JP7283398B2 - 放射線透過検査方法及び装置、並びに微多孔膜の製造方法 - Google Patents

放射線透過検査方法及び装置、並びに微多孔膜の製造方法 Download PDF

Info

Publication number
JP7283398B2
JP7283398B2 JP2019567390A JP2019567390A JP7283398B2 JP 7283398 B2 JP7283398 B2 JP 7283398B2 JP 2019567390 A JP2019567390 A JP 2019567390A JP 2019567390 A JP2019567390 A JP 2019567390A JP 7283398 B2 JP7283398 B2 JP 7283398B2
Authority
JP
Japan
Prior art keywords
film reel
radiation source
foreign matter
reel
side end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019567390A
Other languages
English (en)
Other versions
JPWO2020004435A1 (ja
Inventor
充 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2020004435A1 publication Critical patent/JPWO2020004435A1/ja
Application granted granted Critical
Publication of JP7283398B2 publication Critical patent/JP7283398B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3416Sorting according to other particular properties according to radiation transmissivity, e.g. for light, x-rays, particle radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/652Specific applications or type of materials impurities, foreign matter, trace amounts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明は、フィルムを巻き取ったフィルムリールに混入する異物を検査する放射線透過検査方法及び装置と、このような放射線透過検査方法を含む微多孔膜の製造方法とに関する。
各種のポリマーフィルムなどのフィルムは、一般に、フィルム原反として、円筒形状のコアに巻かれた状態で供給される。このようなフィルムリール中に微小な金属片などの異物が混入した場合には、異物は、フィルムを用いて製造される製品における不具合の原因となることがある。例えば、フィルムリールから巻出したフィルムをリチウムイオン二次電池の正極と負極との間に挿入されるバッテリーセパレータフィルムとして使用する場合、フィルムリール中に混入していた異物が微小な金属片であれば、リチウムイオン二次電池における正極と負極との間の短絡を引き起こしたり、金属片が電解液に溶解して電池特性を劣化させたりする。そこで、フィルムリールに微小な金属異物が混入しているか否かを検出する必要がある。バッテリーセパレータフィルムの製造における品質保証の観点からは、フィルムの製造途中よりも、最終製品であるフィルムリールにおいて異物の混入の有無を検査することが好ましい。
バッテリーセパレータフィルムなどのフィルムはポリマーフィルムであり、検出したい異物は金属であるから、フィルムリール中の金属異物を検出する方法として、フィルムリールの外側からX線やγ線などの放射線を照射し、放射線が透過しにくい異物による影を画像として検出する放射線透過検査方法は有効な方法である。異物の検出に際しては、異物の有無に加えて、フィルムリール中における異物の存在位置を検出することも好ましい。
特許文献1は、フィルムリール中の異物の検出に関するものではないが、2以上の長尺ラベル基材を金属製の連結部材によって繋ぎ合わせて形成されたラベル連続体をロール状に巻き取った状態で継ぎ目の数を検知する方法がある。ロールの側端部からX線を照射してラベル基材部分と連結部材部分でのX線透過量の差に基づいて継ぎ目の数を検知することを開示している。
一方、X線を利用し物体の空間配置を求める方法として、X線CT(コンピューター断層撮影)法が知られている。X線CT法では多方面からX線を照射して撮像し、画像合成技術によって三次元像を得ている。そのため、計測に長時間を要する。特許文献2には、X線CTによる計測時間を短縮する技術として、複数の線源と検出器とを同数個、並進走査方向に配置し、隣接の線源までの間を並進走査することによって並進走査の距離を短縮し、計測時間を短縮することを開示している。
特開2015-44602号公報 特開昭63-21039号公報
X線透過検査では、X線源とイメージングプレートなどの検出器との間に検査対象物が配置され、X線源からは光軸(照射中心軸)を中心にして円錐状または角錐状に拡がるようにX線が放出される。X線源から照射されるX線の照射視野(照射範囲よりも検査対象物が大きい場合には、検査対象物の全体を検査するように、X線源と検出器が検査対象物に応じて走査される必要がある。ここで、検査対象がX線の透過方向に厚さを有する場合、同じ大きさの異物であって厚さ方向での位置によって、検出器上での像の大きさが異なることになり、異物の位置に応じて検出感度にムラが生じることになる。これは、検出器に投影される異物の像の大きさは、X線源に近く検出器から遠いほど、引き伸ばされ、検出器に大きく投影されるためである。そして、検出器の検出感度は、像の画素数が所定値を超えると検出可能となるので、検出器に投影される像の大きさに左右される。それゆえ、異物の位置がX線源から近い場合には、検出しやすく検出感度が向上し、X線源から遠い場合には検出しにくく検出感度が低下する。
検出感度における厚さ方向の位置に応じたムラを小さくするためには、放射線源から検出器までの距離に対する放射線源から検査対象物までの距離の比率を大きくすればよいが、検査対象物の厚さも考慮するとこの比率を大きくするためには放射線源から検出器までの距離自体を大きくする必要があり、結果としてX線の減衰が大きくなって必要な感度が得られないことがある。つまり、X線の透過方向に厚さを有する検査対象物の場合、高い検出感度で、厚さ方向の異物の位置による感度ムラを抑制することができなかった。そのため、厚み方向の異物の位置によって検出される異物の大きさが異なり(これを感度ムラという)、検査対象物内における異物の位置および実際の異物の大きさを特定することができないという課題があった。
一方、X線CTによる検査は、異物の形状や位置を容易に特定することができるが、複雑な回転機構や画像処理システムが必要であり、また、X線透過検査に比べて測定時間や処理時間が格段に長いという問題点を有する。
本発明の目的は、フィルムリールを検査対象物としてX線透過検査を行なうときに、異物の位置に応じた検出感度のムラの影響を軽減して異物を確実に検出できるX線透過検査方法及び装置と、このX線透過検査方法を用いて製造される微多孔膜の製造方法とを提供することにある。
本発明は、コアの外周面に長尺のフィルムが複数周巻回されたフィルムリール検査対象とした放射線透過検査方法であって、リールの一方の側の側面を以下の側端部A、他方の側の側面を以下の側端部Bとして、
第1の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器で検出し、異物についての情報を得る第1の異物検知工程と、
第2の放射線源から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器で検出し、異物についての情報を得る第2の異物検知工程と、を含む、放射線透過検査方法である。
側端部A:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、一方の側の側面を側端部Aと呼ぶ
側端部B:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、他方の側の側面を側端部Bと呼ぶ
さらに、前記第1の放射線源と第1の検出器間の距離(FID)と、前記第2の放射線源と第2の検出器間の距離(FID)が等しく、かつ、
第1の放射線源と側端部A間の距離(FOD)と、第2の放射線源と側端部B間の距離(FOD)が等しい放射線透過検査方法である。さらに、下記式(1)を充足することを特徴とする、放射線透過検査方法である
0.2≦(T+2FOD)/2FID≦0.5・・・・(1)
ここで、Tはフィルムリールの厚みを表す。
さらに、フィルムリール中に混入した異物の位置情報および異物の大きさを求める、請求項1または2に記載の放射線透過検査方法。
さらに、第1の異物検知工程から得られた異物情報と第2の異物検知工程から得られた異物情報とから、フィルムリール中に混入した異物の位置情報および異物の大きさを求める、放射線透過検査方法である。
本発明は、コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とできる放射線透過検査装置であって、リールの一方の側の側面を以下の側端部A、他方の側の側面を以下の側端部Bとして、前記フィルムリールのコアを把持する保持部と、前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第1の放射線源と、側端部Bから出射した放射線を検出する第1の検出器とからなる第1の測定部と、前記第1の検出器から離間した位置に設けられて前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するように配置された第2の放射線源と、側端部Aから出射した放射線を検出する第2の検出器とからなる第2の測定部とを備えた、放射線透過検査装置を提供する。
