JP7298779B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP7298779B2
JP7298779B2 JP2022516570A JP2022516570A JP7298779B2 JP 7298779 B2 JP7298779 B2 JP 7298779B2 JP 2022516570 A JP2022516570 A JP 2022516570A JP 2022516570 A JP2022516570 A JP 2022516570A JP 7298779 B2 JP7298779 B2 JP 7298779B2
Authority
JP
Japan
Prior art keywords
layer
electrode
gan
emitter
algan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022516570A
Other languages
English (en)
Other versions
JPWO2021214932A1 (ja
Inventor
拓也 星
佑樹 吉屋
悠太 白鳥
弘樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021214932A1 publication Critical patent/JPWO2021214932A1/ja
Application granted granted Critical
Publication of JP7298779B2 publication Critical patent/JP7298779B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7373Vertical transistors having a two-dimensional base, e.g. modulation-doped base, inversion layer base, delta-doped base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、窒化物半導体から構成された半導体装置およびその製造方法に関する。
窒化ガリウム(GaN)系材料は、バンドギャップが大きく、高い絶縁破壊電界強度を有することから、高耐圧パワーデバイスや、高出力高周波デバイス材料として有望である。GaNは、安定相として六方晶ウルツ鉱構造となり、c軸方向に分極が発生する。この効果を利用することで、高濃度の2次元電子ガスを、AlGaN/GaN界面に形成することができる。この2次元電子ガス利用した高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)が、盛んに研究されている。
また、窒化物半導体を用いた縦型素子であるヘテロ接合バイポーラトランジスタ(heterojunction bipolar transistor:HBT)は、HEMTに比べて電流密度・パワー密度を高くすることができるといった特徴から、高周波・パワー用途での応用が期待されている。トランジスタのみならず、ショットキーバリアダイオードや、p-n接合ダイオードなどの2端子素子についても、高性能なデバイスの報告が多くなされている。
GaN HEMTのパワーデバイスとしての応用においては、電子回路の動作の補償の観点から、非通電時にトランジスタがオフとなる、いわゆるノーマリオフ動作が望まれる。GaN HEMTをノーマリオフ動作化する技術の一つとして、近年、GIT(Gate Injection Transistor)構造が盛んに研究開発なされている。GIT構造では、ゲート領域において、AlGaNバリア層の上にp-GaN層を形成することで、伝導帯のエネルギーを持ち上げてノーマリオフ動作を実現する。GIT構造は、従来のノーマリオフ化技術に比べて、AlGaNバリア層のリセスエッチング工程を含まずに形成できることから、制御性・生産性などに優れるとともに、GaN系材料のみでデバイスを造ることができるため、GaN基板などを用いて高性能なデバイスが作製可能である。
GaN MOSFET構造においても、p型層は非常に有用である。例えば、縦型MOSFET構造においては、チャネル領域の直下に形成されたp型領域によってp-n接合を形成することで、電流をゲート直下の領域に集中させる、いわゆる電流狭窄に使用することがある。また、p-n接合による素子分離をおこなうことも可能である。
HBTにおいては、一般的には動作速度を高めるべく、電子速度の高い電子をキャリアとして用いるため、n-p-n型の構造をとる。したがって、ベース層には、高濃度にp型不純物がドープされたGaN系材料が必要である。しかしながら、GaN系材料に高濃度のp型不純物をドープし、GaN系材料の正孔濃度を高くすること(高正孔濃度化)は、技術的には非常に難易度が高い。
以上のように、GaNデバイスの高性能化のためには、p型層の制御の重要性が高まっている。同時に電極とのオーミックコンタクトの形成技術は、実デバイスのみならず、例えばp型GaN層の結晶品質を評価する過程においても、非常に重要な技術である。しかし、p型GaNに対する低抵抗なオーミック電極形成技術は、未だ実現していない。
p型GaNに対して、オーミック電極を形成する技術としては、Niを用いた電極がすでに報告されている(非特許文献3-5)。一般的にNi電極は、空気などの雰囲気でのアニール処理によって酸化して形成されたNiOが、コンタクト抵抗を低減化できる要因であるとされている。しかし、前述の通り、p型GaNを高正孔濃度化することが容易ではないため、単にNiを堆積し、空気アニールを施したとしても、十分に低いコンタクト抵抗が得られるわけではない。
