JP7298757B1 - 接合型発光素子ウェーハ及びその製造方法 - Google Patents

接合型発光素子ウェーハ及びその製造方法 Download PDF

Info

Publication number
JP7298757B1
JP7298757B1 JP2022103043A JP2022103043A JP7298757B1 JP 7298757 B1 JP7298757 B1 JP 7298757B1 JP 2022103043 A JP2022103043 A JP 2022103043A JP 2022103043 A JP2022103043 A JP 2022103043A JP 7298757 B1 JP7298757 B1 JP 7298757B1
Authority
JP
Japan
Prior art keywords
wafer
light
epitaxial
layer
spike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022103043A
Other languages
English (en)
Other versions
JP2024003708A (ja
Inventor
順也 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2022103043A priority Critical patent/JP7298757B1/ja
Priority to PCT/JP2023/022251 priority patent/WO2024004680A1/ja
Priority to TW112123100A priority patent/TW202408029A/zh
Application granted granted Critical
Publication of JP7298757B1 publication Critical patent/JP7298757B1/ja
Publication of JP2024003708A publication Critical patent/JP2024003708A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

【課題】 スパイク状インクルージョンが存在するエピタキシャルウェーハを、可視光透過性であり、かつ、紫外光非透過性の接着層を介して、可視光透過性であり、かつ、紫外光透過性である透明基板に接合した接合型発光素子ウェーハにおいて、スパイク状インクルージョンによって生じる不良部の範囲が狭い接合型発光素子ウェーハを提供する.【解決手段】 活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハと、可視光透過性であり、かつ、紫外光透過性である透明基板とが、可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合している接合型発光素子ウェーハであって、前記エピタキシャル層に内在するスパイク状インクルージョンの該エピタキシャル層からの飛び出し高さが、前記接着層の厚さ以下である接合型発光素子ウェーハ。【選択図】図1