側端部A:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、一方の側の側面を側端部Aと呼ぶ
側端部B:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、他方の側の側面を側端部Bと呼ぶ
さらに、第1の測定部の放射線源と検出器の位置、および、第2の測定部の放射線源と検出器の位置を調整する調整部を備え、前記第1の放射線源と側端部A間の距離(FOD)および前記第2の放射線源と側端部B間の距離(FOD)が等しく、かつ、前記第1の放射線源と検出器間の距離(FID)および前記第2の放射線源と検出器間の距離(FID)が等しくなるように位置を調整する制御部をさらに備えた、放射線透過検査装置を提供する。さらに、前記第1の測定部及び前記第2の測定部を前記フィルムリールの半径方向に移動させる移動部をさらに備える、放射線透過検査装置を提供する。

本発明は、ポリオレフィン樹脂と可塑剤とを混練してポリオレフィン溶液を調製する工程と、ポリオレフィン溶液をダイから吐出するとともに冷却してゲル状シートを得る工程と、ゲル状シートを延伸して延伸シートを形成する工程と、延伸シートから可塑剤を除去して微多孔膜を得る工程と、微多孔膜をコアに捲回してフィルムリールを得る工程と、本発明の放射線透過検査方法によりフィルムリールに含まれる異物の検査を行う工程と、を含む微多孔膜の製造方法である。すなわち、長尺のフィルムをコアに捲回してフィルムリールを得て、その後、上述の放射線透過検査方法にて前記フィルムリールに含まれる異物の検査を行う異物検知工程とを含む、フィルムリールの製造方法である。
本発明では、フィルム製品リールに対し、両方の側端部の各々に向けて他方側の側端部から放射線の照射を行なうので、各照射では、フィルム製品リールの厚さ方向での中間位置から照射側の側端部までの領域における異物を検出できればよいことになる。このことは放射線透過検査の観点では検査対象物であるフィルム製品リールの厚さが実質的に半減したことに相当するので感度ムラが低減し、かつ、検出器に形成される像の大きさも拡大することになるので確実に異物を検出できるようになる。
放射線透過検査の基本的な原理を説明する図である。 厚さ方向での異物の位置に基づく感度ムラを説明する図である。 厚さ方向での異物の位置に基づく感度ムラを説明する図である。 厚さ方向での異物の位置に基づく感度ムラを説明する図である。 従来の放射線透過検査方法の原理を説明する図である。 本発明に基づく放射線透過検査方法の原理を説明する図である。 異物の厚さ方向の位置と大きさとを求める処理を説明する図である。 両方の側端部の各々へのX線照射によって同一の異物を検出できる条件を説明する図である。 側端部と厚さ方向の中間位置との間を厚さ方向に複数の領域に分割して異物を検出することを説明する図である。 側端部と厚さ方向の中間位置との間を厚さ方向に複数の領域に分割して異物を検出することを説明する図である。 放射線透過検査装置の第1の実施形態を示す平面図である。 放射線透過検査装置の第1の実施形態を示す正面図である。 放射線透過検査装置の第2の実施形態を示す正面図である。 放射線透過検査装置の第3の実施形態を示す側面図である。 放射線透過検査装置の第4の実施形態を示す正面図である。
最初に、X線を用いる放射線透過検査に関する用語を以下に示す。
X線源の光軸:X線照射における中心軸のこと。X線は、光軸を中心にして円錐状または角錐状に拡がるように放出される。
視野:X線が照射できる範囲のこと。面積で表す。放射源に近いほど視野は狭い。
照射範囲:X線が照射される範囲。光軸を中心にして円錐状または角錐状に拡がったX線があたる範囲である。
走査:放射線源と検出器のセットを、軸方向など検査対処物に沿って移動させること。
FID:放射線源と検出器との間の離間距離である。
FOD:放射線源とフィルムリールの放射線源から最短の側端部との間の離間距離である。
検出感度:検出可能な検査対象物の大きさ。最小の大きさで表す。
感度ムラ:検査対象物の厚さ方向の位置による検出可能な検査対象物の大きさの違い。
異物検知工程:放射線源から対象物へ放射線を照射し、対象物を通過した放射線を検出する異物検査工程の1つの処理ステップを表す。処理ステップが複数あるときは、第1、第2、第3・・・と呼ぶ。
(放射線透過検査方法)
次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1はフィルムリール10を検査対象物とする一般的な放射線透過検査の基本的な原理を示しており、この図では、フィルムリール10は、円筒形状のコア11の長さ方向における中心軸13を含む平面での断面として示されており、ハッチングについては一部省略している。フィルムリール10は、コア11の中心軸13を回転軸としてコア11の外周面に長尺のフィルムを複数回巻回して構成されたものである。符号12は、コア11の外周面に巻回されたフィルムの層を示している。フィルムリール10においてコア11の中心軸13が延びる方向を向いた面をフィルムリール10の側端部と呼ぶ。側端部は、円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、一方の側の側面を側端部A(図1中符号14)、他方の側の側面を側端部B(図1中符号15)と呼ぶ。コア11の長さ方向における両側端部間の寸法(すなわち、側端部Aと側端部B間の距離)は、当該コア11に巻回されるフィルムの幅寸法に概略一致する。フィルムリール10の側端部は、コア11に巻回されたフィルムの幅方向の側端部が露出する面でもある。図においてTは、フィルムリール10の厚さを示しており、これは、コア11に巻回されるフィルムの幅に等しい。コア11の中心軸13の延びる方向と平行な方向のことをフィルムリール10の厚さ方向と呼ぶ。
フィルムリール10に微小な金属片などの異物が混入しているか否かを検出するために、X線源などの放射線源21が、フィルムリール10の一方の側端部を臨む位置に配置されている。以下では、放射線源21からはX線が放射されるものとするが、X線の代わりにγ線などの他の放射線を用いてもよい。放射線源21は一般に点光源と考えることができ、放射線源21からは、光軸31がフィルムリール10の一方の側端部に垂直になるように、光軸31に沿って円錐状または角錐状に拡がるようにX線が放射される。図において符号32はX線が拡がる範囲(照射範囲)を示している。そしてフィルムリール10を透過したX線を検出するために、イメージングプレートなどの二次元X線検出器からなる検出器26が、検出器26の中心位置が光軸31の延長上に位置するように、フィルムリール10の他方の側端部を臨む位置に配置している。
フィルムリール10内に金属等の異物があれば、その異物によってX線が遮蔽されるので、検出器26において異物に対応する位置でのX線強度は低下する。X線強度が低下された位置を像として検出することにより、フィルムリール10の異物を、そのフィルムリール10内における位置も含めて検出することができる。ここでの位置は、フィルムリールを側端面から見て、その方向に投影した円状平面における2次元座標である。
放射線透過検査技術での一般的な用語にしたがって、放射線源21と検出器26との間の離間距離をFID(Focus to Image Distance)と呼ぶ。また、放射線源21と検査対象物であるフィルムリール10の放射線源21側の側端部との間の離間距離をFOD(Focus to Object Distance)と呼ぶ。FODは、本来は放射線源21と検出対象の異物との間の離間距離であるが、放射線透過検査を実行する前の段階では異物の位置は不明であるので、本発明では、放射線源21とフィルムリール10の放射線源21側の側端部との間の離間距離をFODとしている。
(検出感度と感度ムラについて)
次に、異物の検出感度と感度ムラについて、図2を用いて説明する。ここでは、説明が分かりやすくなるように具体的な数値を使用するが、本発明はこのような具体的な寸法に限定されるものではない。FIDが200mmであり、FODが20mmであり、フィルムリール10の厚さTが60mmである場合を考える。
図2では、図示上方にある放射線源21から図示下方にある検出器26に向けて、フィルムリール10の厚さ方向に沿ってX線が照射される。微小な異物41を確実に検出するためには検出器26上での異物の像42がなるべく大きくなるようにする必要があり、放射線源21から異物41までの距離がFIDに比べて小さくなるようにして投影倍率を大きくする。投影倍率は、異物の像42の大きさを異物41の実際の大きさで除算した値に相当し、投影倍率は、FIDをFODで除した値(FID/FOD)となる。
図2の(a)は、フィルムリール10の放射線源21側の側端部A(図2の符号14)に異物41が存在する場合を示している。このとき、放射線源21と異物41との間の離間距離は20mmであり、投影倍率は10(=200÷20)となる。したがって、異物41の大きさが100μmであるとすれば、検出器26における異物の像42の大きさ(投影サイズ)は1000μmとなる。逆に、検出感度の下限にあたる異物の大きさは、検出可能な像42の大きさによって次のとおり決まる。検出器26における検出可能な像42の大きさが400μm以上であれば、検出できる異物41の大きさの下限、すなわち検出感度は異物の大きさが40μmとなる。同様に、図2の(b)は、フィルムリール10の厚さ方向の中央に異物41が存在する場合を示している。このとき、放射線源21と異物41との間の離間距離は50mmとなる。図2の(c)は、フィルムリール10の検出器26側の側端部B(図2の符号15)に異物41が存在する場合を示している。このとき、放射線源21と異物41との間の離間距離は80mmとなる。(b)及び(c)の場合についても、(a)の場合と同様に、投影倍率、異物41の大きさが100μmであるときの検出器26での投影サイズ、及び、像42の大きさが400μmとなるときの異物41の大きさすなわち検出感度(下限)を求めることができる。これらの投影倍率、投影サイズ及び検出感度(下限)を表1に示す。
