は用いていない。
(ii)第1の回路パターンに常温/常圧かつ大気中下で0.2kV/sの一定速度で直流電圧を昇圧印加する。第2の回路パターンは、グラウンドのため0Vである。
(iii)試料となる積層セラミックコンデンサにショートが発生した電圧をBDVとする。
(iv)上記の(i)~(iii)を30回繰り返し行い、得られた平均値を平均BDVとした。
(6)静電容量密度×BDVの算出方法
静電容量密度とBDVの掛け算で算出し、その値によって評価を行った。すなわち、積層セラミックコンデンサとしての性能は、静電容量密度およびBDVは、いずれも高い方が、性能が高くなることから、静電容量密度×BDVの値によって、評価を行った。
対シリーズ構造比については、得られた各構造の静電容量密度×BDVについて比較例2との比を算出した。
以上の実験結果について、表1および表2に示す。
Figure 0007302529000001
Figure 0007302529000002
以上の結果から、表2より、比較例1の静電容量密度×BDVの値は、比較例2の静電容量密度×BDVの値よりも小さく、当然、実施例の静電容量密度×BDVの値よりも小さい値であることが認められた。
また、表2より、実施例においては、比較例2よりも静電容量密度×BDVの値は、1.31倍の向上が可能となることが認められた。
以上の結果から、本発明にかかる積層セラミックコンデンサの実装構造とすることにより、本発明の積層セラミックコンデンサは、第1の内部電極層および第2の内部電極層に印加する電位と、第3の内部電極層および第4の内部電極層、ならびに第5の内部電極層および第6の内部電極層に印加する電位とを異ならせて用いることが可能となる。これにより、第3の内部電極層および第4の内部電極層、ならびに第5の内部電極層および第6の内部電極層に異なる電位を印加することで、積層体の第1の端面および第2の端面に引き出されない側の第1の内部電極層の先端部および第2の内部電極層の先端部への電界集中が緩和されることから、第1の内部電極層の先端部、および第2の内部電極層の先端部における電圧破壊が起こりにくくなり、静電容量密度を変えることなく、絶縁破壊電圧(BDV)を向上させることが可能となる。
また、本発明にかかる積層セラミックコンデンサの構造によれば、有効部の誘電体層厚を厚くでき、有効部の積み枚数を減らすことが可能となるため、シリーズ構造による比較例2の構造により構成された積層セラミックコンデンサに対して同様の効果を実現させるよりも技術的な難易度を克服することができることが認められた。
以上のことから、本発明では、シリーズ構造よりも、静電容量密度の向上と高い絶縁破壊電圧を有しうる積層セラミックコンデンサを提供しうることが認められた。
なお、以上のように、本発明の実施の形態は、前記記載で開示されているが、本発明は、これに限定されるものではない。
すなわち、本発明の技術的思想及び目的の範囲から逸脱することなく、以上説明した実施の形態に対し、機序、形状、材質、数量、位置又は配置等に関して、様々の変更を加えることができるものであり、それらは、本発明に含まれるものである。
10 積層セラミックコンデンサ
12 積層体
12a 第1の主面
12b 第2の主面
12c 第1の側面
12d 第2の側面
12e 第1の端面
12f 第2の端面
14 誘電体層
15a 内層部
15b,15c 外層部
16 内部電極層
16a 第1の内部電極層
16b 第2の内部電極層
16c 第3の内部電極層
16d 第4の内部電極層
16e 第5の内部電極層
16f 第6の内部電極層
18a 第1の対向電極部
18b 第2の対向電極部
20a 第1の引出部
20b 第2の引出部
20c 第3の引出部
20d 第4の引出部
20e 第5の引出部
20f 第6の引出部
22a 第1の延長部
22b 第2の延長部
22c 第3の延長部
22d 第4の延長部
22e 第5の延長部
22f 第6の延長部
22g 第7の延長部
22h 第8の延長部
24a,24b 側部(Wギャップ)
26a,26b 端部(Lギャップ)
30 外部電極
30a 第1の外部電極
30b 第2の外部電極
30c 第3の外部電極
30d 第4の外部電極
30e 第5の外部電極
30f 第6の外部電極
32a 第1の下地電極層
32b 第2の下地電極層
32c 第3の下地電極層
32d 第4の下地電極層
32e 第5の下地電極層
32f 第6の下地電極層
34a 第1のめっき層
34b 第2のめっき層
34c 第3のめっき層
34d 第4のめっき層
34e 第5のめっき層
34f 第6のめっき層
40 積層セラミックコンデンサの実装構造
42 実装基板
44 基板本体
46 実装面
50 第1の回路パターン
52 第2の回路パターン
54 第3の回路パターン
56 第4の回路パターン
58 第5の回路パターン
60 第6の回路パターン
70a 一方の第1の抵抗素子
70b 他方の第1の抵抗素子
72a 一方の第2の抵抗素子
72b 他方の第2の抵抗素子
74a 一方の第3の抵抗素子
74b 他方の第3の抵抗素子
76a 一方の第4の抵抗素子
76b 他方の第4の抵抗素子
x 積層方向
y 幅方向
z 長さ方向

