WO2020004435A1 - 放射線透過検査方法及び装置、並びに微多孔膜の製造方法 - Google Patents

放射線透過検査方法及び装置、並びに微多孔膜の製造方法 Download PDF

Info

Publication number
WO2020004435A1
WO2020004435A1 PCT/JP2019/025288 JP2019025288W WO2020004435A1 WO 2020004435 A1 WO2020004435 A1 WO 2020004435A1 JP 2019025288 W JP2019025288 W JP 2019025288W WO 2020004435 A1 WO2020004435 A1 WO 2020004435A1
Authority
WO
WIPO (PCT)
Prior art keywords
side end
film reel
radiation
foreign matter
radiation source
Prior art date
Application number
PCT/JP2019/025288
Other languages
English (en)
French (fr)
Inventor
渡辺充
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980033727.0A priority Critical patent/CN112154322A/zh
Priority to JP2019567390A priority patent/JP7283398B2/ja
Priority to KR1020207027239A priority patent/KR20210024438A/ko
Priority to US17/046,523 priority patent/US20210181125A1/en
Priority to EP19824880.9A priority patent/EP3816616A4/en
Publication of WO2020004435A1 publication Critical patent/WO2020004435A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3416Sorting according to other particular properties according to radiation transmissivity, e.g. for light, x-rays, particle radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/652Specific applications or type of materials impurities, foreign matter, trace amounts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a radiographic inspection method and apparatus for inspecting foreign matter mixed in a film reel on which a film has been wound, and a method for manufacturing a microporous membrane including such a radiographic inspection method.
  • ⁇ ⁇ ⁇ ⁇ Films such as various polymer films are generally supplied as a film raw material in a state of being wound around a cylindrical core.
  • a foreign substance such as a small metal piece
  • the foreign substance may cause a defect in a product manufactured using the film.
  • the film unwound from a film reel is used as a battery separator film inserted between a positive electrode and a negative electrode of a lithium ion secondary battery
  • the foreign matter mixed into the film reel may be a small metal piece.
  • a short circuit between a positive electrode and a negative electrode in a lithium ion secondary battery is caused, or a metal piece is dissolved in an electrolytic solution to deteriorate battery characteristics.
  • Films such as battery separator films are polymer films, and foreign matter to be detected is metal.
  • As a method for detecting metal foreign matter in a film reel, radiation such as X-rays or ⁇ -rays is applied from the outside of the film reel, A radiation transmission inspection method for detecting, as an image, a shadow caused by a foreign substance that does not easily transmit radiation is an effective method.
  • Patent Document 1 does not relate to detection of foreign substances in a film reel, but a state in which a continuous label formed by joining two or more long label base materials with a metal connecting member is wound into a roll. There is a method to detect the number of seams by using. It discloses that X-rays are irradiated from the side end of the roll to detect the number of seams based on the difference in the amount of X-ray transmission between the label base portion and the connecting member portion.
  • an X-ray CT (computed tomography) method is known as a method for obtaining a spatial arrangement of an object using X-rays.
  • X-ray CT method X-rays are radiated from various directions to take an image, and a three-dimensional image is obtained by an image synthesis technique. Therefore, it takes a long time for measurement.
  • Patent Document 2 discloses a technique for shortening the measurement time by X-ray CT by arranging the same number of sources and detectors in the translational scanning direction and performing translational scanning between adjacent sources. It is disclosed that the distance of the translation scan is reduced and the measurement time is reduced.
  • an inspection object is arranged between an X-ray source and a detector such as an imaging plate, and spreads from the X-ray source in a conical shape or a pyramid shape around the optical axis (irradiation center axis).
  • X-rays are emitted as follows.
  • the field of view of the X-rays emitted from the X-ray source (if the inspection target is larger than the irradiation range, the X-ray source and the detector correspond to the inspection target so as to inspect the entire inspection target.
  • the inspection object has a thickness in the X-ray transmission direction
  • the size of the image on the detector depends on the position of the foreign matter of the same size in the thickness direction.