Figure 0007283398000001
表1に示すように、フィルムリール10の厚さTが60mmの場合には感度ムラが40~160μmと大きくなる。また、例えば(c)の場合、検出感度が160μmであるので大きさが100μmの異物を検出することができない。また、フィルムリール中に混入した異物の投影サイズは、異物の大きさと投影倍率で乗じたものである。つまり、投影サイズからは、異物の位置が不明であるので、異物の大きさが特定できない。
上述のとおり、検出可能な異物の大きさは、異物の厚み方向の位置、つまり、放射線源および検出器との間でどのような比率の場所に存在するかによって決まる。投影倍率はFID/FODであるから、検出器での像の大きさは、FIDに比例し、FODに反比例する。よって、同じ大きさの異物に対する検出感度はFODに反比例する。FODを大きくとり、放射線源から検出器までの距離に対する放射線源から検査対象物までの距離の比率を大きくすることで、厚み方向の位置による検出可能な検査対象物の大きさの違い、すなわち、感度ムラが小さくなる。
具体的に、FIDの距離を1とし、放射線源の位置を0、検出器の位置を1とし、検査対象のファイムリールの厚みの割合がFIDの距離に対して0.3(測定範囲が0.3の幅)の場合の感度ムラは、次のとおりである。
放射線源から側端面Aまでの距離(FOD)が0.2の場合
フィルムリールにおける厚み範囲は、0.2~0.5
0.2の時 1/0.2=5
0.5の時 1/0.5=2
よって、感度ムラは、5/2=2.5(倍)
放射線源から側端面Aまでの距離(FOD)が0.5の場合
フィルムリールにおける厚み範囲は、0.5~0.8
0.5の時 1/0.5=2
0.8の時 1/0.8=1.25
よって、感度ムラは、2/1.25=1.6(倍)。
一方、検出感度(微小な異物を検出すること)については、FIDを大きくとるか、FODを小さくすることである。つまり、検出感度と感度ムラは相反する特性であり、微小な異物を検知するには、感度ムラが大きくなってしまう。いずれか一方の側端面から放射線を透過してフィルムリール中の異物を検知すると、フィルムリール中の微小な異物は場所によっては検出されないこともある。また、厚み方向のどの位置に存在しているか分からずに、検出結果からは実際の異物の大きさの特定は困難であった。
(FODが大きい場合における、フィルムリール表裏からの放射線透過検査方法)
従来技術においてフィルムリール10の検出器26側の側端部にある大きさが100μmの異物41を検出可能とするためには、FODをそのままとした場合にはFIDを上記の条件よりも長くする必要がある。このことは、検出器26側でのX線強度の低下をもたらすことになり、X線の照射積算時間を長くする必要があり、測定時間が長くなってしまう。
さらに、FIDが長くなると、放射線の広がりが検出器26の面積より大きくなり、検出器26に入射するX線の広がりが狭くなる。1回のX線ショットで異物検出を行なえる測定範囲も狭くなり、そのため、フィルムリール10の全体の検査のためのX線ショット数も増え、さらに測定時間が長くなる。一方、検出器26側に付着した100μmの大きさの異物41を検出可能とするにあたって、FIDを既述の条件にする場合には、FODを小さくすることになるが、その場合にはFODはゼロ以下に設定できないので厚さTが大きなフィルムリール10を測定できなくなってしまう。
図3は、本発明に基づく放射線透過検査方法の原理を説明する図であり、図3(a)は従来法による検査を、図3(b)は本発明に基づく検査を示している。図2に示したものと同じ厚さTが60mmであるフィルムリール10を検査対象物として、大きさが100μm以上の異物を検出することとする。図2を用いた説明から明らかなように、検出器26の側の異物の検出の方が難しいから、図3(a)に示す従来法では、検出器26の側の側端部にある大きさ100μmの異物の検出を可能にするために(すなわち検出器26側の側端部での検出感度を100μmとして)、FODを15mmにしている。このとき、フィルムリール10の放射線源21側の側端部については、検出感度20μmで異物41の検出が可能である。すなわち、この例では、検出感度が20μmと100μmとの間でばらつき、感度ムラが大きい。
また、X線の広がりを考慮すると、1ショットの検査で、放射線源21側の側端部では例えば視野が3.5mm×2mmの領域について異物の41検出を行うことができ、検出器26側の側端部では視野が17.5mm×10mmの領域について異物41の検出を行うことができる。フィルムリール10の全体にわたって異物41の検査を行なうためには、最小視野(放射線源21側の側端部でのX線の視野)に基づいて、図示破線で示すようにフィルムリール10をくまなく走査してX線を照射する必要がある。
一方、図3(b)に示す本発明に基づく方法では、1回のX線ショットでは、フィルムリール10の放射線源21側の側端部Aからフィルムリール10の厚さ方向の中間位置C(一点鎖線)までの領域にある大きさが100μm以上の異物41を検出する。そして、図示していないが、中間位置Cからの領域は、もう一方の面から放射線を照射して検出を行う。放射線源21や検出器26、FIDなどが図3(a)の場合と同じであるとして、フィルムリール10の厚さ方向における中間位置Cにて大きさが100μmの異物41を検出できればよいから、FODを45mmとすることができる。
このとき、放射線源21側の側端部Aでの検出感度は60μmであり、視野は10.5mm×6mmとなる。厚さ方向の中間位置Cでの検出感度は100μmであって視野は17.5×10mmとなる。検出感度は60μmと100μmとの間でばらつくが、図3(a)の場合に比べ、ばらつきは大幅に小さくなっている。このときの最小視野は10.5×6mmであり、図3(a)に示す従来の場合と比べ、面積比で9倍となる。従って、本発明の手法では、従来の手法と比べて、9倍もの速度で検査できる。
ところで、図3(b)に示す方法においてフィルムリール10の厚さ方向における中間位置Cと検出器26側の側端部Bとの間の領域では検出感度が100μmよりも悪くなっている。そのため、大きさが100μm以上の異物41を確実に検出するにあたって、本発明では、放射線源21と検出器26とからなる測定部、つまり、第1の検査工程部に対し、フィルムリール10を相対的に裏返し、検査できなかった領域が放射線源21側を向くようにし、再度、放射線透過検査を行なう(第2の検査工程)。結局、本発明の方法では、フィルムリール10に対し、その一方の側端部Aの側から放射線を照射する第1の異物検知工程と、他方の側端部Bの側から放射線を照射する第2の異物検知工程とを実施する。
測定にかかる時間であるが、本発明では、単一の異物検知工程ですべての異物41の検出を行なおうとする図3(a)の場合に比べ、最小視野の面積が9倍となっているから、2回の異物検知工程を行なうことを考慮しても、X線のショット回数を約1/5(2/9)とすることができる。すなわち、本発明では、従来知られている技術に基づいた手法と比べて、短時間での異物検出が可能となる。放射線源21と検出器26とからなる測定部を相互に干渉しないように2組用意し、一方の測定部ではフィルムリール10の一方の側端部Aから放射線を照射し、他方の測定部では他方の側端部Bから放射線を照射すれば、第1の異物検知工程と第2の異物検知工程とを同時に進行させることも可能である。これにより、フィルムリール10の全面を検査するために必要な時間をさらに短縮できる。また、図3(b)に示す方法では、図3(a)の手法と比べて感度ムラを軽減するので、その分、厚さの大きなフィルムリール10の検査も可能になる。また、フィルムリール10を放射線源21から大きく離間させることができる。従って、検査を実行可能なフィルムリール10の種類も増加する。
(表裏からの放射線透過検査による異物位置と大きさについて)
ところで、図3(b)を用いて説明した本発明に基づく放射線透過検査方法の場合、フィルムリール10に対して一方の側端部Aから放射線を照射したときと他方の側端部Bから放射線を照射したときに同じ異物41を検出することがある。その場合、異物41の厚さ方向の位置と大きさとを求めることができる。図4は、そのような場合において、異物41の厚さ方向の位置と大きさを求める処理を説明する図である。
図4(a)に示すフィルムリール10は、その一方の側の側面を側端部A(符号14)とし、他方の側の側面を側端部B(符号15)とする。そして、第1の放射線源21から照射され、前記フィルムリール10の側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器26で検出し、異物41についての情報を得ている。異物41は検出器26に像42を投影するが、その像42の位置は検出器26の特定の位置情報として記録される。たとえば、XY座標にて異物の位置がマップ化される。そして、第1の放射線源21と第1の検出器26間または側端部A間の距離、すなわちFIDとFODを固定して、フィルムリールの側面内を走査させ、フィルムリール全体における異物41の座標情報が得られる。
走査方法は、第1の放射線源21と第1の検出器26をXYの2軸に移動させてもよいし、フィルムリールの半径方向に移動させながらフィルムリールを回転させてもよい。走査はステップ状に行い、検査に必要な所定の放射線量を照射した後、照射面積が重ならないように一定距離を移動させてもよい。また、ごく低速で連続移動させながら、フィルムリールの側面の位置として記録させてもよい。1回あたりの照射面積が小さければ、照射回数が増える。このように走査することで、フィルムリールの側面における異物の位置と像42の大きさA1が得られる。なお、像42の大きさは、金属異物等によって放射線が遮蔽されて放射線が小さくなっているので、その画素数をカウントする方法を用いることが好ましい。