GaN系材料における正孔濃度を高くする技術の一つに、2次元正孔ガスを利用する方法がある。従来のHEMTとは分極軸を逆転させた状態で、AlGaN/GaN界面を形成することで、フェルミ準位のほうに向けた価電子帯のバンドの曲がりを、AlGaN/GaN界面に形成し、2次元正孔ガスを生じさせることができる。このような、窒化物半導体における分極効果を利用し、高い正孔濃度を得ることができる本構造は、様々なデバイスに応用が可能であると考えられる(非特許文献1)。
しかし、上述した分極軸を逆転させたAlGaN/GaN界面を用いる構造は、オーミック電極形成に困難を有する。この構造は、AlGaN層の直下において2次元正孔ガスが生じるが、これはAlGaNとGaNの分極の効果によってヘテロ界面に生じるものである。しかし、AlGaNは、高抵抗材料のため、AlGaNを介して電極を形成することは、低コンタクト抵抗化の妨げとなりうる。一方で、GaNに直接コンタクトを形成するためにAlGaN層をリセスエッチングした場合、リセスエッチングされたAlGaN層の直下は2次元正孔ガスが消失してしまい、2次元正孔ガスの効果を十分に利用することができない(非特許文献2)。
安藤 悠人 他、「2次元正孔ガスを用いたコレクタトップ縦型GaN-HBTの作製」、第64回応用物理学会春季学術講演会 講演予稿集、15a-315-7、12-129、2017年。 隈部 岳瑠 他、「エピタキシャルリフトオフ法によって作製された二次元正孔ガスを有するエミッタトップ型 GaN HBT」、第80回応用物理学会秋季学術講演会 講演予稿集、21a-E301-5、12-395、2019年。 Jin-Kuo Ho et al., "Low-resistance ohmic contacts to p-type GaN", Applied Physics Letters, vol. 74, no. 9, pp. 1275-1277, 1999. D. Qiao et al., "A study of the AuONi ohmic contact on p-GaN", Journal of Applied Physics, vol. 88, no. 7, pp. 4196-4200, 2000. Jin-Kuo Ho et al., "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films", Journal of Applied Physics, vol. 86, no. 8, pp. 4491-4497, 1999.
前述したように、p型のGaNは、GaNデバイスにおいて重要であるが、GaNは正孔濃度を高くすることができない。このため、p型のGaNに、低いコンタクト抵抗で電極を形成することが困難であり、デバイスとしての応用が制限されている。また、N極性面を主面方位として2次元正孔ガスを形成し、高正孔濃度化する技術においては、バリアとなるAlGaN層の抵抗が高いために、低いコンタクト抵抗を実現することが難しい。
本発明は、以上のような問題点を解消するためになされたものであり、GaNとAlGaNとのヘテロ接合界面近傍に形成される2次元正孔ガスに対するコンタクト抵抗を低くすることを目的とする。
本発明に係る半導体装置は、基板の上に、主表面をN極性とした状態で形成された、p型のGaNからなる第1半導体層と、第1半導体層の上に、主表面をN極性とした状態で形成された、アンドープのAlGaNからなる第2半導体層と、第2半導体層の上に形成されたNiを含む電極材料からなる電極と、第2半導体層および電極の両者に接して第2半導体層と電極との間に形成された、電極材料の酸化物からなる酸化物層とを備える。
本発明に係る半導体装置の製造方法は、基板の上に、主表面をN極性とした状態で、p型のGaNからなる第1半導体層を形成する第1工程と、第1半導体層の上に、主表面をN極性とした状態で、アンドープのAlGaNからなる第2半導体層を形成する第2工程と、第2半導体層の表面を酸化してAlGaONからなる表面酸化層を形成する第3工程と、Niを含む電極材料から構成された電極を、表面酸化層の上に接して形成する第4工程と、加熱することで、電極の表面酸化層に接する部分に電極材料の酸化物からなる酸化物層を形成し、電極と第2半導体層との間に、第2半導体層および電極の両者に接する状態で、酸化物層が配置された状態とする第5工程とを備える。
本発明に係る半導体装置は、基板の上に、主表面をN極性とした状態で形成された、GaNからなるコレクタ層と、コレクタ層の上に、主表面をN極性とした状態で形成された、p型のGaNからなるベース層と、ベース層の上に、主表面をN極性とした状態で形成された、アンドープのAlGaNからなるエミッタ層と、エミッタ層に上に形成されたエミッタ電極と、エミッタ電極の周囲のエミッタ層の上に形成されたNiを含む電極材料からなるベース電極と、エミッタ層およびベース電極の両者に接してエミッタ層とベース電極との間に形成された、電極材料の酸化物からなる酸化物層と、コレクタ層に電気的に接続するコレクタ電極とを備える。
本発明に係る半導体装置の製造方法は、基板の上に、主表面をN極性とした状態で、GaNからなるコレクタ層を形成する第1工程と、コレクタ層の上に、主表面をN極性とした状態で、p型のGaNからなるベース層を形成する第2工程と、ベース層の上に、主表面をN極性とした状態で、アンドープのAlGaNからなるエミッタ層を形成する第3工程と、エミッタ層に上に、エミッタ電極を形成する第4工程と、エミッタ電極の周囲のエミッタ層の表面を酸化してAlGaONからなる表面酸化層を形成する第5工程と、Niを含む電極材料から構成されたベース電極を、表面酸化層の上に接して形成する第6工程と、加熱することで、ベース電極の表面酸化層に接する部分に電極材料の酸化物からなる酸化物層を形成し、ベース電極とエミッタ層との間に、エミッタ層およびベース電極の両者に接する状態で、酸化物層が配置された状態とする第7工程と、コレクタ層に電気的に接続するコレクタ電極を形成する第8工程とを備える。