  • the detection sensitivity becomes uneven depending on the position of the foreign matter. This is because the size of the image of the foreign matter projected on the detector is closer to the X-ray source and farther from the detector. This is because the image is stretched and largely projected on the detector, and the detection sensitivity of the detector becomes detectable when the number of pixels of the image exceeds a predetermined value. Therefore, when the position of the foreign matter is close to the X-ray source, detection is easy. Detection sensitivity is improved, the detection difficult detection sensitivity is lowered when far from the X-ray source.
  • the ratio of the distance from the radiation source to the inspection target with respect to the distance from the radiation source to the detector may be increased.
  • the attenuation of X-rays may increase and the required sensitivity may not be obtained.
  • the size of the foreign matter detected varies depending on the position of the foreign matter in the thickness direction (this is referred to as sensitivity unevenness), and it is not possible to specify the position of the foreign matter in the inspection object and the actual size of the foreign matter. there were.
  • Inspection by X-ray CT can easily specify the shape and position of a foreign substance, but requires a complicated rotation mechanism and image processing system, and has a longer measurement time and processing time than X-ray transmission inspection. There is a problem that the time is much longer.
  • An object of the present invention is to provide an X-ray transmission inspection method and an X-ray transmission inspection method capable of reducing the influence of unevenness in detection sensitivity according to the position of a foreign substance and reliably detecting the foreign substance when performing an X-ray transmission inspection using a film reel as an inspection target.
  • An object of the present invention is to provide an apparatus and a method for manufacturing a microporous film manufactured by using the X-ray transmission inspection method.
  • the present invention relates to a radiation transmission inspection method for a film reel inspection in which a long film is wound around an outer peripheral surface of a core a plurality of times, wherein one side surface of the reel is a side end A and the other side is a side end.
  • the side surface of B is a side end B
  • Radiation emitted from a first radiation source, incident from the side end A of the film reel, transmitted through the reel, and emitted from the side end B is detected by the first detector, and information on foreign matter is detected.
  • a first foreign matter detection step of obtaining Radiation emitted from a second radiation source, incident from the side end B of the film reel, transmitted through the reel, and emitted from the side end A is detected by the second detector, and information on foreign matter is detected.
  • a second foreign matter detection step of obtaining a radiation transmission inspection method is provided to inspecting a radiation transmission inspection method.
  • the distance (FID) between the first radiation source and the first detector is equal to the distance (FID) between the second radiation source and the second detector
  • a radiation transmission inspection method characterized by satisfying the following expression (1): 0.2 ⁇ (T + 2FOD) /2FID ⁇ 0.5 (1)
  • T represents the thickness of the film reel.
  • radiation transmission is performed to obtain the position information and the size of the foreign matter mixed into the film reel from the foreign matter information obtained from the first foreign matter detecting step and the foreign matter information obtained from the second foreign matter detecting step. It is an inspection method.
  • the present invention is a radiation transmission inspection apparatus capable of inspecting a film reel in which a plurality of long films are wound around an outer peripheral surface of a core, wherein one side surface of the reel is a side end A and the other is a side end.
  • the side surface is defined as a side end portion B, and a holding portion for gripping the core of the film reel is arranged so that light enters from the side end portion A of the film reel, passes through the reel, and exits from the side end portion B.
  • a first measurement unit including a first radiation source for irradiating radiation, and a first detector for detecting radiation emitted from the side end B; and a first measurement unit provided at a position separated from the first detector.
  • a second radiation source arranged to enter from the side end B of the film reel, pass through the reel and exit from the side end A, and a second radiation source for detecting radiation emitted from the side end A.
  • a second measuring section comprising a detector of Providing permeation testing instrument.
  • an adjustment unit for adjusting the positions of the radiation source and the detector of the first measurement unit and the positions of the radiation source and the detector of the second measurement unit is provided, and the first radiation source and the side end A are adjusted. And the distance between the second radiation source and the side end B (FOD) is equal, and the distance between the first radiation source and the detector (FID) and the second radiation
  • a radiographic inspection apparatus further comprising a control unit for adjusting a position so that a distance (FID) between a source and a detector becomes equal.
  • the present invention provides a radiation transmission inspection apparatus further including a moving unit that moves the first measuring unit and the second measuring unit in a radial direction of the film reel.