図4(b)は、フィルムリール10の検査を、図4(a)とは反対側の面(裏面)から実施する。ここでは、第2の放射線源22から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器27で検出し、異物についての情報を得ている。異物41は、検出器27に像42を投影するが、その像42の位置は検出器27の特定の位置情報として記録される。たとえば、異物の位置がXY座標のマップに表示される。そして、第1の放射線源21と第1の検出器27と同じように、FIDとFODを固定して、フィルムリールの側面内を走査させ、フィルムリール全体における異物41の座標情報が得られる。また、像42の大きさA2が得られる。
図4(a)と図4(b)における異物41は同じであるので、フィルムリールの側面内の位置情報(たとえばXY座標)が同じとなる。しかし、各放射線源21、22との距離の関係から、第1の検出器26と第2の検出器27における、像42の大きさA1とA2は異なってくる。
ここで、FIDとFODの比および検出感度(検出可能な最小の大きさ)について、第1の異物検知工程と第2の異物検知工程を比較しながら説明する。第1の異物検知工程は、第1の放射線源21と第1の検出器26を含み、フィルムリールの側端部Aから側端部Bの向きに放射線を透過させて検査を行う。第2の異物検知工程は、第2の放射線源22と第2の検出器27を含み、フィルムリールの側端部Bから側端部Aの向きに放射線を透過させて検査を行う。
第1の異物検知工程と第2の異物検知工程のFIDとは距離が等しくなるように調整してある。そして、第1の異物検知工程と第2の異物検知工程のFODとは距離が等しくなるように調整してある。ただし、第1の異物検知工程では、放射線源21と側端部Aとの距離であり、第2の異物検知工程では、放射線源22と側端部Bとの距離である。前述のとおり、図4(a)及び図4(b)の一例においては、FIDは200mmであり、FODは45mmである。
第1の異物検知工程と第2の異物検知工程のそれぞれの検出感度と感度ムラについては、前述のとおりである。
(検出感度)第1の異物検知工程における側端部Aおよび第2の異物検知工程における側端部Bの厚み方向の距離においては約90μm以上の異物が検出可能であり、フィルムリール(厚みTが60mm)の中央位置では約150μm以上が検出可能であり、さらに、第1の異物検知工程における側端部Bおよび第2の異物検知工程における側端部Bの厚み方向の距離においては約210μm以上が検出可能である。
そして、各検出器に投影された像42の大きさについては、100μm角の異物が第1の異物検知工程における側端部Aおよび第2の異物検知工程における側端部Bの厚み方向の距離にあるとき約4.44倍の444μm角、フィルムリール(厚みTが60mm)の中央位置にあるとき約2.67倍の267μm角、さらに、第1の異物検知工程における側端部Bおよび第2の異物検知工程における側端部Bの距離にあるとき約2.11倍の211μm角となる。
フィルムリール10の中に実寸がaである異物41が存在するものとし、フィルムリール10の厚さ方向における中間位置Cから異物41までの距離をzとする。フィルムリール10の厚さは上述のようにTである。フィルムリール10に対して一方の側端部側からX線を照射する場合と他方の側端部側からX線を照射する場合における、異物41による検出器26での像42の大きさをそれぞれA1,A2とする。A1≧A2を仮定しても一般性は失われないから、A1≧A2とする。すると異物41は、フィルムリールの厚み方向の中間位置Cから見て、像の大きさがA1であるときの放射線源21の方向にzだけ離れた位置に存在することになる。図4(a)に示すように、像42の大きさがA1であるときの投影倍率A1/aと、図4(b)に示すように、像42の大きさがA2であるときの投影倍率A2/aは、それぞれ、式(1), (2)によって表される。
1/a=FID/(FOD+T/2-z) (2)
/a=FID/(FOD+T/2+z) (3)
式(2), (3)から、式(4), (5)に示すように、異物41の実寸aと中間位置Cからの距離zを求めることができる。
z=(A-A)/(A+A)×(FOD+T/2) (4)
a=2×A×A/(A+A)×(FOD+T/2)/FID (5)
以上のとおり、フィルムリールの両側面からそれぞれ放射線を入射させる第1の異物検知工程と第2の異物検知工程を用いて異物情報を得ることで、フィルムリール10の厚み方向の距離と実際の異物の大きさを求めることができる。このことは、フィルムリール中に混入する異物の判定において、厚み方向の距離、すなわちフィルムリール中におけるフィルム幅方向の存在位置によらず、異物の実際の大きさが分かるので、たとえば問題となる異物の大きさを超えているかどうかが判定可能となり、検査精度が向上できる。
このようにフィルムリールの両側面から放射線を入射させ、第1の異物検知工程と第2の異物検知工程を含む検査を行う場合、フィルムリールの両側面の放射線源から検査対象物までの距離は、少なくともフィルムリールの厚み(T)の半分までの厚みに存在する異物が検知しやすい条件とすることが好ましい。すなわち、放射線源から異物までの最大距離は、FOD+1/2T(ここで、Tはフィルムリールの厚みを表す)である。検出感度は、放射線源からの距離が小さいほど高いので、FOD+1/2TをFIDで除した値が、0.5以下であることが好ましい。一方、放射線源からの距離が小さいほど感度ムラが大きくなるので、FODは20mm以上が好ましい。フィルムリールの厚み(T)によるが、FOD+1/2TをFIDで除した値は、T=60mmでは0.25以上が好ましく、T=40mmでは0.2以上が好ましい。すわなち、前述の式(1)を満たす条件が好ましい態様である。
0.2≦(T+2FOD)/2FID≦0.5・・・・(1)
また、検査時間に関して、フィルムリールの表裏から2回の測定を行うため、測定時間が2倍になる。1回あたりの測定面積を、2倍以上に大きくすると検査にかかる合計時間は短縮される。測定面積は、距離の2乗に比例する。FOD+1/2Tの距離に対応する測定面積とFODの距離に対応する測定面積の比、すなわち、(FOD+1/2T)/FODの比が、√2を超えることが好ましい態様である。
フィルムリール10のいずれかの一方の側端部からしか異物41を検出できなかった場合には、測定できた像42の大きさに基づいて、異物41の実寸を仮定すればよい。本発明に基づく放射線透過検査方法は、例えば、フィルムリール10に所定の大きさ以上の異物41が混入するときにそのフィルムリール10を不良品として排除するために用いられるので、このような実寸の仮定を行なったとしても、放射線透過検査を行なうことの意義が失われることはない。
図5は、第1の異物検知工程と第2の異物検知工程における、異物の検出有無を、フィルムリールの厚さ方向に対して示した特性図である。図2(b)に示すような構成(FID=200mm、FOD=20mm)を用いて、厚さが60mmであるフィルムリール10の検査を行なったときに、異物41の厚さ方向での位置と実寸とに応じ、その異物41が両方の側端部のいずれの側からのX線照射によっても検出可能である(「両方の側端部から検出可能」と記載)か、いずれか一方の側端部からのX線照射でしか検出されない(「片方の側端部からのみ検出可能」と記載)か、あるいは、どちらの側端部からのX線照射によっても検出されない(「いずれの側端部からも検出不可」)かを示している。
このように、第1の異物検知工程と第2の異物検知工程の検出において、放射線源と検出器をフィルムリールの側面上を走査させ、得られるそれぞれの異物欠点マップを重ね書きし、より微細な異物を検出可能となる。また、異物の大きさと位置の計算処理にかかる時間を短縮することができる。 なお、フィルムリール10においてX線の光軸に沿うように複数の異物41が存在する場合には、これらの異物41の像が重なってあたかも1つの異物しか存在しないように検出される場合がある。このような像の重なりは、X線の照射位置をわずかに、例えば上述した最小視野の半分よりもさらに狭い間隔で移動させることによって解消することができ、複数の異物41を独立して検出することができるようになる。しかしながら、異物の検出によって不良品と判定するために放射線透過検査を行なう場合には、このような異物の像42の分解を行なう必要はない。なお、像を分離するために、各放射線の光軸とフィルムリール側面への入射角度を、垂直ではなく光軸を斜めに斜光させてフィルムリールに入射させ異物を分離検出させてもよい。
以上説明した本発明に基づく放射線透過検査方法では、フィルムリール10における放射線源21側の側端部において規定される最小視角に応じて必要なX線ショット回数が定まり、検査時間が定まる。最小視角は、検査対象の厚さを薄くすれば大きくすることができるから、必要なX線のショット回数は最小視角による面積に反比例する。そこで、更に検査時間を短縮する場合には、フィルムリール10における中間位置Cと放射線源21側の側端部との間を厚さ方向に複数の領域に分け、領域ごとに異物41の検査を行なう、即ちFODの異なる複数回の検出走査を行うことが考えられる。同一方向からのX線の照射であるので、異物41の検出が重複することがあるが、その場合は、1個の異物41の検出でもって不良品として判断すればよい。
(フィルムリールの厚みが大きい場合について)
フィルムリールの厚みが大きいほど、フィルムリール中に混在する異物の検査は困難となる。図6は、厚さTが例えば120mmであるフィルムリール10を対象として、フィルムリール10の厚さ方向の中間位置Cから放射線源21側の側端部Dまでを厚さ方向にさらに2つの領域に分け、領域ごとに異物41の検査を行なうことを説明する図である。すなわち、フィルムリールを厚み方向に4分割して検査を行う方法である。これは、放射線源から検出器までの距離に対する放射線源から検査対象物までの距離の比率を大きくすることで、感度ムラを小さくするとともに、必要な(ここでは100μmの大きさ)異物を検出する検出感度が得られる。