以上説明したように、本発明によれば、AlGaNからなる第2半導体層(エミッタ層)および電極(ベース層)の両者に接して第2半導体層(エミッタ層)と電極(ベース電極)との間に形成された、電極材料の酸化物からなる酸化物層を備えるので、GaNとAlGaNとのヘテロ接合界面近傍に形成される2次元正孔ガスに対するコンタクト抵抗を低くすることができる。
図1Aは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図1Bは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図1Cは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図1Dは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図2は、本発明の実施の形態1に係る他の半導体装置の構成を示す断面図である。 図3Aは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Bは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Cは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Dは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Eは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Fは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Gは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Hは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図4Aは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図4Bは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図4Cは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図4Dは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。
以下、本発明の実施の形態に係る半導体装置について説明する。
[実施の形態1]
はじめに、本発明の実施の形態1に係る半導体装置の製造方法について、図1A~図1Dを参照して説明する。
まず、図1Aに示すように、基板101の上に、核形成層102、バッファ層103、p-GaN層104、i-GaN層105、i-AlGaN層106を、主表面をN極性とした状態で(-c軸方向に)、これらの順にエピタキシャル成長する(第1工程、第2工程)。
基板101は、例えば、Al23(サファイア)から構成し、例えば、主表面の面方位を(0001)とする。基板101は、GaN、AlGaN、およびInGaNなどの窒化物半導体の結晶成長が実施でき、かつ主面方位をN極性面とすることができる材料から構成することができる。
核形成層102は、例えば、GaNから構成する。核形成層102は、よく知られているように、Al23などの異種基板の上に、GaNなどの窒化物半導体を結晶成長するために、成長初期の核形成を支援し高品質かつ平坦な結晶を得るための層である。核形成層102は、低温緩衝層や低温バッファなど様々な呼称が存在する。また、核形成層102を調整することにより、核形成層102の表面をV族極性(N極性)面とする。核形成層102の表面をV族極性面とすることで、この上に、窒化物半導体が-c軸方向に結晶成長するようになる。なお、核形成層102は、GaNに限らず、AlN、AlONなどの他の窒化物から構成することも可能である。ただし、基板101をGaNから構成する場合、核形成層102は必要ない場合もある。
バッファ層103は、GaNから構成し、p-GaN層104は、p型のGaNから構成し、i-GaN層105は、アンドープのGaNから構成し、i-AlGaN層106は、アンドープのAlGaNから構成する。これらの各半導体層は、よく知られた有機金属気相成長法により形成することができる。また、上述した各半導体層は、分子線エピタキシ(ガスソース、RFプラズマソース、レーザなどの分類があるがいずれでもよい)、ハイドライド気相成長方法などによって形成(エピタキシャル成長)することも可能である。
また、各半導体層は、例えば、非特許文献2に示すよう、各層を、あらかじめIII族極性(Ga極性)で成長基板の上に結晶成長する。成長基板の上には、成長基板の側から、i-AlGaN層106、i-GaN層105、p-GaN層104の順に積層される状態とする。これを、他基板にウエハボンディングによって貼り合わせ、この後、成長基板を除去することによって形成することもできる。他基板に貼り合わせ成長基板を除去すれば、他基板の上に、各層が、主表面をN極性とした状態で(-c軸方向に)、積層されたものとなる。また、他基板の上に、p-GaN層104、i-GaN層105、i-AlGaN層106の順で積層された状態となる。
上述したように成長基板を用い、他基板に転写する場合、成長基板の上にi-AlGaN層106、i-GaN層105、p-GaN層104を成長させるためのバッファ層の選定も異なり、III族極性面を主面方位とするように適切に選択することとなる。
実施の形態において、結晶成長する際の面方位は重要ではなく、主表面をN極性とした状態で、p-GaN層104、i-GaN層105、i-AlGaN層106が、これらの順に積層されていることが重要となる。このような積層構造をとることで、i-AlGaN層106によるヘテロ接合界面の近傍に、2次元正孔ガス151が生じ、高い正孔濃度を得ることができる。