  • the present invention provides a step of preparing a polyolefin solution by kneading a polyolefin resin and a plasticizer, a step of discharging a polyolefin solution from a die and cooling to obtain a gel-like sheet, and a step of stretching the gel-like sheet to form a stretched sheet.
  • a production process for a film reel comprising the steps of: winding a long film around a core to obtain a film reel; and thereafter, inspecting foreign matter contained in the film reel by the above-described radiation transmission inspection method. Is the way.
  • the film product reel is irradiated with radiation from the other side end toward each of the two side ends, so that in each irradiation, from the intermediate position in the thickness direction of the film product reel. It suffices if foreign matter can be detected in the region up to the side end on the irradiation side. This corresponds to the fact that the thickness of the film product reel to be inspected is substantially reduced by half from the viewpoint of radiation transmission inspection, so that sensitivity unevenness is reduced and the size of the image formed on the detector is enlarged. Therefore, it is possible to reliably detect the foreign matter.
  • FIG. 5 is a diagram illustrating sensitivity unevenness based on the position of a foreign substance in a thickness direction.
  • FIG. 5 is a diagram illustrating sensitivity unevenness based on the position of a foreign substance in a thickness direction.
  • FIG. 5 is a diagram illustrating sensitivity unevenness based on the position of a foreign substance in a thickness direction.
  • FIG. 7 is a diagram for explaining a process of obtaining a position and a size of a foreign substance in a thickness direction.
  • FIG. 4 is a diagram illustrating that a foreign object is detected by dividing a region between a side end and an intermediate position in a thickness direction into a plurality of regions in a thickness direction.
  • FIG. 4 is a diagram illustrating that a foreign object is detected by dividing a region between a side end and an intermediate position in a thickness direction into a plurality of regions in a thickness direction.
  • It is a top view showing a 1st embodiment of a radiographic inspection device.
  • It is a front view showing a 1st embodiment of a radiographic inspection device.
  • It is a front view showing a 2nd embodiment of a radiographic inspection device.
  • It is a side view which shows 3rd Embodiment of a radiographic inspection apparatus.
  • It is a front view showing a 4th embodiment of a radiographic inspection device.
  • Optical axis of X-ray source The central axis in X-ray irradiation.
  • the X-rays are emitted so as to spread in a conical or pyramid shape around the optical axis.
  • Field of view The range within which X-rays can be emitted. Expressed in area. The closer to the source, the narrower the field of view.
  • Irradiation range A range where X-rays are irradiated. This is a range in which X-rays spread in a conical or pyramid shape around the optical axis hit.
  • FIG. 1 shows the basic principle of a general radiation transmission inspection using a film reel 10 as an inspection object.
  • the film reel 10 has a central axis 13 in the length direction of a cylindrical core 11. Are shown as a cross section in a plane including, and hatching is partially omitted.
  • the film reel 10 is configured by winding a long film around the outer peripheral surface of the core 11 a plurality of times around the center axis 13 of the core 11 as a rotation axis.
  • Reference numeral 12 denotes a film layer wound on the outer peripheral surface of the core 11.
  • the surface of the film reel 10 facing the direction in which the central axis 13 of the core 11 extends is referred to as a side end of the film reel 10.
  • the side end portions are circular surfaces corresponding to both ends of the cylindrical film reel and are located on the side surfaces of the film reel. Therefore, one side surface is the side end portion A (reference numeral 14 in FIG. 1), and the other side surface is the other.
  • the side surface on the side is referred to as a side end B (reference numeral 15 in FIG. 1).
  • the dimension between both end parts in the length direction of the core 11 that is, the distance between the side end part A and the side end part B substantially matches the width dimension of the film wound around the core 11.
  • the side end of the film reel 10 is also a surface on which the side end in the width direction of the film wound around the core 11 is exposed.
  • T indicates the thickness of the film reel 10, which is equal to the width of the film wound around the core 11.
  • the direction parallel to the direction in which the central axis 13 of the core 11 extends is referred to as the thickness direction of the film reel 10.