フィルムリールの厚み方向における分割数として、ここでは、フィルムリール10の一方の側端部D(符号16)と中間位置Cまでの領域を2つに分割する場合を説明する。フィルムリール10の他方の側端部と中間位置Cまでの領域も2つに分割して同様に異物41の検出を行うことができる。実際には、フィルムリール10の一方の側端部側と他方の側端部側でそれぞれ厚さ方向に2つの領域に分割し、合計でフィルムリール10を厚さ方向に4つの領域に分割してそれぞれについて異物41の検査を行なうことが好ましい。ここで説明する考え方を適用すれば、フィルムリール10のいずれかの側端部と中間位置Cまでを3以上の領域に分割して領域ごとに異物41の検査を行なうことも可能である。
図6において、フィルムリール10の放射線源21側の側端部の位置がDで、側端部D(符号16)とフィルムリール10の厚さ方向の中間位置Cとの間の中点となる位置がEで示されている。フィルムリール10の厚さTが120mmであると仮定すると、側端部Dと位置Eとの間隔は30mmであり、位置Eと中間位置Cとの間隔も30mmである。図6(a)は、位置Eと中間位置Cとの間の領域における大きさが例えば160μm以上の異物41を検出するための放射線源21と検出器26との配置を示している。放射線源21と検出器26との間の離間距離FIDは200mmであり、放射線源21と放射線源21側の側端部Dの間の離間距離FODは20mmである。すると、図6(a)において表形式で示すように、中間位置Cにおける検出感度は160μmであり、位置Eにおける視野サイズは50mmである。X線の照射範囲が正方形であると、位置Eと中間位置Cとの間の異物41を検出するときの最小視野は50mm×50mmとなる。図6(a)において斜線のハッチングが付された領域は、50mm×50mmの最小範囲を使用して走査したときに大きさが160μmである異物を検出できる領域(検出感度が160μm未満である領域)である。図6に示されるように、側端部Dと位置Eの間の領域の一部においても大きさが160μmである異物41が検出可能となっている。側端部Dと位置Eの間の領域のうち、黒塗りで示された部分は、X線が照射されない未検査領域である。
図6(b)は、放射線源21側の側端部Dと位置Eとの間の領域における大きさが160μm以上の異物41を検出するための配置を示している。放射線源21と検出器26との間の離間距離FIDは、図6(a)の場合と同じく200mmであり、放射線源21と放射線源21側の側端部Dとの間の離間距離FODは50mmである。すなわち、図6(a)の場合と比べ、FIDは同じであるがFODが30mm増加している。このとき、位置Eにおける検出感度は160μmであり、位置Dにおける視野サイズは50mmであり、正方形の照射野を仮定すれば側端部Dと位置Eとの間の異物41を検出するときの最小視野は50mm×50mmとなる。図6(b)において斜線のハッチングが付された領域は、50mm×50mmの最小視野を使用して走査したときに大きさが160μmである異物41を検出できる領域(検出感度が160μm未満である領域)である。
図6を用いて説明した方法では、50mm×50mmの視野を用いる走査を2回行っている。これに対し、ここで示した機器構成を使用して、側端部Dと中間位置Cとの間の、大きさが160μm以上の異物41を一回の検査で検出しようとすると、図6(a)の場合と同様にFODを20mmとする必要があり、このとき、側端部Dでの視野サイズは20mmであるので、20mm×20mmの視野を用いる走査を1回行う必要がある。50mm×50mmの視野の面積は2500mm2であって、20mm×20mmの視野の面積である400mm2よりも6倍以上広いので、図6を用いて説明した方法の方が、走査を2回行うとしても、側端部Dと中間位置Cとの間の異物を1回の走査で検出する場合に比べて全体としての測定時間を短縮することができる。
さらに、図6(a)と図6(b)において、側端部D(符号16)からフィルムリールの中間位置Cまでについて説明したが、他方の側端部からフィルムリールの中間位置Cまでについても同様に検査することが好ましい。このとき、第1の異物検知工程と第2の異物検知工程のほかに、第3の異物検知工程と第4の異物検知工程を含むことが好ましい。第3の異物検知工程には第3の放射線源23と第3の検出器28を含み、第4の異物検知工程には第4の放射線源24と第3の検出器29を含むように構成する。そして、第3の異物検知工程と第4の異物検知工程のFIDとFODについては、第1と第2の異物検知工程とは別の値で、かつ、FIDおよびFODが同じ値なるように調整する。フィルムリールの両側面から、2セットの異物検知工程を用いて、フィルムリールの厚み方向全体をカバーする検査方法が提供される。
(異物について)
本発明を用いて検出可能な異物の材質としては、例えば金属(Cu、SUS、Feなど)およびそれらの酸化物、シリカ等を挙げることができるが、異物のない箇所を透過したX線強度(ばらつき含む)に比べて、異物のある箇所を透過したX線強度に有意差があれば(=S/N比が高ければ)上記に限らず検出可能である。なお一般的に、異物の比重が大きいほど透過後のX線強度は小さく、S/N比が高くなり検出しやすい傾向にある。また、厚さTが大きいほどフィルム透過後のX線強度ばらつきは積算され大きくなるため、同一異物でもS/N比は小さくなり検出しにくくなる傾向にある。
(放射線透過検査装置の第1の実施形態)
次に、上述した放射線透過検査方法を実施するために用いられる放射線透過検査装置について説明する。図7は、放射線透過検査装置の第1の実施形態を示す図であって、(a)は平面図、(b)は正面図である。コア11の外周面に長尺のフィルムが複数周巻回されたフィルムリール10を検査対象物として取り外し可能に保持する保持部46が設けられている。保持部46は、コア11の中心軸13が水平となるように、コア11を介してフィルムリール10を保持する。保持部46には、フィルムリール10を中心軸13の周りで回転させるための回転駆動部47も設けられている。
フィルムリールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、フィルムリール10の一方の側端部を臨む位置にフィルムリール10に向けてX線を照射する放射線源21が設けられ、フィルムリール10の他方の側端部を臨む位置であって放射線源21からのX線の光軸31の延長上には、フィルムリール10を透過したX線を検出する検出器26が設けられている。放射線源21と検出器26によって第1の測定部が構成されている。つまり、第1の測定部は、前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第1の放射線源と、側端部Bから出射した放射線を検出する第1の検出器とからなる。同様に、フィルムリール10の他方の側端部を臨む位置であって第1の検出器21から離間した位置にはフィルムリール10に向けてX線を照射する放射線源22が設けられ、フィルムリール10の一方の側端部を臨む位置であって放射線源22からのX線の光軸31の延長上には、フィルムリールを透過したX線を検出する検出器27が設けられている。放射線源22と検出器27によって第2の測定部が構成されている。つまり、第2の測定部は、前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するよう配置された放射線を照射する第2の放射線源と、側端部Aから出射した放射線を検出する第2の検出器とからなる。
検出器26,27は、いずれも、イメージングプレートなどの二次元検出装置によって構成されている。第1の測定部でのX線の光軸31と第2の測定部でのX線の光軸31はいずれもコア11の中心軸13に平行であり、かつ、これらの光軸31とコア11の中心軸13は同一の水平面内にある。
以下の説明において、コア11の中心軸13に平行な方向をx方向と呼び、水平面内においてx方向に直交する方向をy方向と呼ぶ。放射線源21,22は、それぞれ、放射線源21,22の高さを保ったまま放射線源21,22を水平面内でx方向に移動させる調整ステージ51,52に取り付けられている。同様に検出器26,27は、それぞれ、検出器26,27の高さを保ったまま検出器26,27を水平面内でx方向に移動させる調整ステージ56,57に取り付けられている。第1の測定部において、調整ステージ51により放射線源21をx方向に移動させることによってFOD(放射線源とフィルムリール10の放射線源を向いた側端部との離間距離)を変化させることができ、調整ステージ51による放射線源21のx方向への移動及び調整ステージ56による検出器26のx方向への移動の少なくとも一方を行なうことで、FID(放射線源と検出器との離間距離)を変化させることができる。同様に第2の測定部についてもそのFID及びFODを調整することができる。調整ステージ51,52,56,57の移動量を制御する制御部50(図7(a)には不図示)が設けられており、制御部50は、第1の測定部におけるFID及びFODと第2の測定部におけるFID及びFODとが等しくなるように制御を行なうことが好ましい。
フィルムリール10での半径方向でのX線の照射位置を変化させるために、移動ステージ61,62(図7(b)には不図示)が設けられている。調整ステージ51,56は移動ステージ61に取り付けられており、移動ステージ61は、第1の測定部の放射線源21及び検出器26がそれぞれ取り付けられている調整ステージ51,56を一体的にy方向に移動させる。同様に、調整ステージ52,57が移動ステージ62に取り付けられており、移動ステージ62は、第2の測定部の放射線源22及び検出器27がそれぞれ取り付けられている調整ステージ52,57を一体的にy方向に移動させる。このとき、移動ステージ61,62は、フィルムリール10の中心(すなわちコア11の中心軸13の位置)から第1の測定部における放射線の光軸31までの距離と前記第2の測定部までの距離31とが常に同じとなるように相互に移動することが好ましい。