次に、i-AlGaN層106の表面を酸化して、図1Bに示すように、AlGaONからなる表面酸化層107を形成する(第3工程)。例えば、酸素プラズマをi-AlGaN層106の表面に作用させることで、i-AlGaN層106の表面を酸化することができる。また、空気や酸素の雰囲気で加熱することで、i-AlGaN層106の表面を酸化することができる。AlGaNはAlを含むためGaNに比べて酸化されやすい。
次に、図1Cに示すように、Niを含む電極材料から構成された電極108を、表面酸化層107の上に接して形成する(第4工程)。例えば、例えば電子線蒸着やスパッタ法を用いてNiを堆積することで、電極108が形成できる。
次に、図1Dに示すように、加熱することで、電極108の表面酸化層107に接する部分に電極108材料の酸化物からなる酸化物層109を形成する(第5工程)。酸化物層109は、電極108とi-AlGaN層106との間に、i-AlGaN層106および電極108の両者に接する状態で配置された状態とする。
加熱することで、電極108の一部が、表面酸化層107を構成する酸素と結合し、NiOを形成し、酸化物層109となる。NiOはp型化しやすく、2次元正孔ガス151と効率的にオーミックコンタクトを形成する。熱処理の温度および時間は、酸化物層109と2次元正孔ガス151とのオーミック接触(オーミックコンタクト)が得られる適切な温度と時間に設定する。
以上の製造方法により、基板101の上に、主表面をN極性とした状態で形成された、p型のGaNからなるp-GaN層104と、p-GaN層104の上に、主表面をN極性とした状態で形成された、アンドープのAlGaNからなるi-AlGaN層106と、i-AlGaN層106の上に形成されたNiを含む電極108材料からなる電極108と、i-AlGaN層106および電極108の両者に接してi-AlGaN層106と電極108との間に形成された、電極108材料の酸化物からなる酸化物層109と備える半導体装置が得られる。酸化物層109は、p-GaN層104のi-AlGaN層106との界面の近傍に形成される2次元正孔ガスにオーミックコンタクトしている。
実施の形態1によれば、電極108を構成する電極材料の酸化物からなる酸化物層109を備える(形成する)ので、GaNとAlGaNとのヘテロ接合界面近傍に形成される2次元正孔ガス151に対するコンタクト抵抗を低くすることができる。
ところで、酸化物層109は、表面酸化層107の一部をNiOで置換することで形成している。また、表面酸化層107は、i-AlGaN層106の一部から構成している。これらのため、酸化物層109を形成することで、バリア層であるi-AlGaN層106の実効的な層厚が減少する。i-AlGaN層106の実効的な層厚が減少の減少は、i-AlGaN層106の直下の2次元正孔ガス151の濃度の減少を招く。この2次元正孔ガス151の濃度の減少を抑制し、上述したオーミックコンタクトを得るには、表面酸化層107を形成するための各条件を適切に選択することが重要となる。
なお、上述では、基板の表面がN極性面となるように設計したが、これに限るものではない。上述したように、図1Aを用いて説明したように、N極性面を主面方位として各半導体層を成長し、i-AlGaN層106の表面を酸化して表面酸化層107を形成し、電極108を形成する。
この後、図2に示すように、他基板201の上に、接着金属層202を介し、基板101の電極108をウエハ接合により貼り合わせ、基板101を除去することで、他基板201の上に、各半導体層の主表面が、III族極性とされた状態で積層されたものとすることができる。接着金属層202は、ウエハ接合の観点から適切な材料を選択する。例えば、接着金属層202は、Auから構成することができる。なお、接着金属層202の表面は、酸化物層109の形成のための熱処理工程により、表面平坦性が損なわれる場合がある。この場合は、化学機械研磨などの技術により接着金属層202を平坦化しておく。
また、上述では、電極108をNiから構成したが、半導体層との密着性などの観点からNi単体では使用ができない場合がある。この場合は、本発明の効果を阻害しない範囲で、Niの後にTiを堆積する、あるいはTiの後にNiを堆積する積層構造から電極108を構成することもできる。
[実施の形態2]
次に、本発明の実施の形態2に係る半導体装置の製造方法について、図3A~図3Hを参照して説明する。以下では、半導体装置として、ヘテロ接合バイポーラトランジスタを例に説明する。
まず、図3Aに示すように、基板301の上に、核形成層302、サブコレクタ層303、コレクタ層304、p-ベース層305、i-ベース層306、エミッタ層307、エミッタキャップ層308を、主表面をN極性とした状態で(-c軸方向に)、これらの順にエピタキシャル成長する(第1工程、第2工程、第3工程)。
基板301は、例えば、Al23(サファイア)から構成し、例えば、主表面の面方位を(0001)とする。基板301は、GaN、AlGaN、およびInGaNなどの窒化物半導体の結晶成長が実施でき、かつ主面方位をN極性面とすることができる材料から構成することができる。
核形成層302は、例えば、GaNから構成する。核形成層302は、よく知られているように、Al23などの異種基板の上に、GaNなどの窒化物半導体を結晶成長するために、成長初期の核形成を支援し高品質かつ平坦な結晶を得るための層である。核形成層302は、低温緩衝層や低温バッファなど様々な呼称が存在する。また、核形成層302を調整することにより、核形成層302の表面をV族極性(N極性)面とする。核形成層302の表面をV族極性面とすることで、この上に、窒化物半導体が-c軸方向に結晶成長するようになる。なお、核形成層302は、GaNに限らず、AlN、AlONなどの他の窒化物から構成することも可能である。ただし、基板301をGaNから構成する場合、核形成層302は必要ない場合もある。