Claims (2)

  1. 積層された複数の誘電体層と積層された複数の内部電極層とを含み、積層方向に互いに対向する第1の主面および第2の主面と、積層方向に直交する幅方向に互いに対向する第1の側面および第2の側面と、積層方向および幅方向に直行する長さ方向に互いに対向する第1の端面および第2の端面と、を有する積層体と、
    前記積層体上に配置される外部電極を有する積層セラミックコンデンサであって、
    前記外部電極は、前記第1の端面上に配置される第1の外部電極と、前記第2の端面上に配置される第2の外部電極と、少なくとも前記第1の側面または前記第2の側面のいずれかの面に配置される第3の外部電極、第4の外部電極、第5の外部電極および第6の外部電極とを有し、
    前記内部電極層は、前記誘電体層上に配置され、前記第1の外部電極に接続される第1の内部電極層と、前記第2の外部電極に接続される第2の内部電極層と、前記第3の外部電極層に接続される第3の内部電極層と、前記第4の外部電極に接続される第4の内部電極層と、前記第5の外部電極に接続される第5の内部電極層と、前記第6の外部電極に接続される第6の内部電極層とを有し、
    前記第1の内部電極層は、前記第2の内部電極層と対向する第1の対向電極部と、前記第1の端面に引き出される第1の引出部を有し、
    前記第2の内部電極層は、前記第1の内部電極層と対向する第2の対向電極部と、前記第2の端面に引き出される第2の引出部を有し、
    前記第3の内部電極層は、前記第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第1の内部電極層とは離れて配置され、
    前記第4の内部電極層は、前記第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第2の内部電極層とは離れて配置され、
    前記第5の内部電極層は、前記第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第1の内部電極層および前記第3の内部電極層とは離れて配置され、
    前記第6の内部電極層は、前記第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第2の内部電極層および前記第4の内部電極層とは離れて配置され
    前記第3の内部電極層は、前記第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第1の内部電極層の第1の対向電極部の先端と前記第2の端面との間に位置する第1の延長部と、前記第1の延長部に接続され、前記第1の内部電極層の側辺と前記第1の側面または前記第2の側面との間に位置する第2の延長部と、前記第2の延長部に接続され、前記第3の外部電極に接続される第3の引出部と、を有し、
    前記第4の内部電極層は、前記第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第2の内部電極層の第2の対向電極部の先端と前記第1の端面との間に位置する第3の延長部と、前記第3の延長部に接続され、前記第2の内部電極層の側辺と前記第1の側面または前記第2の側面との間に位置する第4の延長部と、前記第4の延長部に接続され、前記第4の外部電極に接続される第4の引出部と、を有し、
    前記第5の内部電極層は、前記第1の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第1の内部電極層および前記第3の内部電極層とは離れて配置され、前記第1の内部電極層の第1の対向電極部の先端と前記第2の端面との間に位置する第5の延長部と、前記第5の延長部に接続され、前記第1の内部電極層の側辺と前記第1の側面または前記第2の側面との間に位置する第6の延長部と、前記第6の延長部に接続され、前記第5の外部電極に接続される第5の引出部と、を有し、
    前記第6の内部電極層は、前記第2の内部電極層が配置される誘電体層と同じ誘電体層上に配置され、かつ、前記第2の内部電極層の第2の対向電極部の先端と前記第1の端面との間に位置する第7の延長部と、前記第7の延長部に接続され、前記第2の内部電極層の側辺と前記第1の側面または前記第2の側面との間に位置する第8の延長部と、前記第8の延長部に接続され、前記第6の外部電極に接続される第6の引出部と、を有し、
    前記第1の内部電極層および前記第2の内部電極層に印加される電圧>前記第3の内部電極層および前記第5の内部電極層、前記第4の内部電極層および前記第6の内部電極層に印加される電圧、になるように、前記第1の内部電極層および前記第2の内部電極層に印加する電位と、前記第3の内部電極層および前記第4の内部電極層ならびに前記第5の内部電極層および前記第6の内部電極層に印加する電位を異ならせて用いる、ことを特徴とする、積層セラミックコンデンサの使用方法
  2. 高電位が印加される第1の回路パターンと、接地された第2の回路パターンと、前記第1の回路パターンと前記第2の回路パターンとの間に並置される第3の回路パターン、第4の回路パターン、第5の回路パターンおよび第6の回路パターンとを表面に設けた回路基板と、
    表面実装型の2つの第1の抵抗素子、表面実装型の2つの第2の抵抗素子、表面実装型の2つの第3抵抗素子および表面実装型の2つの第4の抵抗素子と、
    請求項1に記載の積層セラミックコンデンサと、を含み、
    一方の前記第1の抵抗素子は、前記第1の回路パターンと前記第5の回路パターンとの間に接続されると共に、他方の前記第1の抵抗素子は、前記第2の回路パターンと前記第6の回路パターンとの間に接続され、
    一方の前記第2の抵抗素子は、前記第2の回路パターンと前記第5の回路パターンとの間に接続されると共に、他方の前記第2の抵抗素子は、前記第1の回路パターンと前記第6の回路パターンとの間に接続され、
    一方の前記第3の抵抗素子は、前記第1の回路パターンと前記第3の回路パターンとの間に接続されると共に、他方の前記第3の抵抗素子は、前記第2の回路パターンと前記第4の回路パターンとの間に接続され、
    一方の前記第4の抵抗素子は、前記第2の回路パターンと前記第3の回路パターンとの間に接続されると共に、他方の前記第4の抵抗素子は、前記第1の回路パターンと前記第4の回路パターンとの間に接続され、
    前記積層セラミックコンデンサは、前記第1の外部電極が前記第1の回路パターンに接続され、前記第2の外部電極が前記第2の回路パターンに接続され、前記第3の外部電極が前記第3の回路パターンに接続され、前記第4の外部電極が前記第4の回路パターンに接続され、前記第5の外部電極が前記第5の回路パターンに接続され、前記第6の外部電極が前記第6の回路パターンに接続され、
    前記第1の回路パターンに印加された電圧が、前記第1の抵抗素子、前記第2の抵抗素子、前記第3の抵抗素子および前記第4の抵抗素子によって分圧されて、前記第3の回路パターン、前記第4の回路パターン、前記第5の回路パターンおよび前記第6の回路パターンに電圧が印加されるように構成されていること、を特徴とする積層セラミックコンデンサの実装方法
JP2020090064A 2020-05-22 2020-05-22 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法 Active JP7302529B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090064A JP7302529B2 (ja) 2020-05-22 2020-05-22 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090064A JP7302529B2 (ja) 2020-05-22 2020-05-22 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法