Description

本発明は、接合型発光素子ウェーハ及びその製造方法に関する。
従来より、AlGaInP系μ-LED(マイクロLED)用ウェーハとして、BCB(ベンゾシクロブテン)を介した接合ウェーハ(接合型発光素子ウェーハ)の技術が開示されている(例えば特許文献1)。
前述の接合ウェーハでは、2枚のウェーハ同士を接合するため、それぞれのウェーハ(例えば、AlGaInP系発光素子層を有する基板と、該基板に接合される被接合基板)の表面状態、あるいは接合界面に存在する異物の存在により、接合不良部が生じる場合がある。
特開2022-013244号公報
特に、接合する2枚のウェーハのうち1枚は、エピタキシャルウェーハを用いることから、エピタキシャルウェーハのエピタキシャル層の成長中に落下した異物によって発生する凸状不良部の存在が問題になる。成長中に落下する異物の起源の大半はエピタキシャル成長炉内の析出物に起因する。エピタキシャル成長炉の原料ガス導入口からは、成長中、原料を含むガスが常に供給されているが、導入口では加熱部からの輻射熱から完全に遮蔽することが難しく、導入口で微量の原料ガスが分解し、析出している。
この析出物は半導体ではなく、金属に近い状態で析出している。特にInやGaが主成分の析出物は、融点が低く原料である有機金属の分解温度と同程度かそれより低い融点である。従って、析出物は成長中、常に導入口から剥落しやすい状態になっている。導入口から剥落した析出物はキャリアガスによって運ばれ、エピタキシャル層の表面に落下する。剥落する際、キャリアガス流量方向に沿って剥落するため、析出物の大半は槍状の形状であり、この形状を保ったままエピタキシャル層の表面に突き刺さる。
従って、エピタキシャル表面に落下した析出物は数~数十μmの大きさ(高さ)を有した状態でエピタキシャル表面に刺さり、そのまま周囲に異常成長部を形成しながらエピタキシャル成長が行われる。小さい析出物の場合、エピタキシャル成長に伴い埋まってヒロックを形成するか、成長阻害を起こしてヒロックを形成するが、数十μmに及ぶ大きな析出物はエピタキシャル層に埋まることなく、エピタキシャル成長後、スパイク状の凸部を有する異常成長部として残留する。
この析出物を以降、「スパイク状インクルージョン」又は単に「インクルージョン」と呼ぶことにする。スパイク状インクルージョンを有するエピタキシャルウェーハを被接合基板に接合または接着しようとする場合、インクルージョンは機械的に非常に脆いので接合時の印加圧力により破壊される。その破壊に伴い、インクルージョンの周辺にはパーティクルが飛散し、飛散したパーティクルが界面に挟まれた状態で接合または接着が行われる。
被接合基板や、接合/接着層が、金属などの、光を透過しない非光透過性材料で構成される場合、接合/接着界面に挟まれたパーティクルは接合/接着界面の機械強度上の問題にすぎず、デバイス加工時やダイス加工時に問題が生じない程度であれば、問題とはならない。
しかし、被接合基板と、接合/接着層が光透過性材料で構成される場合、接合/接着界面に存在するパーティクルは、光吸収を生じると共に、光散乱を発生させる原因となる。光散乱や吸収の増加は、光散乱や吸収の増加が生じた箇所に相当するチップにおいて、隣接チップと明らかな特性差異を生じさせるため、ウェーハ内に形成する素子特性の分布の均一性を低下させることとなり、結果として歩留まり低下につながる。
また、このスパイク状インクルージョン(スパイク状凸部)が破壊されたことによって飛散したパーティクルは比較的広範囲に飛散するため、スパイク状インクルージョンの高さの影響以上に接合不良部を増加させ、その影響によっても歩留まりが低下する要因となる。
特許文献1では、表面に凸凹(凸状)があるエピタキシャルウェーハと被接合ウェーハを接合する技術が開示されている。しかし、特許文献1に開示された技術は、凸部(凹凸)はウェーハ全面に略一様に形成された場合に対する技術であり、離散的に、かつ、不規則に、かつ、スパイク状に存在する凸形状部に対する接合時に発生する問題解決に対する技術開示ではない。
本発明は上記課題を解決するためになされたもので、スパイク状インクルージョンが存在するエピタキシャルウェーハを、可視光透過性であり、かつ、紫外光非透過性の接着層を介して、可視光透過性であり、かつ、紫外光透過性である透明基板に接合した接合型発光素子ウェーハにおいて、スパイク状インクルージョンによって生じる不良部の範囲が狭い接合型発光素子ウェーハを提供すること、及び、該接合の際にスパイク状インクルージョンから発生するパーティクルの発生を抑制し、スパイク状インクルージョンによって生じる不良部の範囲が狭い接合型発光素子ウェーハを製造する方法を提供することを目的とする。
本発明は、上記目的を達成するためになされたものであり、活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハと、可視光透過性であり、かつ、紫外光透過性である透明基板とが、可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合している接合型発光素子ウェーハであって、前記エピタキシャル層に内在するスパイク状インクルージョンの該エピタキシャル層からの飛び出し高さが、前記接着層の厚さ以下であることを特徴とする接合型発光素子ウェーハを提供する。
このような接合型発光素子ウェーハは、エピタキシャルウェーハの表面にスパイク状に存在するインクルージョン部の飛び出しが接着層の厚み以下であるため、接合不良部の広がりを抑制することができ、そのため、接合不良部の面積を減少させることができる。
このとき、前記接着層が、ベンゾシクロブテン、シリコーン樹脂、エポキシ樹脂、SOG(Spin-on-glass、スピンオングラス)、ポリイミド、及びアモルファスフッ素樹脂からなる群より選択されるものであることが好ましい。
これらのような材質のものは、接合型発光素子ウェーハの接着層の材質として好適である。
また、本発明は、出発基板上に、活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハを作製する工程と、可視光透過性であり、かつ、紫外光透過性である透明基板を準備する工程と、前記発光素子用エピタキシャルウェーハと、前記透明基板を、可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合する工程とを有する接合型発光素子ウェーハの製造方法において、前記接合する工程の前に、前記エピタキシャルウェーハの前記エピタキシャル層を、保護膜を介してダミーウェーハに対向させて圧力を印加することにより、前記エピタキシャル層に内在するスパイク状インクルージョンの、前記エピタキシャル層からの飛び出し部分の先端部を破壊し、該スパイク状インクルージョンの前記エピタキシャル層からの飛び出し高さを減少させ、前記エピタキシャル層からのスパイク状インクルージョンの飛び出し高さを減少させたエピタキシャルウェーハを用いて前記接合する工程を行うことを特徴とする接合型発光素子ウェーハの製造方法を提供する。