  • a radiation source 21 such as an X-ray source is disposed at a position facing one side end of the film reel 10 in order to detect whether or not a foreign substance such as a small metal piece is mixed in the film reel 10. I have. In the following, it is assumed that X-rays are emitted from the radiation source 21, but other radiation such as ⁇ -rays may be used instead of X-rays.
  • the radiation source 21 can be generally considered as a point light source, from which a cone or pyramid is formed along the optical axis 31 such that the optical axis 31 is perpendicular to one side end of the film reel 10. X-rays are emitted so as to spread out.
  • reference numeral 32 indicates a range (irradiation range) in which the X-ray spreads.
  • the detector 26 including a two-dimensional X-ray detector such as an imaging plate is positioned so that the center position of the detector 26 is located on the extension of the optical axis 31.
  • the film reel 10 is disposed at a position facing the other side end. If there is a foreign substance such as a metal in the film reel 10, the X-ray is shielded by the foreign substance, so that the X-ray intensity at the position corresponding to the foreign substance in the detector 26 is reduced.
  • the position is a two-dimensional coordinate on a circular plane projected in that direction when the film reel is viewed from the side end face.
  • the distance between the radiation source 21 and the detector 26 is called FID (Focus to Image Distance).
  • FOD Fluorescence Detection Distance
  • the distance between the radiation source 21 and the radiation source 21 side end of the film reel 10 to be inspected is referred to as FOD (Focus to Object Distance).
  • FOD Fluorescence Detection Distance
  • the FOD is originally the separation distance between the radiation source 21 and the foreign matter to be detected, the position of the foreign matter is not known before the execution of the radiographic inspection.
  • the distance between the film reel 10 and the radiation source 21 side end is FOD.
  • the FID is 200 mm
  • the FOD is 20 mm
  • the thickness T of the film reel 10 is 60 mm.
  • X-rays are emitted along the thickness direction of the film reel 10 from the radiation source 21 at the upper part of the drawing to the detector 26 at the lower part of the drawing.
  • the projection magnification corresponds to a value obtained by dividing the size of the foreign substance image 42 by the actual size of the foreign substance 41, and the projection magnification is a value (FID / FOD) obtained by dividing FID by FOD.
  • FIG. 2 shows a case where a foreign substance 41 exists at the side end A (reference numeral 14 in FIG. 2) of the film reel 10 on the radiation source 21 side.
  • the size of the foreign substance which is the lower limit of the detection sensitivity, is determined as follows depending on the size of the image 42 that can be detected.
  • FIG. 2B shows a case where the foreign matter 41 exists at the center of the film reel 10 in the thickness direction. At this time, the separation distance between the radiation source 21 and the foreign matter 41 is 50 mm.
  • FIG. 2C shows a case where a foreign substance 41 exists at a side end B (reference numeral 15 in FIG. 2) of the film reel 10 on the detector 26 side. At this time, the separation distance between the radiation source 21 and the foreign matter 41 is 80 mm.
  • the projection magnification, the projection size of the detector 26 when the size of the foreign substance 41 is 100 ⁇ m, and the size of the image 42 Is 400 ⁇ m the size of the foreign matter 41, that is, the detection sensitivity (lower limit) can be obtained.
  • Table 1 shows the projection magnification, the projection size, and the detection sensitivity (lower limit).
  • the sensitivity unevenness is as large as 40 to 160 ⁇ m.
  • the detection sensitivity is 160 ⁇ m, a foreign substance having a size of 100 ⁇ m cannot be detected.
  • the projection size of the foreign material mixed in the film reel is obtained by multiplying the size of the foreign material by the projection magnification. That is, since the position of the foreign matter is unknown from the projection size, the size of the foreign matter cannot be specified.
  • the size of the foreign matter that can be detected is determined by the position of the foreign matter in the thickness direction, that is, the ratio of the foreign matter to the radiation source and the detector. Since the projection magnification is FID / FOD, the size of the image at the detector is proportional to FID and inversely proportional to FOD. Therefore, the detection sensitivity for foreign matter of the same size is inversely proportional to FOD.