Publications (2)

Publication Number Publication Date
JP2021184448A JP2021184448A (ja) 2021-12-02
JP7302529B2 true JP7302529B2 (ja) 2023-07-04

Family

ID=78767537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090064A Active JP7302529B2 (ja) 2020-05-22 2020-05-22 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法

Country Status (1)

Country Link
JP (1) JP7302529B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116566A1 (ja) 2006-04-07 2007-10-18 Murata Manufacturing Co., Ltd. コンデンサ
JP2008160164A (ja) 2008-03-24 2008-07-10 Tdk Corp 積層型コンデンサ及びその実装構造
JP2019502259A (ja) 2015-12-08 2019-01-24 エイブイエックス コーポレイション 電圧同調可能積層コンデンサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106183A (ja) * 1993-10-05 1995-04-21 Tdk Corp 積層型コンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116566A1 (ja) 2006-04-07 2007-10-18 Murata Manufacturing Co., Ltd. コンデンサ
JP2008160164A (ja) 2008-03-24 2008-07-10 Tdk Corp 積層型コンデンサ及びその実装構造
JP2019502259A (ja) 2015-12-08 2019-01-24 エイブイエックス コーポレイション 電圧同調可能積層コンデンサ

Also Published As

Publication number Publication date
JP2021184448A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
KR102101932B1 (ko) 적층 세라믹 전자부품
JP6981438B2 (ja) 積層セラミックコンデンサ
JP2018073900A (ja) 積層セラミックコンデンサ
US10170243B2 (en) Multilayer ceramic capacitor
JP7363654B2 (ja) 積層セラミック電子部品
KR20190011219A (ko) 적층 세라믹 콘덴서
US11862398B2 (en) Multilayer ceramic capacitor
US10879004B2 (en) Multilayer ceramic capacitor and multilayer ceramic capacitor-mounting structure
JP7196817B2 (ja) 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法
JP7302529B2 (ja) 積層セラミックコンデンサの使用方法および積層セラミックコンデンサの実装方法
JP2020184555A (ja) 積層セラミックコンデンサ
KR20230079891A (ko) 세라믹 전자부품
JP2021125673A (ja) 積層セラミックコンデンサ
JP2021168337A (ja) 積層セラミックコンデンサ
JP2020174073A (ja) 積層セラミックコンデンサ
KR102449364B1 (ko) 적층 세라믹 전자부품
WO2023243186A1 (ja) 3端子型積層セラミックコンデンサ
JP2022129066A (ja) 積層セラミックコンデンサ
WO2024014093A1 (ja) 積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造
US11587730B2 (en) Multilayer ceramic capacitor
WO2024029150A1 (ja) 積層セラミックコンデンサ
JP7415895B2 (ja) 積層セラミック電子部品
WO2024018720A1 (ja) 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
WO2024004304A1 (ja) 貫通型積層セラミックコンデンサ
US11495404B2 (en) Multilayer ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7302529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150