このような接合型発光素子ウェーハの製造方法は、あらかじめスパイク状インクルージョンの先端を破壊することができるため、接合の際にスパイク状インクルージョンから発生するパーティクルの発生を抑制し、スパイク状インクルージョンによって生じる不良部の範囲が狭い接合型発光素子ウェーハを製造することができる。
この場合、前記保護膜の厚さを、0.01μm以上10μm以下とすることができる。
このような保護膜の厚さであれば、スパイク状インクルージョンの破壊を効果的に行うことができる。
さらにこの場合、前記保護膜の厚さを、0.05μm以上10μm以下とすることが好ましい。
このような保護膜の厚さであれば、スパイク状インクルージョンの破壊を効果的に行うとともに、エピタキシャル層表面の損傷を抑制することができる。
また、本発明の接合型発光素子ウェーハの製造方法においては、前記接着層を、ベンゾシクロブテン、シリコーン樹脂、エポキシ樹脂、SOG、ポリイミド、及びアモルファスフッ素樹脂からなる群より選択されるものとすることが好ましい。
これらのような材質のものは、接合型発光素子ウェーハの接着層の材質として好適に用いることができる。
本発明の接合型発光素子ウェーハは、エピタキシャルウェーハの表面にスパイク状に存在するインクルージョン部の飛び出しが接着層の厚み以下であるため、接合不良部の広がりを抑制することができ、そのため、接合不良部の面積を減少させることができる。
また、本発明の接合型発光素子ウェーハの製造方法は、接合の際にスパイク状インクルージョンから発生するパーティクルの発生を抑制し、スパイク状インクルージョンによって生じる不良部の範囲が狭い接合型発光素子ウェーハを製造することができる。特に、エピタキシャルウェーハの表面にスパイク状に存在するインクルージョン部を接合前に破壊しておくことで、接合時に発生するインクルージョン部起源のパーティクル数を減少させることができる。また、エピタキシャルウェーハの表面にスパイク状に存在するインクルージョン部を接合前に破壊しておくことで、接合不良部の面積を減少させることができる。
本発明の接合型発光素子ウェーハの製造方法の第一実施形態の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハの製造方法の第一実施形態の他の一部を示す概略断面図である。 本発明の接合型発光素子ウェーハ製造方法における処理を施した後のインクルージョン部の接合の状態を示した拡大写真である。 従来の接合型発光素子ウェーハ製造方法におけるインクルージョン部の接合の状態を示した拡大写真である。 実施例と比較例におけるBCB厚さ不良域の幅を示すグラフである。
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の接合型発光素子ウェーハは、活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハと、可視光透過性であり、かつ、紫外光透過性である透明基板とが、可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合している接合型発光素子ウェーハであって、前記エピタキシャル層に内在するスパイク状インクルージョンの該エピタキシャル層からの飛び出し高さが、前記接着層の厚さ以下であることを特徴とする接合型発光素子ウェーハである。
このような接合型発光素子ウェーハは、本発明の接合型発光素子ウェーハの製造方法によって製造することができる。本発明の接合型発光素子ウェーハの製造方法は、出発基板上に、活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハを作製する工程と、可視光透過性であり、かつ、紫外光透過性である透明基板を準備する工程と、前記発光素子用エピタキシャルウェーハと、前記透明基板を、可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合する工程とを有する接合型発光素子ウェーハの製造方法において、前記接合する工程の前に、前記エピタキシャルウェーハの前記エピタキシャル層を、保護膜を介してダミーウェーハに対向させて圧力を印加することにより、前記エピタキシャル層に内在するスパイク状インクルージョンの、前記エピタキシャル層からの飛び出し部分の先端部を破壊し、該スパイク状インクルージョンの前記エピタキシャル層からの飛び出し高さを減少させ、前記エピタキシャル層からのスパイク状インクルージョンの飛び出し高さを減少させたエピタキシャルウェーハを用いて前記接合する工程を行うことを特徴とする接合型発光素子ウェーハの製造方法である。なお、本発明において「接合」とは、2枚のウェーハを接着剤などで一体とすることを指し、「接着」や「貼り合わせ」を含む概念である。
以下、本発明の接合型発光素子ウェーハの製造方法の態様を第一実施形態、第二実施形態、及び第三実施形態を例示して説明する。それぞれの実施形態で類似の構成要素は図面中に同一の符号を付して説明する。また、重複する説明は省略する。
[第一実施形態]
まず、第一の実施形態を説明する。
まず、図1に示すように出発基板11上に、順次エピタキシャル成長を行い、各層を形成し、エピタキシャルウェーハ20を作製する。これにより、エッチングストップ層12や、活性層14を含むエピタキシャル層18を成長する。より具体的には、以下のようにして各層のエピタキシャル成長を行うことができる。
図1に示すように第一導電型の例えばGaAsからなる出発基板11上にエッチングストップ層12をエピタキシャル成長させる。エッチングストップ層12は、例えば、第一導電型のGaAsバッファ層を積層した後、第一導電型のGaIn1-xP(0.4≦x≦0.6)第一エッチングストップ層を例えば0.1μm、第一導電型のGaAs第二エッチングストップ層を例えば0.1μm成長させることにより形成することができる。さらに、エッチングストップ層12上に、例えば、第一導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6,0.6≦y≦1.0)第一クラッド層13を例えば1.0μm、ノンドープの(AlGa1-yIn1-xP(0.4≦x≦0.6,0≦y≦0.5)活性層14、第二導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6,0.6≦y≦1.0)第二クラッド層15を例えば1.0μm、第二導電型のGaIn1-xP(0.5≦x≦1.0)中間層(不図示)を例えば0.1μm、第二導電型のGaP窓層16を例えば5μm、順次成長した、エピタキシャル層(エピタキシャル機能層)18としての発光素子構造を有する発光素子用エピタキシャルウェーハ20(以下、単に「エピタキシャルウェーハ」と略称することがある。)を作製する。ここで、第一クラッド層13から第二クラッド層15までをダブルヘテロ(DH)構造部と称する。エピタキシャルウェーハ20上には成長炉内から剥落し、エピタキシャルウェーハ20上に落下して形成されたスパイク状インクルージョン22が存在する(図1参照)。