サブコレクタ層303は、n型のGaNから構成する。サブコレクタ層303は、後述するコレクタ電極とオーミック接触を形成する必要があるため、高濃度n型にドープされる構成とすることができる。また、サブコレクタ層303は、層厚の増大に伴い転位密度を減少させることができる,結晶品質を高める効果もある。従って、サブコレクタ層303は、厚さ数マイクロ―メートル程度と比較的厚く形成することができる。
コレクタ層304は、アンドープのGaNから構成する。コレクタ層304はn型のGaNから構成することもできる。コレクタ層304は、ヘテロ接合バイポーラトランジスタの耐圧を決める層であり、仕様に即して厚さやドーピング濃度を決定する。
p-ベース層305は、例えば、Mgなどをドーパントとしたp型のGaNから構成する。p-ベース層305は、後述する、ベース電極とオーミック接触を形成する必要があるため、なるべく高い濃度のp型とすることが望ましい。
i-ベース層306は、アンドープのGaNから構成し、エミッタ層307は、アンドープのAlGaNから構成する。この構成とすることで、i-ベース層306とエミッタ層307との界面は、自発分極および圧電分極電場によってバンドが曲げられて、価電子帯端がフェルミレベルよりも上にくる状態となる。この結果、i-ベース層306の側の界面近傍には、2次元正孔ガス151が形成される。また、エミッタキャップ層308は、高濃度にn型不純物が導入されたn型のAlGaNから構成する。これらの各半導体層は、よく知られた有機金属気相成長法により形成することができる。また、上述した各半導体層は、分子線エピタキシ(ガスソース、RFプラズマソース、レーザなどの分類があるがいずれでもよい)、ハイドライド気相成長方法などによって形成(エピタキシャル成長)することも可能である。
次に、図3Bに示すように、エミッタ層307に上に、エミッタ電極311を形成する(第4工程)。この例では、エミッタ層307の上に、エミッタキャップ層308を介してエミッタ電極311を形成する。例えば、スパッタ法や蒸着法などの公知の堆積技術により、エミッタキャップ層308の上に電極材料を堆積して金属層を形成し、この金属層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、エミッタ電極311が形成できる。
エミッタ電極311は、エミッタキャップ層308を構成するn-GaNとオーミック接触を形成することができる電極材料を適切に選択する。電極材料は単一の材料によって構成することができ、例えばn-GaNとオーミック接触を形成することができるNiやTi、Al、Auなどの材料の積層構造によって形成することができる。また、エミッタ電極311とエミッタキャップ層308とのオーミック接触形成のためにアニール処理などを実施する場合がある。このアニール処理によって、電極表面やエピタキシャルウエハの表面の平坦性が損なわれる場合があるので、適切な保護膜を堆積してアニール処理を実施する。
次に、図3Cに示すように、エミッタキャップ層308をメサ形状にパターニングする。例えば、エミッタ電極311をマスクとし、公知のエッチング技術によりエミッタキャップ層308を選択的にエッチング処理すれば、エミッタキャップ層308を所定のメサ形状(第1メサ)に加工できる。
次に、図3Dに示すように、ベース電極形成領域に開口309aを有する保護膜309を形成する。次に、図3Eに示すように、エミッタ電極311の周囲の、開口309aに露出しているエミッタ層307の表面を酸化して、AlGaONからなる表面酸化層310を形成する(第5工程)。例えば、酸素プラズマを照射する技術や、空気や酸素雰囲気化でのアニール処理により、表面酸化層310が形成できる。AlGaNは、Alを含むためGaNに比べて酸化されやすいので、上述した酸化処理により、表面酸化層310が形成できる。
次に、図3Fに示すように、Niを含む電極材料から構成されたベース電極312を、表面酸化層310の上に接して形成する(第6工程)。例えば、例えば電子線蒸着やスパッタ法を用いてNiを堆積することで、ベース電極312が形成できる。
上述したように、表面酸化層310の上にベース電極312を形成した後、本素子に加熱処理を施す。この加熱処理により、ベース電極312の表面酸化層310に接する部分に電極材料の酸化物(NiO)からなる酸化物層を形成し、図3Gに示すように、ベース電極312とエミッタ層307との間に、エミッタ層307およびベース電極312の両者に接する状態で、酸化物層321が配置された状態とする(第7工程)。
加熱することで、ベース電極312の一部が、表面酸化層310を構成する酸素と結合し、NiOを形成し、酸化物層321となる。NiOはp型化しやすく、2次元正孔ガス151と効率的にオーミックコンタクトを形成する。熱処理の温度および時間は、酸化物層321と2次元正孔ガス151とのオーミック接触(オーミックコンタクト)が得られる適切な温度と時間に設定する。
次に、エミッタ層307、i-ベース層306、p-ベース層305、コレクタ層304、および厚さ方向に一部のサブコレクタ層303をパターニングすることで、図3Hに示すように、これらの層を、メサ形状とする。このメサ形状(第2メサ)は、例えば、平面視で矩形とされている。なお、上述した第2メサは、エミッタキャップ層308の第1メサより平面視で大きい面積となる。
上述したように第2メサを形成した後、第2メサの周囲のサブコレクタ層303の上に、コレクタ電極313を形成する。コレクタ電極313は、サブコレクタ層303を介してコレクタ層304に電気的に接続する(第8工程)。