さらにこの放射線透過検査装置には、検出器26,27での検出結果に基づき、図4及び図5を用いて説明した原理によってフィルムリール10内の検出された異物の大きさを計算する処理部65が設けられている。
図7に示した放射線透過検査装置では、調整ステージ51,52,56,57によって第1の測定部及び第2の測定部のFID及びFIDを調整した上で、回転駆動部47によってフィルムリール10を回転させ、また、移動ステージ61,62によってフィルムリール10の半径方向でのX線の照射位置を変化させることにより、フィルムリール10に巻回されたフィルムの全体にわたって本発明に基づく放射線透過検査方法を実行することができる。この装置では、X線の照射方向が相互に逆向きの第1の測定部及び第2の測定部を用い、同時に放射線透過検査を行なうことにより、フィルムリール10の一方の側端部と他方の側端部、すなわち表面と裏面とを反転させることなく、短時間でフィルムリール10に巻回されたフィルムの全体にわたって異物の検査を行なうことができる。また、放射線源21(22)と検出器26(27)との間にはフィルムリール10以外のX線の透過を阻害あるいは減衰させる部材が設けられていないので、ノイズの影響を抑制しながら鮮明な画像を得ることができる。
(放射線透過検査装置の第2の実施形態)
図7を用いて説明した放射線透過検査装置では、フィルムリール10はコア11の中心軸13が水平となるように保持されていたが、中心軸13が垂直になるようにフィルムリール10を保持する構成とすることもできる。図8に正面図を示す放射線透過検査装置では、保持部46によって、コア11の中心軸13が垂直になるようにフィルムリール10が取り外し可能に保持されている。このとき、X線の光軸も垂直となるので、調整ステージを用いて放射線源21,22や検出器26,27の位置を調整することはできない。そこで図8に示す放射線透過検査装置では、第1の測定部に関し、C字状あるいはコの字状に形成された取り付け部材66の両端に、それぞれ調整部材71,76を介して放射線源21及び検出器26が相互に向かい合うように取り付けている。同様に第2の測定部に関し、C字状あるいはコの字状の取り付け部材67の両端に、それぞれ調整部材72,77を介して放射線源22及び検出器27が取り付けられている。調整部材71,72,76,77は、FID及びFODを調整するためのものであって、図7の装置と同様に制御部50(図8には不図示)によって制御される。そして、移動ステージ61,62がそれぞれ取り付け部材66,67をフィルムリール10の半径方向に移動させる。図8に示す放射線透過検査装置においても、図7に示した放射線透過検査装置と同様にしてフィルムリール10中の異物を検出することができる。また、検出器26,27での検出結果に基づいて異物の大きさを計算する処理部を設けてもよい。この例においても、放射線源21(22)と検出器26(27)との間にはフィルムリール10以外のX線の透過を阻害あるいは減衰させる部材が設けられていないので、ノイズの影響を抑制しながら鮮明な画像を得ることができる。従って、第2の実施形態では、保持部46としてフィルムリール10においてX線が透過する部分も含めて載置するテーブル状の部材を用いても良いが、その場合には検出器26(27)にテーブルの透過画像がバックグラウンド信号として検出されてS/N比の低下につながってしまうので、既述のようにフィルムリール10の中心軸13を保持する構成が好ましい。
(放射線透過検査装置の第3の実施形態)
図7に示した放射線透過検査装置は、放射線源21と検出器27からなる第1の測定部と、放射線源22と検出器27からなる第2の測定部との2つの測定部を備えている。しかしながら本発明に基づく放射線透過検査装置では、測定部の数をさらに増やして同時に異物検知工程を実行することにより、検査時間をさらに短縮することができる。図9は、図7に示す装置に対して2つの測定部を追加し、合計で4つの測定部を有する放射線透過検査装置を示している。図9では、放射線源と検出器との配置を明確にするために、フィルムリール10の一方の側端部側から見た側面図として、コア11を含むフィルムリール10と放射線源21~24と検出器26~29のみが示されている。図において破線で示されている要素は、フィルムリール10の他方の側端部側に位置しており、一方の側端部側から見た場合にはフィルムリール10に隠れて見えない要素である。
図9に示す放射線透過検査装置では、図7に示すように既に第1の測定部と第2の測定部が設けられているとして、フィルムリール10の一方の側端部を臨む位置であって放射線源21と第2の検出器27とから離間した位置に、フィルムリール10に向けてX線を照射する放射線源23が設けられている。フィルムリール10の他方の側端部を臨む位置であって放射線源23からのX線の光軸の延長上には、フィルムリール10を透過したX線を検出する検出器28が設けられている。放射線源23と検出器28によって第3の測定部が構成される。さらに、フィルムリール10の他方の側端部を臨む位置であって放射線源22及び検出器26,28から離間した位置に、フィルムリール10に向けて放射線を照射する放射線源24が設けられ、フィルムリール10の一方の側端部を臨む位置であって放射線源24からのX線の光軸の延長上には、フィルムリール10を透過したX線を検出する検出器29が設けられている。放射線源24と検出器29によって第3の測定部が構成される。第1の測定部、第2の測定部、第3の測定部及び第4の測定部は、同一のFIDを有するように構成されている。
特に図9に示す放射線検査装置では、各測定部が同一のFODを有して測定部ごとの走査範囲を狭くして全体としての検査時間を短くするようにしてもよい。しかしながらこの装置では、第1の測定部と第2の測定部が同一のFODを有し、第3の測定部は第1の測定部よりも大きなFODを有し、第4の測定部は第2の測定部よりも大きなFODを有するように構成することにより、図6を用いて説明した、側端部と厚さ方向の中間位置との間を厚さ方向に複数の領域に分割して異物を検出する方法を実施することが可能になる。
(放射線透過検査装置の第4の実施形態)
図7、図8及び図9に示した放射線透過検査装置は、放射線源と検出器からなる測定部を複数有する。しかしながら、複数の測定部を用いることができない場合もある。1つの測定部しか用いることができない場合には、フィルムリール10の一方の側端部からX線を照射する場合と他方の側端部からX線を照射する場合とを切り替える何らかの切り替え機構が必要である。図10は、1つの測定部と切り替え機構を備える放射線透過検査装置を示している。
コア11の中心軸13が水平となるようにコア11を介してフィルムリール10を取り外し可能に保持する保持部46が設けられている。保持部46には、フィルムリール10を中心軸13の周りで回転させるための回転駆動部47も設けられている。フィルムリール10の一方の側端部を臨む位置にフィルムリール10に向けてX線を照射する放射線源21が設けられ、フィルムリール10の他方の側端部を臨む位置であって放射線源21からのX線の光軸31の延長上には、フィルムリール10を透過したX線を検出する検出器26が設けられている。光軸31は、コア11の中心軸13と平行になるように設定されている。放射線源21と検出器26によって測定部が構成されている。ここでは、C字状あるいはコの字状に形成された取り付け部材66の両端に、それぞれ調整部材71,76を介して放射線源21及び検出器26が相互に向かい合うように取り付けている。調整部材71,76は、FID及びFODを調整するためのものである。光軸31の位置をフィルムリール10の半径方向で移動させるために、取り付け部材66を図示上下方向に移動させる上下移動部81が設けられ、取り付け部材66は、上下移動部81に対して吊り下げられるように接続している。さらに、コア11の中心軸13に垂直な軸の周りで放射線源21をフィルムリール10に対して相対的に180°回転させるために、切り替え部82が設けられている。例えば、切り替え部82は、放射線透過検査装置を設ける空間の天井に取り付けられ、上下移動部81の上端が切り替え部82に接続する。
図10に示した放射線透過検査装置では、調整部材71,76によってFOD及びFIDを調整した上で、回転駆動部47によってフィルムリール10を回転させ、また、上下移動部81によってフィルムリール10の半径方向でのX線の照射位置を変化させることにより、フィルムリール10に巻回されたフィルムの全体をX線で操作することができる。本発明に基づく放射線透過検査方法を実施するためには、フィルムリール10においてX線が入射する側を反転させなければならないが、そのためには、上下移動部81によって放射線源21や検出器26がフィルムリール10に機械的に干渉することがない位置にまで取り付け部材66を上方に引き上げ、そののち、切り替え部82によって取り付け部材66の向きを水平面内で180°回転させ、回転後、再び取り付け部材66を下降させて次の照射を行なうようにすればよい。
図10に示した放射線透過検査装置は、放射線源と検出器とをそれぞれ1つしか必要としないので、放射線源や検出器のコストが問題となるときには有効な装置である。
(微多孔膜の製造方法)
次に、上述した放射線透過検査方法によっての良否を判定する微多孔膜の製造方法について説明する。微多孔膜としてポリオレフィン微多孔膜を製造する場合、まず、ポリオレフィン樹脂に流動パラフィンなどの可塑剤を添加して二軸押出機などによりこれらを溶融混練し、ポリオレフィン溶液を得る。そして、T型ダイなどの口金を用いてポリオレフィン溶液を吐出し、キャスト冷却装置などによって冷却してゲル状シートを得る。ゲル状シートを機械方向(MD)及び幅方向(TD)に延伸して延伸シートとし、その後、洗浄溶剤などを用いて延伸シートから可塑剤を溶解除去することにより、微多孔膜フィルムを得る。ポリオレフィン溶液の吐出から可塑剤の溶解除去までの連続工程で実行することによって、微多孔膜フィルムは長尺のフィルムとして得られるから、この微多孔膜フィルムをコア11の外周面に巻回することによって、フィルムリール10が得られる。その後、上述した放射線透過検査方法のいずれか1つを実施してフィルムリール10に含まれる異物の検査を実施する。検査の結果、合格品と判定されたものが出荷される。