本発明の説明において、スパイク状インクルージョン22は、エピタキシャル層18に内在する異物であって、上記のように不定形の槍状のものを指す。スパイク状インクルージョン22の「飛び出し高さ」とは、スパイク状インクルージョン22がエピタキシャル層18の表面(図1の場合、窓層16の表面)から飛び出している高さのことを指す。
前記に例示した膜厚はあくまで例示であり、素子の動作仕様により膜厚は変更されるべきパラメーターにすぎず、ここで記載した膜厚に限定されないことは言うまでもない。また、各層は単一組成層ではなく、例示した範囲の組成内で複数組成層を有することを概念として含むことは言うまでもない。また、キャリア濃度の水準は、各層で均一ではなく、各層内で複数の水準を有することを概念として含むことは言うまでもない。
活性層は、単一組成から構成されてもよく、また、バリア層と活性層を複数交互に積層した構造であっても、類似の機能を有することはいうまでもなく、両者いずれもが選択可能であることは言うまでもない。
このようにして準備したエピタキシャルウェーハ20は、後述のように、被接合ウェーハである透明基板に接合されるのであるが、本発明では、後述の接合工程の前に、エピタキシャルウェーハ20のエピタキシャル層18を、保護膜を介してダミーウェーハに対向させて圧力を印加する。
ダミーウェーハを図2に示した。ダミーウェーハ41は、例えばシリコンウェーハとすることができる。第一実施形態では、ダミーウェーハ41上に保護膜42を形成する(図2参照)。保護膜42は例えば感光性レジストを用いることができる。ダミーウェーハ41上に感光性レジストからなる保護膜42を塗布した後、90℃前後に保持するプリベーク処理を行い、レジストに含まれる溶剤を飛ばしておくことが好ましい。ダミーウェーハ41は平坦で、スパイク状インクルージョン22を破壊できる機械的強度を有し、安価であればよく、材質としては上記のシリコンの他、例えば、石英、GaP、GaAs、InP、GaN、SiCなどから選択することができる。
また、保護膜42として感光性レジストを例示したが、エピタキシャルウェーハ20表面の保護に要する材料で、濡れ性が良い材料であればどのような材料でも選択可能である。ポリ酢酸ビニル、ワックス、各種レジスト、HogoMax(登録商標:プロピレングリコールモノメチルエーテル・ポリビニルアルコール含有物)、ベンゾシクロブテン(BCB)、アモルファスフッ素系樹脂(例えばCYTOP(登録商標))、シリコーン樹脂、エポキシ樹脂などが選択可能である。
図2に示した保護膜42を形成したダミーウェーハ41を用いて、エピタキシャルウェーハ20のエピタキシャル層18を、保護膜42を介してダミーウェーハ41に対向させて圧力を印加する様子を図3に示した。
エピタキシャルウェーハ20の成長面(スパイク状インクルージョン22を有する面)を、ダミーウェーハ41の保護膜42のある面に対向させ、後述の接合時と同じ要領でエピタキシャルウェーハに圧力を印加し、ダミーウェーハ41に押し付ける(図3参照)。この際、スパイク状インクルージョン22に選択的に圧力が印加され、先端部が砕けて高さが減じる。インクルージョン22の高さのうち、保護膜42の厚みを突き抜けてダミーウェーハ41にあたる部分が破壊され、保護膜42の厚み分のインクルージョン22の高さは残る。よって、残存高さを低くするためには、保護膜42は薄い方が好適である。保護材の粘度を調整することで、より薄く塗布することが可能で、残存高さをさらに減少させることができる。
インクルージョン22の飛び出し高さは10μm以上の場合が多いため、保護膜42の厚さは少なくとも10μm以下であることが好ましい。保護膜42の厚さがインクルージョン22の飛び出し高さ以上の場合、インクルージョン22に圧力が印加されず、その結果、インクルージョン22が破壊されない。
一方で、保護膜42は、インクルージョン22の破壊により生じた破片(パーティクル)が保護膜42に埋まることで、エピタキシャルウェーハ20の表面への傷をつけること防ぐ役目もあり、薄すぎるとエピタキシャルウェーハ20の表面に傷がつくリスクが高くなる。よって、エピタキシャルウェーハ20の表面保護のためには0.05μm以上の厚さがあることが好ましい。
保護膜42の厚さをより薄く(例えば0.05μm未満)にした場合、インクルージョン22の破壊により発生したパーティクルにより、エピタキシャルウェーハ20の表面が傷つく可能性があるが、輝度向上を目的にエピタキシャルウェーハ20の表面を粗面化処理する場合も多く、その場合は、パーティクルによるエピタキシャルウェーハ20の表面の傷は問題にならないので、例えば0.01μm程度の薄膜とすることができる。
尚、このインクルージョン22の破壊後の残存高さ(エピタキシャル層18からの飛び出し高さ)が、後工程での接合における接着層厚さより低ければ、インクルージョンの残存部は接着層(BCBなど)に包含され被接合基板に衝突しないので、接合不良面積は最小限に抑えられる。よって、保護膜42の厚さを接着層の厚さ以下とすることで、インクルージョン22による接合不良の低減が期待できる。例えば、接着層の厚さが0.6μmの場合、保護膜42の厚さは0.6μm未満に設計することが好適である。
図3に示したような、ダミーウェーハ41によるインクルージョン22の破壊工程後、ダミーウェーハ41からエピタキシャルウェーハ20を外し、エピタキシャルウェーハ20の上に付着した保護膜42と残留パーティクルを除去する(図4参照)。これらの除去のため、保護膜42に感光性レジストやワックスを選択した場合は有機溶剤で、非水溶性のBCBやCYTOP、シリコーンを選択した場合はリンス液、例えば薄め液や剥離液で、水溶性のHogoMaxを選択した場合は純水で洗浄する。このようにして洗浄し、保護膜42とパーティクルを除去することで、スパイク状インクルージョン22の高さを減じたエピタキシャルウェーハ20を得ることができる(図4参照)。
以上のようにして、エピタキシャル層18からのスパイク状インクルージョン22の飛び出し高さを減少させたエピタキシャルウェーハ20を用いて、被接合ウェーハである透明基板30と接着層25を介して接合する(図5参照)。この接合工程は、より具体的には、以下のようにして行うことができる。
接着層としては、可視光透過性であり、かつ、紫外光非透過性の接着層25を用いる。本発明の説明において、紫外光非透過性とは、170nm以上360nm以下の波長域に光吸収端を有し、光吸収端における透過率が50%以下であることを指す。被接合ウェーハである透明基板としては、可視光透過性であり、かつ、紫外光透過性である材質のものを用いる。エピタキシャルウェーハ20上に可視光透過性であり、かつ、紫外光非透過性の接合材(好ましくは熱硬化型接合材)として、例えばベンゾシクロブテン(BCB)をスピンコートし、被接合基板である透明基板30(例えばサファイアウェーハ)と対向させて重ね合わせ、熱圧着することでエピタキシャルウェーハ20と透明基板30(例えばサファイアウェーハ)とを、接着層25(例えばBCB)を介して接合した接合型発光素子ウェーハ(エピタキシャルウェーハ接合基板)を作製する。スピンコートにてBCBを塗布する際、設計膜厚は例えば0.6μmとすることができる。