以上の製造方法により、基板301の上に、主表面をN極性とした状態で形成された、GaNからなるコレクタ層304と、コレクタ層304の上に、主表面をN極性とした状態で形成された、p型のGaNからなるp-ベース層305と、p-ベース層305の上に、主表面をN極性とした状態で形成された、アンドープのAlGaNからなるエミッタ層307と、エミッタ層307に上に形成されたエミッタ電極311と、エミッタ電極311の周囲のエミッタ層307の上に形成されたNiを含む電極材料からなるベース電極312と、エミッタ層307およびベース電極312の両者に接してエミッタ層307とベース電極312との間に形成された、電極材料の酸化物からなる酸化物層321と、コレクタ層304に電気的に接続するコレクタ電極313とを備えるヘテロ接合バイポーラトランジスタ(半導体装置)が得られる。酸化物層321は、p-ベース層305のエミッタ層307との界面の近傍に形成される2次元正孔ガスにオーミックコンタクトしている。
実施の形態2によれば、ベース電極312を構成する電極材料の酸化物からなる酸化物層321を備える(形成する)ので、GaNとAlGaNとのヘテロ接合界面近傍に形成される2次元正孔ガス151に対するコンタクト抵抗を低くすることができる。
ところで、上述では、基板の表面がN極性となるように設計したが、これに限るものではない。例えば、図4Aに示すように、成長基板401の上に、核形成層402、エミッタキャップ層403、エミッタ層404、i-ベース層405、p-ベース層406、コレクタ層407、およびサブコレクタ層408を、主表面をIII族極性とした状態で(+c軸方向に)、これらの順にエピタキシャル成長する。
成長基板401は、例えば、Al23(サファイア)から構成し、例えば、主表面の面方位を(0001)とする。成長基板401は、GaN、AlGaN、およびInGaNなどの窒化物半導体の結晶成長が実施でき、かつ主面方位をN極性面とすることができる材料から構成することができる。
核形成層402は、例えば、GaNから構成する。エミッタキャップ層403は、高濃度にn型不純物が導入されたn型のAlGaNから構成する。エミッタ層404は、アンドープのAlGaNから構成し、i-ベース層405は、アンドープのGaNから構成する。この構成とすることで、i-ベース層405とエミッタ層404との界面は、自発分極および圧電分極電場によってバンドが曲げられて、価電子帯端がフェルミレベルよりも上にくる状態となる。この結果、i-ベース層405の側の界面近傍には、2次元正孔ガス151が形成される。
p-ベース層406は、p型のGaNから構成する。コレクタ層407は、アンドープのGaNから構成する。サブコレクタ層408は、n型のGaNから構成する。これらの各半導体層は、よく知られた有機金属気相成長法により形成することができる。また、上述した各半導体層は、分子線エピタキシ(ガスソース、RFプラズマソース、レーザなどの分類があるがいずれでもよい)、ハイドライド気相成長方法などによって形成(エピタキシャル成長)することも可能である。また、サブコレクタ層408の上に、金属からなる金属層409を形成する。
次に、図4Bに示すように、金属層409を接着層とし、金属層409に高い放熱性を有する放熱基板431を、ウエハ接合により貼り付ける。接合の前に、金属層409の表面を化学機械研磨などの技術で平坦化しておくこともできる。この構成において、放熱基板431の側から見ると、各半導体層は、主表面をN極性とした状態で(-c軸方向に)積層された状態となっている。
次に、核形成層402および成長基板401を除去し、図4Cに示すように、エミッタキャップ層403の表面を露出させる。この後、図3B~図3Hを用いて説明した工程と同様にすることで、図4Dに示すように、エミッタ層404に上に、エミッタ電極411を形成し、エミッタキャップ層403をメサ形状にパターニングする。
また、エミッタ層404の上に、酸化物層421を介してベース電極412を形成し、次に、エミッタ層404、i-ベース層405、p-ベース層406、コレクタ層407、およびサブコレクタ層408をパターニングすることで、これらの層をメサ形状とする。上述したようにメサを形成した後、このメサの周囲の金属層409の上に、コレクタ電極413を形成する。コレクタ電極413は、金属層409およびサブコレクタ層408を介してコレクタ層407に電気的に接続する。この構成においては、金属層409をコレクタ電極とし、放熱基板431の裏面側にコレクタコンタクトを形成することもできる。
以上に説明したように、本発明によれば、AlGaNからなる第2半導体層(エミッタ層)および電極(ベース層)の両者に接して第2半導体層(エミッタ層)と電極(ベース電極)との間に形成された、電極材料の酸化物からなる酸化物層を備えるので、GaNとAlGaNとのヘテロ接合界面近傍に形成される2次元正孔ガスに対するコンタクト抵抗を低くすることができる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
101…基板、102…核形成層、103…バッファ層、104…p-GaN層、105…i-GaN層、106…i-AlGaN層、107…表面酸化層、108…電極、109…酸化物層、151…2次元正孔ガス。

Claims (8)

  1. 基板の上に、主表面をN極性とした状態で、p型のGaNからなるp-GaN層を形成する第1工程と、
    前記p-GaN層の上に、主表面をN極性とした状態で、アンドープのAlGaNからなるAlGaN層を形成する第2工程と、
    前記AlGaN層の表面を酸化してAlGaONからなる表面酸化層を形成する第3工程と、
    Niを含む電極材料から構成された電極を、前記表面酸化層の上に接して形成する第4工程と、