本発明の検査方法を適用する製造工程は、ポリオレフィン製バッテリーセパレータフィルムに限られず、コーティングセパレータ、不織布製バッテリーセパレータ、コンデンサ用フィルム、MLCC離型用フィルム、高精度ろ過用途として用いられるポリオレフィン微多孔フィルム等の製造工程にも好適である。
10 フィルムリール
11 コア
12 フィルム
13 コアの軸
14 フィルムリールの側端部A
15 フィルムリールの側端部B
16 フィルムリールの側端部D
21 第1の放射線源
22 第2の放射線源
23 第3の放射線源
24 第4の放射線源
26 第1の検出器
27 第2の検出器
28 第3の検出器
29 第4の検出器
31 光軸
32 X線の照射範囲
41 異物
42 像
46 保持部
47 回転駆動部
50 制御部
51,52,56,57 調整ステージ
61,62 移動ステージ
65 処理部
66,67 取り付け部材
71,72,76,77 調整部材
81 上下移動部
82 切り替え部
C フィルムリールの厚み方向の中心位置
T フィルムリールの厚さ

Claims (18)

  1. コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とした放射線透過検査方法であって、リールの一方の側の側面を以下の側端部A、他方の側の側面を以下の側端部Bとして、
    第1の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器で検出し、異物についての情報を得る第1の異物検知工程と、
    第2の放射線源から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器で検出し、異物についての情報を得る第2の異物検知工程とを含む、放射線透過検査方法。
    側端部A:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、一方の側の側面を側端部Aと呼ぶ
    側端部B:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、他方の側の側面を側端部Bと呼ぶ
  2. 前記第1の放射線源と第1の検出器間の距離(FID)と、前記第2の放射線源と第2の検出器間の距離(FID)が等しく、かつ、
    第1の放射線源と側端部A間の距離(FOD)と、第2の放射線源と側端部B間の距離(FOD)が等しい、請求項1に記載の放射線透過検査方法。
  3. 前記FIDとFODが式(1)を充足することを特徴とする、請求項2に記載の放射線透過検査方法。
    0.2≦(T+2FOD)/2FID≦0.5・・・・(1)
    ここで、Tはフィルムリールの厚みを表す。
  4. 第1の異物検知工程から得られた異物情報と第2の異物検知工程から得られた異物情報とから、フィルムリール中に混入した異物の位置情報および異物の大きさを求める、請求項1乃至3のいずれか1項に記載の放射線透過検査方法。
  5. 前記第1の異物検知工程と前記第2の異物検知工程を同時に実行する、請求項1乃至4のいずれか1項に記載の異物の放射線透過検査方法。
  6. 第1の放射線源を第2の放射線源として使用する、請求項1乃至4のいずれか1項に記載の放射線透過検査方法。
  7. 第3の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第3の検出器で検出し、異物についての情報を得る第3の異物検知工程と、第4の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第4の検出器で検出し、異物についての情報を得る第4の異物検知工程をさらに備え、
    前記第3の放射線源と側端部A間の距離(FOD)および前記第4の放射線源と側端部B間の距離(FOD)が、前記第1の放射線源と側端部A間の距離(FOD)および前記第2の放射線源と側端部B間の距離(FOD)とは、異なる距離である、請求項2または3に記載の放射線透過検査方法。
  8. 前記第1の異物検知工程から得られた情報と前記第2の異物検知工程から得られた情報に基づき、異物の大きさを計算する工程をさらに有する、請求項1乃至6のいずれか1項に記載の放射線透過検出方法。
  9. コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とできる放射線透過検査装置であって、リールの一方の側の側面を以下の側端部A、他方の側の側面を以下の側端部Bとして、
    前記フィルムリールのコアを把持する保持部と、
    前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第1の放射線源と、側端部Bから出射した放射線を検出する第1の検出器とからなる第1の測定部と、
    前記第1の検出器から離間した位置に設けられて前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するように配置された第2の放射線源と、側端部Aから出射した放射線を検出する第2の検出器とからなる第2の測定部とを備えた、放射線透過検査装置。
    側端部A:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、一方の側の側面を側端部Aと呼ぶ
    側端部B:円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、他方の側の側面を側端部Bと呼ぶ
  10. 第1の測定部の放射線源と検出器の位置、および、第2の測定部の放射線源と検出器の位置を調整する調整部を備え、前記第1の放射線源と側端部A間の距離(FOD)および前記第2の放射線源と側端部B間の距離(FOD)が等しく、かつ、前記第1の放射線源と検出器間の距離(FID)および前記第2の放射線源と検出器間の距離(FID)が等しくなるように位置を調整する制御部をさらに備えた、請求項9に記載の放射線透過検査装置。
  11. 前記第1の測定部及び前記第2の測定部を前記フィルムリールの半径方向に移動させる移動部をさらに備える、請求項9または10に記載の放射線透過検査装置。
  12. 前記移動部は、前記フィルムリールの厚み方向の中心から第1の測定部までの距離と前記第2の測定部までの距離とが常に等しくなるように、前記第1の測定部及び前記第2の測定部を移動させる機構である、請求項11に記載の放射線透過検査装置。
  13. 前記フィルムリールの周方向に沿って放射線によって前記フィルムリールを走査できるように前記第1の測定部及び前記第2の測定部を前記フィルムリールの軸周りに相対的に回転させる回転機構を備える、請求項9乃至12のいずれか1項に記載の放射線透過検査装置。
  14. 前記第1の測定部により検出された検出結果と前記第2の測定部により検出された検出結果とに基づいて、検出された異物の大きさを計算する処理部をさらに備える、請求項9乃至13のいずれか1項に記載の放射線透過検査装置。
  15. 前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第3の放射線源と、側端部Bから出射した放射線を検出する第3の検出器とからなる第3の測定部と、
    前記第3の検出器から離間した位置に設けられて前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するように配置された第4の放射線源と、側端部Aから出射した放射線を検出する第4の検出器とからなる第4の測定部とをさらに備え、放射線源と検出器との離間距離をFIDとし、放射線源と前記フィルムリールの側端部Aとの離間距離をFODとして、
    第3の測定部のFIDは、前記第1の測定部のFIDと等しく、第3の測定部のFODは、前記第1の測定部のFODよりも大きく、かつ、第4の測定部のFIDは、前記第2の測定部のFIDと等しく、第4の測定部のFODは、前記第2の測定部のFODよりも大きく、かつ、第3の測定部のFODと第4の測定部のFODは等しい、請求項9に記載の放射線透過検査装置。
  16. コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とできる放射線透過検査装置であって、
    前記フィルムリールのコア把持する保持部と、
    前記フィルムリールの一方の側端部から入射し、リールを透過して他方の側端部から出射するよう配置された放射線を照射する放射線源と、他方の側端部から出射した放射線を検出する検出器とからなる測定部と、 前記コアの軸に垂直な軸の周りで前記フィルムリールを前記測定部の放射線源および検出器に対して相対的に180°回転させるように、前記測定部及び前記フィルムリールの少なくとも一方を移動させる切り替え部とを有する放射線透過検査装置。
  17. 長尺のフィルムをコアに捲回してフィルムリールを得る工程と、請求項1乃至8のいずれか1項に記載の放射線透過検査方法により前記フィルムリールに含まれる異物の検査を行う異物検知工程とを含む、フィルムリールの製造方法。
  18. 前記フィルムは、ポリオレフィン微多孔フィルムである、請求項17に記載のフィルムリールの製造方法。
JP2019567390A 2018-06-27 2019-06-26 放射線透過検査方法及び装置、並びに微多孔膜の製造方法 Active JP7283398B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018121994 2018-06-27
JP2018121994 2018-06-27