本実施形態においては、被接合基板がサファイアの場合を例示したが、平坦性と可視光およびUV光透過性を有するものであればどのような材料でもよく、石英などを選択できる。
また、本実施形態においては、接着層25を形成する接合材としてBCBを例示したが、BCBに限定されるものではなく、可視光透過性かつUV光非透過性のものであれば、どのような材料でも選択可能である。接合材は熱硬化性であることが好ましく、BCBの他、シリコーン樹脂、エポキシ樹脂、SOG、ポリイミド、及びアモルファスフッ素樹脂(例えばCYTOP)などを用いてもよい。
また、本実施形態において、図5では、BCBは層状に塗布した状態である場合を例示しているが、層状に限定されないことは言うまでもない。感光性BCBを用いて孤立島状やライン状、その他の形状にパターン化し、接合の工程を行っても同様な結果が得られることは言うまでもない。
以上のようにして、図5に示した、活性層14を含むエピタキシャル層18を有する発光素子用エピタキシャルウェーハ20と、可視光透過性であり、かつ、紫外光透過性である透明基板30とが、可視光透過性であり、かつ、紫外光非透過性の接着層25を介して接合している接合型発光素子ウェーハを製造することができる。また、図5の接合型発光素子ウェーハでは、エピタキシャル層18に内在するスパイク状インクルージョン22のエピタキシャル層18からの飛び出し高さが、接着層25の厚さ以下であるものである。
また、本発明の接合型発光素子ウェーハは、さらに以下のように加工することができる。図6に示したように、出発基板11を除去する。具体的には、GaAs出発基板11をウェットエッチング等により除去し、エッチングストップ層12の第一エッチングストップ層を露出させ、エッチャントを切り替えて第二エッチングストップ層を除去して第一クラッド層13を露出させる。以上の処理を行うことにより、DH層と窓層のみを保持するエピタキシャル接合基板を作製することができる(図6)。本実施形態において、0.6μmのBCB厚を例示したが、この厚さに限定されない。
また、以下のように、続けて、素子分離を行い、各素子の電極等を形成することができる。以下の素子分離及び電極形成等の方法は例示である。
まず、図7に示したように、例えば以下のようにして、素子分離を行う。フォトリソグラフィー法によりパターンを形成し、ICP(誘導結合プラズマ)により素子分離加工を行う。ICPに使用するガスは塩素およびアルゴンである。ICP加工はBCB層を露出させる工程と第二クラッド層15を露出させる工程の2回行う。
本実施形態においては第二クラッド層15を露出させた場合を例示したが、第二クラッド層15を露出させる場合に限定されないことは言うまでもなく、最低限、活性層14が分離されていれば加工目的が達成されるため、第二クラッド層15の露出ではなく、GaP窓層16が露出する場合でも同様の効果が得られることは言うまでもない。
素子分離加工後、図8に示したように、端面処理として発光素子保護膜52を形成する。本実施形態においては、発光素子保護膜52としてSiOを使用することができる。保護膜はSiOに限定されるものではなく、端面が保護でき、かつ絶縁性を有する材料であればどのような材料でも選択可能である。SiNxや酸化チタン、酸化マグネシウムなども選択可能である。
発光素子保護膜52を形成した後、図9に示したように、素子の電極54の形成を行う。例えば、第一導電型層あるいは第二導電型層夫々に接する電極54を形成し、熱処理を施すことでオーミックコンタクトを形成する。本実施形態においては第一導電型をN型とし、第二導電型をP型として設計し、N型層に接する電極にAuとSiを含有する金属を、P型層に接する電極にAuとBeを含有する金属を使用することができる。
本実施形態においては、N型電極として例えばAuとSiの金属を使用できるが、この材料に限定されるものではなく、AuとGeを含有する金属を使用してもよい。また、P型電極として例えばAuとBeの金属を使用できるが、この材料に限定されるものではなく、AuとZnを含有する金属を使用してもよい。
本実施形態において、AlGaInP系発光素子を用いた接合ウェーハの場合を例示したが、この材料と機能に限定されるものではなく、スパイク状インクルージョン22(スパイク状突起異物)による不良が発生するエピタキシャルウェーハ20を接合する接合型発光素子ウェーハを製造する際に、材料系を問わず適用できるのは言うまでもない。
[第二実施形態]
次に、本発明の接合型発光素子ウェーハの製造方法の第二実施形態を説明する。エピタキシャルウェーハ20を形成するまでの工程・構造は第一実施形態と同様である。第一実施形態と異なり、図3に示したダミーウェーハ41を用いた圧力印加の際の保護膜42を、(ダミーウェーハ41ではなく、)図1に示したエピタキシャルウェーハ20の表面上(図1では窓層16の表面上)に形成する。このようなエピタキシャルウェーハ20及びダミーウェーハ41を用いて、保護膜42を介してエピタキシャルウェーハ20の表面に圧力を印加する。スパイク状インクルージョン22の破壊方法、およびその後の工程は第一実施形態と同様である。
[第三実施形態]
次に、本発明の接合型発光素子ウェーハの製造方法の第三実施形態を説明する。エピタキシャルウェーハ20を形成するまでの工程・構造は第一実施形態と同様である。第一実施形態と異なり、図3に示したダミーウェーハ41を用いた圧力印加の際の保護膜42を、図1に示したエピタキシャルウェーハ20上に形成するとともに、図2に示したダミーウェーハ41にも形成する。すなわち、保護膜42を、エピタキシャルウェーハ20の表面上(図1では窓層16の表面上)及びダミーウェーハ41の双方に形成する。このとき、保護膜の総厚さ(エピタキシャルウェーハ20の表面上に形成した保護膜の厚さとダミーウェーハ41の表面上に形成した保護膜の厚さの合計)を接着層の厚さ以下とすることで、インクルージョン22による接合不良の低減が期待できる。スパイク状インクルージョン22の破壊方法、およびその後の工程は第一実施形態と同様である。
第一実施形態~第三実施形態のいずれにおいても、本発明によれば、エピタキシャルウェーハ20のエピタキシャル成長に起因し、完全に無くすことが困難なスパイク状インクルージョン22(スパイク状凸部)の、接合における影響を低減し、接合不良部の面積を減少させることができる。
以下、実施例及び比較例を挙げて本発明について詳細に説明するが、これらは本発明を限定するものではない。
(実施例1)
第一実施形態に沿って接合型発光素子ウェーハを製造した。