    加熱することで、前記電極の前記表面酸化層に接する部分に前記電極材料の酸化物からなる酸化物層を形成し、前記電極と前記AlGaN層との間に、前記AlGaN層および前記電極の両者に接する状態で、前記酸化物層が配置された状態とする第5工程と
    を備える半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記酸化物層は、前記p-GaN層の前記AlGaN層との界面の近傍に形成される2次元正孔ガスにオーミックコンタクトしていることを特徴とする半導体装置の製造方法。
  3. 基板の上に、主表面をN極性とした状態で形成された、p型のGaNからなるp-GaN層と、
    前記p-GaN層の上に、主表面をN極性とした状態で形成された、アンドープのAlGaNからなるAlGaN層と、
    前記AlGaN層の上に形成されたNiを含む電極材料からなる電極と、
    前記AlGaN層および前記電極の両者に接して前記AlGaN層と前記電極との間に形成された、前記電極材料の酸化物からなる酸化物層と
    を備える半導体装置。
  4. 請求項3記載の半導体装置において、
    前記酸化物層は、前記p-GaN層の前記AlGaN層との界面の近傍に形成される2次元正孔ガスにオーミックコンタクトしていることを特徴とする半導体装置。
  5. 基板の上に、主表面をN極性とした状態で、GaNからなるコレクタ層を形成する第1工程と、
    前記コレクタ層の上に、主表面をN極性とした状態で、p型のGaNからなるベース層を形成する第2工程と、
    前記ベース層の上に、主表面をN極性とした状態で、アンドープのAlGaNからなるエミッタ層を形成する第3工程と、
    前記エミッタ層に上に、エミッタ電極を形成する第4工程と、
    前記エミッタ電極の周囲の前記エミッタ層の表面を酸化してAlGaONからなる表面酸化層を形成する第5工程と、
    Niを含む電極材料から構成されたベース電極を、前記表面酸化層の上に接して形成する第6工程と、
    加熱することで、前記ベース電極の前記表面酸化層に接する部分に前記電極材料の酸化物からなる酸化物層を形成し、前記ベース電極と前記エミッタ層との間に、前記エミッタ層および前記ベース電極の両者に接する状態で、前記酸化物層が配置された状態とする第7工程と、
    前記コレクタ層に電気的に接続するコレクタ電極を形成する第8工程と
    を備える半導体装置の製造方法。
  6. 請求項5記載の半導体装置の製造方法において、
    前記酸化物層は、前記ベース層の前記エミッタ層との界面の近傍に形成される2次元正孔ガスにオーミックコンタクトしていることを特徴とする半導体装置の製造方法。
  7. 基板の上に、主表面をN極性とした状態で形成された、GaNからなるコレクタ層と、
    前記コレクタ層の上に、主表面をN極性とした状態で形成された、p型のGaNからなるベース層と、
    前記ベース層の上に、主表面をN極性とした状態で形成された、アンドープのAlGaNからなるエミッタ層と、
    前記エミッタ層に上に形成されたエミッタ電極と、
    前記エミッタ電極の周囲の前記エミッタ層の上に形成されたNiを含む電極材料からなるベース電極と、
    前記エミッタ層および前記ベース電極の両者に接して前記エミッタ層と前記ベース電極との間に形成された、前記電極材料の酸化物からなる酸化物層と、
    前記コレクタ層に電気的に接続するコレクタ電極と
    を備える半導体装置。
  8. 請求項7記載の半導体装置において、
    前記酸化物層は、前記ベース層の前記エミッタ層との界面の近傍に形成される2次元正孔ガスにオーミックコンタクトしていることを特徴とする半導体装置。
JP2022516570A 2020-04-23 2020-04-23 半導体装置およびその製造方法 Active JP7298779B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017453 WO2021214932A1 (ja) 2020-04-23 2020-04-23 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2021214932A1 JPWO2021214932A1 (ja) 2021-10-28
JP7298779B2 true JP7298779B2 (ja) 2023-06-27

Family

ID=78270510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022516570A Active JP7298779B2 (ja) 2020-04-23 2020-04-23 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US20230207661A1 (ja)
JP (1) JP7298779B2 (ja)
WO (1) WO2021214932A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000718A (ko) * 2021-06-25 2023-01-03 삼성전자주식회사 고전자이동도 트랜지스터 및 그 제조 방법
WO2023112252A1 (ja) * 2021-12-16 2023-06-22 日本電信電話株式会社 ヘテロ接合バイポーラトランジスタ
TR2022006355A2 (tr) * 2022-04-20 2022-06-21 Antalya Bilim Ueniversitesi İki̇ boyutlu deşi̇k gazi i̇çeren ve g-modunda çalişabi̇len transi̇stör aygit yapisi