PCT/JP2019/025288 WO2020004435A1 (ja) 2018-06-27 2019-06-26 放射線透過検査方法及び装置、並びに微多孔膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2020004435A1 JPWO2020004435A1 (ja) 2021-05-13
JP7283398B2 true JP7283398B2 (ja) 2023-05-30

Family

ID=68985465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567390A Active JP7283398B2 (ja) 2018-06-27 2019-06-26 放射線透過検査方法及び装置、並びに微多孔膜の製造方法

Country Status (6)

Country Link
US (1) US20210181125A1 (ja)
EP (1) EP3816616A4 (ja)
JP (1) JP7283398B2 (ja)
KR (1) KR20210024438A (ja)
CN (1) CN112154322A (ja)
WO (1) WO2020004435A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192760B2 (ja) * 2019-12-24 2022-12-20 トヨタ自動車株式会社 異物検査方法および異物検査装置
WO2022044418A1 (ja) * 2020-08-26 2022-03-03 東レ株式会社 フィルム製品リールの放射線透過検査装置およびこれを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法
EP3964823A1 (en) * 2020-09-02 2022-03-09 FORCE Technology A device for testing a flat plate-shaped material
EP4213480A1 (en) * 2020-09-10 2023-07-19 Beamsense Co., Ltd. X-ray fluoroscope
WO2023189135A1 (ja) * 2022-03-31 2023-10-05 東レ株式会社 検査装置及び検査方法
KR102491254B1 (ko) * 2022-09-01 2023-01-27 주식회사 엘시스 피사체 결함 탐지를 위한 x선 촬영 위치 결정 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354215A (ja) 2003-05-29 2004-12-16 Ihi Aerospace Co Ltd 放射線透過非破壊検査装置
JP2009519457A (ja) 2005-12-16 2009-05-14 シーエックスアール リミテッド X線断層撮影検査システム
JP2010127702A (ja) 2008-11-26 2010-06-10 Kyocera Chemical Corp 絶縁性樹脂組成物中の金属粉異物の自動検知方法
JP2018092890A (ja) 2016-11-30 2018-06-14 住友化学株式会社 欠陥検査装置、欠陥検査方法、及びセパレータ捲回体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321039A (ja) 1986-07-15 1988-01-28 株式会社日立製作所 多線源ctスキヤナ
US5886772A (en) * 1996-02-17 1999-03-23 Sony Corporation Film processing apparatus
JP2912608B1 (ja) * 1998-03-27 1999-06-28 近畿コンクリート工業株式会社 コンクリート製品の非破壊検査方法
AU2008340164A1 (en) * 2007-12-25 2009-07-02 Rapiscan Systems, Inc. Improved security system for screening people
US20120314836A1 (en) * 2011-06-08 2012-12-13 Steven Winn Smith X-ray Shoe Inspection
JP6265658B2 (ja) 2013-08-27 2018-01-24 株式会社フジシールインターナショナル ラベル連続体の継ぎ目検知方法、及びラベル連続体
EP3213295B1 (en) * 2014-10-29 2022-09-07 Pirelli Tyre S.p.A. Method and apparatus for controlling production and feeding of semifinished products in a tyre building process
EP3311148B1 (en) * 2015-06-16 2023-06-21 Dylog Italia S.p.A. A non-destructive x-ray inspection machine, devices provided for such machine and method for operating the same
US20170283664A1 (en) * 2016-03-05 2017-10-05 Mitsubishi Chemical Corporation Adhesive film and process for producing the same
CN108132262A (zh) * 2016-11-30 2018-06-08 住友化学株式会社 缺陷检查装置、缺陷检查方法及隔膜卷绕体的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354215A (ja) 2003-05-29 2004-12-16 Ihi Aerospace Co Ltd 放射線透過非破壊検査装置
JP2009519457A (ja) 2005-12-16 2009-05-14 シーエックスアール リミテッド X線断層撮影検査システム
JP2010127702A (ja) 2008-11-26 2010-06-10 Kyocera Chemical Corp 絶縁性樹脂組成物中の金属粉異物の自動検知方法
JP2018092890A (ja) 2016-11-30 2018-06-14 住友化学株式会社 欠陥検査装置、欠陥検査方法、及びセパレータ捲回体の製造方法

Also Published As

Publication number Publication date
JPWO2020004435A1 (ja) 2021-05-13
KR20210024438A (ko) 2021-03-05
WO2020004435A1 (ja) 2020-01-02
EP3816616A4 (en) 2022-03-23
EP3816616A1 (en) 2021-05-05
US20210181125A1 (en) 2021-06-17
CN112154322A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
JP7283398B2 (ja) 放射線透過検査方法及び装置、並びに微多孔膜の製造方法
JP5469839B2 (ja) 物体表面の欠陥検査装置および方法
WO2013118386A1 (ja) X線検査装置、検査方法およびx線検出器
JP7218723B2 (ja) 異物の検査方法、検査装置、フィルムロール及びフィルムロールの製造方法
US11041818B2 (en) Dimensional X-ray computed tomography system and CT reconstruction method using same
US10379066B2 (en) X-ray transmission inspection apparatus
JP2000058410A (ja) 走査型荷電粒子線応用装置ならびにそれを用いた顕微方法および半導体装置製造方法
JP2003294655A (ja) タイヤのx線検査方法及びその装置
JPH01235839A (ja) 透過線像を作製するための装置及び方法
JP2021071383A (ja) バッテリ検査方法
JP6729801B2 (ja) 検査装置、検査方法および検査対象物の製造方法
CN111649704A (zh) 一种基于x射线的珍珠层厚度测量装置及测量方法
US20200003702A1 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP2006349351A (ja) 3次元微細形状測定方法
WO2022044418A1 (ja) フィルム製品リールの放射線透過検査装置およびこれを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法
CN212432076U (zh) 一种基于x射线的珍珠层厚度测量装置
JP2006177760A (ja) X線検査装置、x線検査方法およびx線検査プログラム
CN117826519A (zh) 射线检测双胶片一次曝光方法及装置
JP6921578B2 (ja) 表面異物検出装置およびそれを用いた表面異物検出方法
JP2017203752A (ja) X線検査装置
CN117795624A (zh) 将被x射线照射的对象成像的成像光学配置
CN112666187A (zh) 电池检查方法
JP2021179393A (ja) 非破壊検査装置
JP2962489B2 (ja) レンズ系の偏心量測定方法および装置
JP2000088773A (ja) X線撮像による画像寸法計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7283398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151