まず、図1に示したように、第一導電型のGaAs出発基板11上に、第一導電型のGaAsバッファ層積層後、第一導電型のGaIn1-xP(0.4≦x≦0.6)第一エッチングストップ層を0.1μm、第一導電型のGaAs第二エッチングストップ層を0.1μmエピタキシャル成長し、エッチングストップ層12とした。さらに、第一導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6,0.6≦y≦1.0)第一クラッド層13を1.0μm、ノンドープの(AlGa1-yIn1-xP(0.4≦x≦0.6,0≦y≦0.5)活性層14、第二導電型の(AlGa1-yIn1-xP(0.4≦x≦0.6,0.6≦y≦1.0)第二クラッド層15を1.0μm、第二導電型のGaIn1-xP(0.5≦x≦1.0)中間層(不図示)を0.1μm、第二導電型のGaP窓層16を5μm、順次成長し、エピタキシャル層(エピタキシャル機能層)18としての発光素子構造を有するエピタキシャルウェーハ20を準備した。エピタキシャルウェーハ20上には、成長炉内から剥落し、エピタキシャルウェーハ上に落下して形成されたスパイク状インクルージョン22が存在した(図1参照)。
次に、図2に示したように、ダミーウェーハ41としてシリコンウェーハを準備し、感光性レジストをダミーウェーハ上に塗布し0.5μmの保護膜42とした。塗布後、90℃前後に保持するプリベーク処理を行い、レジストに含まれる溶剤を飛ばした。
次に、図3に示したように、エピタキシャルウェーハ20の成長面(スパイク状インクルージョン22を有する面)とダミーウェーハの保護膜42を形成した面を対向させて重ね、エピタキシャルウェーハ20に圧力を印加し、ダミーウェーハ41に押し付けた。
圧力印加処理後、図4に示したように、ダミーウェーハ41からエピタキシャルウェーハ20を外し、エピタキシャルウェーハ20上に付着した塗布膜(保護膜42)と残留パーティクルを除去した。
次に、図5に示したように、エピタキシャルウェーハ20上に接着層25としてベンゾシクロブテン(BCB)をスピンコートし、被接合基板であるサファイアウェーハ(透明基板30)と対向させて重ね合わせ、熱圧着することでエピタキシャルウェーハ20とサファイアウェーハ(透明基板30)とをBCB(接着層25)を介して接合した。BCBの塗布設計膜厚は0.6μmとした。
次に、図6に示したように、GaAs出発基板11をウェットエッチングで除去し、第一エッチングストップ層を露出させ、エッチャントを切り替えて第二エッチングストップ層を除去して第一クラッド層13を露出させ、DH層と窓層16のみを保持するエピタキシャル接合基板を作製した。
次に、図7に示したように、フォトリソグラフィー法によりパターンを形成し、ICPにより素子分離加工を行った。ICPに使用するガスは塩素およびアルゴンである。ICP加工はBCB層(接着層25)を露出させる工程と第二クラッド層15を露出させる工程の2回行った。
素子分離加工後、図8に示したように、端面処理としてSiOからなる発光素子保護膜52を形成した。
次に、図9に示したように、発光素子保護膜52の形成後、第一導電型層あるいは第二導電型層夫々に接する電極54を形成し、熱処理を施すことでオーミックコンタクトを形成した。本実施例においては第一導電型をN型とし、第二導電型をP型として設計し、N型層に接する電極にAuとSiを含有する金属を、P型層に接する電極にAuとBeを含有する金属を使用した。
(実施例2)
エピタキシャルウェーハ20を形成するまでの工程・構造は実施例1と同様とした。保護膜42をエピタキシャルウェーハ20上に形成した以外、実施例1と同様の手法で、スパイク状インクルージョン22の破壊、ダミーウェーハ41の剥離、エピタキシャルウェーハ20の洗浄、BCBを介したサファイアウェーハ(透明基板30)との接合、出発基板11の除去、素子形成を行った。
(実施例3)
エピタキシャルウェーハ20を形成するまでの工程・構造は実施例1と同様とした。保護膜42をエピタキシャルウェーハ20上とダミーウェーハ41上の双方に形成した以外、実施例1と同様の手法で、スパイク状インクルージョン22の破壊、ダミーウェーハ41の剥離、エピタキシャルウェーハ20の洗浄、BCBを介したサファイアウェーハ(透明基板30)との接合、出発基板11の除去、素子形成を行った。
(比較例)
エピタキシャルウェーハ20を形成するまでの工程・構造は実施例1~3と同様とした。実施例1~3に示されたスパイク状インクルージョン22の破壊処理を行わなかった(すなわち、ダミーウェーハ41を用いなかった)以外は、実施例1~3と同様の手法で、素子を作製した。
(実施例と比較例との比較)
図10に実施例1の処理を施した後のインクルージョン22が存在する箇所の接合の状態を示し、図11に従来処理のまま接合した場合の比較例のインクルージョンが存在する箇所を示す。いずれの場合も図の中心付近にインクルージョンが存在するが、インクルージョンが存在する領域は塗布膜が均一にならず、インクルージョン付近の膜厚が厚くなる。その膜厚分布が生じている領域(実線矢印表示部)は、実施例においては比較例比で、直径は約半分であった。特に顕著に膜厚が厚い領域(点線矢印部)の領域比では、比較例比で1/3以下であった。
また、従来例(図11)ではインクルージョンの周辺に多数の黒点部と黒点を囲むようにリング状の領域が確認できる。黒点部は接合処理時にインクルージョンが砕けて飛び散ったパーティクルであり、黒点周辺部のリング状の領域は局所的にBCBが厚くなっている領域である。従来例では、インクルージョンを起源とするパーティクルがインクルージョン周辺に散布されているが、実施例において、このようなインクルージョンを起点とするパーティクルは存在しないか、著しく減少した。
図12に、保護膜42のトータル厚さが0.5μmの場合の実施例と比較例におけるBCB厚さ不良域の幅を示す。実施例1~3では、比較例と比べて、不良部径が減少した。
実施例1においてはダミーウェーハ上に0.5μmのBCB保護膜42を、実施例2においてはエピタキシャルウェーハ上に0.5μmのBCB保護膜42を、実施例3においてはエピタキシャルウェーハおよびダミーウェーハ双方に粘度調整を行って0.25μm厚のBCB保護膜42を塗布した。実施例3ではやや改善効果が低下した。これは、双方のウェーハ上に保護膜42を塗布したことで単膜を塗布した場合より保護膜42が実効的に厚くなり、インクルージョン残存高さの減少効果が低下したと考えられる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
11…出発基板、
12…エッチングストップ層、
13…第一クラッド層、
14…活性層、
15…第二クラッド層、
16…窓層、
18…(活性層を含む)エピタキシャル層、
20…発光素子用エピタキシャルウェーハ、
22…スパイク状インクルージョン、
25…接着層、
30…透明基板、
41…ダミーウェーハ、
42…保護膜、
52…発光素子保護膜、
54…電極。