WO2024116263A1 (ja) * 2022-11-29 2024-06-06 日本電信電話株式会社 ヘテロ接合バイポーラトランジスタ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142365A (ja) 2005-11-22 2007-06-07 National Central Univ p型ひずみInGaNベース層を有するGaNヘテロ接合バイポーラトランジスタとその製造方法
JP2008016615A (ja) 2006-07-05 2008-01-24 Matsushita Electric Ind Co Ltd バイポーラトランジスタ
US20140264380A1 (en) 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material
JP2017139338A (ja) 2016-02-04 2017-08-10 株式会社パウデック ヘテロ接合バイポーラトランジスタおよび電気機器
JP2018046168A (ja) 2016-09-15 2018-03-22 株式会社東芝 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142365A (ja) 2005-11-22 2007-06-07 National Central Univ p型ひずみInGaNベース層を有するGaNヘテロ接合バイポーラトランジスタとその製造方法
JP2008016615A (ja) 2006-07-05 2008-01-24 Matsushita Electric Ind Co Ltd バイポーラトランジスタ
US20140264380A1 (en) 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material
JP2017139338A (ja) 2016-02-04 2017-08-10 株式会社パウデック ヘテロ接合バイポーラトランジスタおよび電気機器
JP2018046168A (ja) 2016-09-15 2018-03-22 株式会社東芝 半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HO, Jin-Kuo et al.,Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au film,Journal of Applied Physics,Vol.86, No.8,米国,American Institute of Physics,1999年10月15日,pp.4491-4497
安藤 悠人 他,2次元正孔ガスを用いたコレクタトップ縦型GaN-HBTの作製,第64回応用物理学会春季学術講演会 講演予稿集,日本,応用物理学会,2017年09月05日,15a-315-7

Also Published As

Publication number Publication date
JPWO2021214932A1 (ja) 2021-10-28
WO2021214932A1 (ja) 2021-10-28
US20230207661A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP7298779B2 (ja) 半導体装置およびその製造方法
JP5087818B2 (ja) 電界効果トランジスタ
US7498618B2 (en) Nitride semiconductor device
US8716756B2 (en) Semiconductor device
KR20070032701A (ko) 재성장된 오믹 콘택 영역을 갖는 질화물계 트랜지스터의제조방법 및 재성장된 오믹 콘택 영역을 갖는 질화물계트랜지스터
JP2006269939A5 (ja)
JP2014072397A (ja) 化合物半導体装置及びその製造方法
JP2007173624A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JP2008004779A (ja) 窒化物半導体バイポーラトランジスタ及び窒化物半導体バイポーラトランジスタの製造方法
JP2010171416A (ja) 半導体装置、半導体装置の製造方法および半導体装置のリーク電流低減方法
US20240088284A1 (en) High electron mobility transistor (hemt) with a back barrier layer
JP2008016615A (ja) バイポーラトランジスタ
JP6242678B2 (ja) 窒化物半導体素子及びその製造方法
JP7147972B2 (ja) ヘテロ接合バイポーラトランジスタおよびその作製方法
JP5355927B2 (ja) 半導体装置および半導体装置の製造方法
TW202145579A (zh) 具有鈹摻雜的肖特基接觸層的空乏型高電子遷移率場效電晶體(hemt)半導體裝置
JP2008004807A (ja) ヘテロ接合バイポーラトランジスタ
WO2022208868A1 (ja) 半導体装置およびその製造方法
CN111211176B (zh) 一种氮化镓基异质结集成器件结构及制造方法
JP2008227432A (ja) 窒化物化合物半導体素子およびその製造方法
CN113745333A (zh) 一种含δ掺杂势垒层的常关型氧化镓基MIS-HEMT器件及其制备方法
JP6984578B2 (ja) トランジスタの作製方法
JP6538608B2 (ja) ヘテロ接合バイポーラトランジスタの製造方法
KR101935928B1 (ko) 게이트 누설 전류가 감소된 고 전자 이동도 트랜지스터
WO2023089653A1 (ja) バイポーラトランジスタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150