Claims (6)

  1. 活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハと、
    可視光透過性であり、かつ、紫外光透過性である透明基板とが、
    可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合している接合型発光素子ウェーハであって、
    前記エピタキシャル層に内在するスパイク状インクルージョンの該エピタキシャル層からの飛び出し高さが、前記接着層の厚さ以下であり、前記スパイク状インクルージョンの先端部が破壊されたものであることを特徴とする接合型発光素子ウェーハ。
  2. 前記接着層が、ベンゾシクロブテン、シリコーン樹脂、エポキシ樹脂、SOG、ポリイミド、及びアモルファスフッ素樹脂からなる群より選択されるものであることを特徴とする請求項1に記載の接合型発光素子ウェーハ。
  3. 出発基板上に、活性層を含むエピタキシャル層を有する発光素子用エピタキシャルウェーハを作製する工程と、
    可視光透過性であり、かつ、紫外光透過性である透明基板を準備する工程と、
    前記発光素子用エピタキシャルウェーハと、前記透明基板を、可視光透過性であり、かつ、紫外光非透過性の接着層を介して接合する工程と
    を有する接合型発光素子ウェーハの製造方法において、
    前記接合する工程の前に、前記エピタキシャルウェーハの前記エピタキシャル層を、保護膜を介してダミーウェーハに対向させて圧力を印加することにより、
    前記エピタキシャル層に内在するスパイク状インクルージョンの、前記エピタキシャル層からの飛び出し部分の先端部を、エピタキシャル層からの飛び出し高さが、接着層の厚さ以下となる高さまで破壊し、該スパイク状インクルージョンの前記エピタキシャル層からの飛び出し高さを減少させ、
    前記エピタキシャル層からのスパイク状インクルージョンの飛び出し高さを減少させたエピタキシャルウェーハを用いて前記接合する工程を行うことを特徴とする接合型発光素子ウェーハの製造方法。
  4. 前記保護膜の厚さを、0.01μm以上10μm以下とすることを特徴とする請求項3に記載の接合型発光素子ウェーハの製造方法。
  5. 前記保護膜の厚さを、0.05μm以上10μm以下とすることを特徴とする請求項4に記載の接合型発光素子ウェーハの製造方法。
  6. 前記接着層を、ベンゾシクロブテン、シリコーン樹脂、エポキシ樹脂、SOG、ポリイミド、及びアモルファスフッ素樹脂からなる群より選択されるものとすることを特徴とする請求項3から請求項5のいずれか1項に記載の接合型発光素子ウェーハの製造方法。
JP2022103043A 2022-06-27 2022-06-27 接合型発光素子ウェーハ及びその製造方法 Active JP7298757B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022103043A JP7298757B1 (ja) 2022-06-27 2022-06-27 接合型発光素子ウェーハ及びその製造方法
PCT/JP2023/022251 WO2024004680A1 (ja) 2022-06-27 2023-06-15 接合型発光素子ウェーハ及びその製造方法
TW112123100A TW202408029A (zh) 2022-06-27 2023-06-20 接合型發光元件晶圓及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022103043A JP7298757B1 (ja) 2022-06-27 2022-06-27 接合型発光素子ウェーハ及びその製造方法

Publications (2)

Publication Number Publication Date
JP7298757B1 true JP7298757B1 (ja) 2023-06-27
JP2024003708A JP2024003708A (ja) 2024-01-15

Family

ID=86900623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022103043A Active JP7298757B1 (ja) 2022-06-27 2022-06-27 接合型発光素子ウェーハ及びその製造方法

Country Status (3)

Country Link
JP (1) JP7298757B1 (ja)
TW (1) TW202408029A (ja)
WO (1) WO2024004680A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247609A (ja) 2003-02-14 2004-09-02 Canon Inc 基板の製造方法
JP2005340522A (ja) 2004-05-27 2005-12-08 Shin Etsu Handotai Co Ltd ベルヌーイチャック
JP2012142366A (ja) 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法およびエピタキシャル成長用の支持基板
JP2013143402A (ja) 2012-01-06 2013-07-22 Sharp Corp 半導体素子
JP2019096829A (ja) 2017-11-27 2019-06-20 信越半導体株式会社 発光素子の製造方法
JP2020202289A (ja) 2019-06-10 2020-12-17 昭和電工株式会社 SiCエピタキシャルウェハの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284841A (ja) * 1990-03-30 1991-12-16 Matsushita Electron Corp 半導体装置の製造方法
JP4442955B2 (ja) * 1999-07-28 2010-03-31 株式会社Sumco エピタキシャルウェーハの製造方法
JP2009016517A (ja) * 2007-07-04 2009-01-22 Shin Etsu Handotai Co Ltd 化合物半導体ウェーハ、発光素子の製造方法および評価方法
JP6135080B2 (ja) * 2012-09-17 2017-05-31 株式会社リコー 13族窒化物結晶、13族窒化物結晶基板、及び13族窒化物結晶の製造方法
US10727374B2 (en) * 2015-09-04 2020-07-28 Seoul Semiconductor Co., Ltd. Transparent conductive structure and formation thereof
JP6906205B2 (ja) * 2017-08-01 2021-07-21 株式会社サイオクス 半導体積層物の製造方法および窒化物結晶基板の製造方法
JP2021068871A (ja) * 2019-10-28 2021-04-30 株式会社Sumco エピタキシャル成長装置およびエピタキシャルウェーハの製造方法
JP7354943B2 (ja) * 2020-07-03 2023-10-03 信越半導体株式会社 接合型半導体受光素子及び接合型半導体受光素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247609A (ja) 2003-02-14 2004-09-02 Canon Inc 基板の製造方法
JP2005340522A (ja) 2004-05-27 2005-12-08 Shin Etsu Handotai Co Ltd ベルヌーイチャック
JP2012142366A (ja) 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法およびエピタキシャル成長用の支持基板
JP2013143402A (ja) 2012-01-06 2013-07-22 Sharp Corp 半導体素子
JP2019096829A (ja) 2017-11-27 2019-06-20 信越半導体株式会社 発光素子の製造方法
JP2020202289A (ja) 2019-06-10 2020-12-17 昭和電工株式会社 SiCエピタキシャルウェハの製造方法

Also Published As

Publication number Publication date
JP2024003708A (ja) 2024-01-15
WO2024004680A1 (ja) 2024-01-04
TW202408029A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
TWI389334B (zh) 製造及分離半導體裝置之方法
US9478709B2 (en) Vertical topology light emitting device
TWI438836B (zh) 一種用於雷射切割半導體晶圓之製程方法
KR101335342B1 (ko) 향상된 광 출력을 갖는 수직 구조 반도체 디바이스
JP5334158B2 (ja) 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
TWI617052B (zh) 半導體裝置之製造方法
KR100648136B1 (ko) 발광 다이오드 및 그 제조 방법
WO2019102738A1 (ja) 発光素子の製造方法
JP2005322919A (ja) ビーム放射および/またはビーム受信半導体素子および半導体基体にコンタクトを構造化してデポジットする方法
JP7298757B1 (ja) 接合型発光素子ウェーハ及びその製造方法
JP2002314123A (ja) 素子の転写方法及びこれを用いた素子の配列方法、画像表示装置の製造方法
KR20230134975A (ko) 접합형 웨이퍼의 제조방법
KR20050013046A (ko) 질화물계 반도체 발광다이오드 및 그의 제조방법
US20220320366A1 (en) Method To Remove An Isolation Layer On The Corner Between The Semiconductor Light Emitting Device To The Growth Substrate
JP4542508B2 (ja) 垂直型発光ダイオードおよびその製造方法
KR100629210B1 (ko) 수직형 발광 다이오드 및 그 제조 방법
TWI702733B (zh) 發光元件的安裝方法
WO2024034480A1 (ja) マイクロled用接合型ウェーハの製造方法
JP2003188412A (ja) 半導体素子の製造方法及び半導体素子
WO2023190082A1 (ja) 発光素子の製造方法
TW202414510A (zh) 接合型發光元件晶圓的製造方法及微led的移載方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150