  • the distance of the FID is set to 1
  • the position of the radiation source is set to 0
  • the position of the detector is set to 1
  • the thickness ratio of the film reel to be inspected is 0.3 to the distance of the FID (measurement range is 0).
  • (Width of .3) is as follows.
  • the thickness range of the film reel is 0.2 to 0.5.
  • the thickness range of the film reel is 0.5 to 0.8.
  • the detection sensitivity (detecting a minute foreign substance)
  • the measurement range in which foreign matter detection can be performed by one X-ray shot is narrowed, and therefore, the number of X-ray shots for inspecting the entire film reel 10 is increased, and the measurement time is further increased.
  • the FID is set to the above-described condition, the FOD is reduced. Since the value cannot be set to zero or less, the film reel 10 having a large thickness T cannot be measured.
  • FIGS. 3A and 3B are diagrams for explaining the principle of the radiographic inspection method according to the present invention.
  • FIG. 3A shows an inspection based on the conventional method
  • FIG. 3B shows an inspection based on the present invention.
  • the FOD is set to 15 mm in order to enable the detection of a foreign substance of 100 ⁇ m (that is, the detection sensitivity at the side end on the detector 26 side is set to 100 ⁇ m).
  • the foreign matter 41 can be detected with a detection sensitivity of 20 ⁇ m at the side end of the film reel 10 on the radiation source 21 side. That is, in this example, the detection sensitivity varies between 20 ⁇ m and 100 ⁇ m, and the sensitivity unevenness is large.
  • foreign matter 41 in one shot inspection, for example, foreign matter 41 can be detected in a 3.5 mm ⁇ 2 mm visual field at the side end on the radiation source 21 side, and the detector 26 side Can detect foreign matter 41 in an area having a field of view of 17.5 mm ⁇ 10 mm.
  • the film reel 10 In order to inspect the foreign matter 41 over the entire film reel 10, the film reel 10 is wrapped as shown by a broken line in the figure based on the minimum visual field (the X-ray visual field at the side end on the radiation source 21 side). It is necessary to scan and irradiate X-rays.
  • the intermediate position C in the thickness direction of the film reel 10 from the side end A of the film reel 10 on the radiation source 21 side.
  • a foreign substance 41 having a size of 100 ⁇ m or more in the region up to the dashed line) is detected.
  • the area from the intermediate position C is irradiated with radiation from the other surface to perform detection.
  • the radiation source 21, the detector 26, the FID, and the like are the same as those in FIG. 3A, it is sufficient that the foreign substance 41 having a size of 100 ⁇ m can be detected at the intermediate position C in the thickness direction of the film reel 10.
  • the FOD can be 45 mm.
  • the detection sensitivity at the side end A on the radiation source 21 side is 60 ⁇ m, and the field of view is 10.5 mm ⁇ 6 mm.
  • the detection sensitivity at the intermediate position C in the thickness direction is 100 ⁇ m, and the field of view is 17.5 ⁇ 10 mm.
  • the detection sensitivity varies between 60 ⁇ m and 100 ⁇ m, but the variation is much smaller than in the case of FIG.
  • the minimum visual field is 10.5 ⁇ 6 mm, which is 9 times the area ratio as compared with the conventional case shown in FIG. Therefore, with the method of the present invention, inspection can be performed nine times faster than the conventional method.
  • the detection sensitivity is lower than 100 ⁇ m in a region between the intermediate position C in the thickness direction of the film reel 10 and the side end B on the detector 26 side. Therefore, in order to reliably detect the foreign matter 41 having a size of 100 ⁇ m or more, in the present invention, the film reel 10 is moved relative to the measurement unit including the radiation source 21 and the detector 26, that is, the first inspection process unit. The area that could not be inspected is turned to the radiation source 21 side, and the radiation transmission inspection is performed again (second inspection step).
  • the first foreign matter detecting step of irradiating the film reel 10 with radiation from one side end A thereof and the second foreign matter detecting step of irradiating radiation from the other side end B side thereof are performed. And a second foreign matter detection step.
  • the time required for measurement is 9 times larger than that of the case of FIG. 3A in which all the foreign substances 41 are detected in a single foreign substance detection step. Therefore, the number of X-ray shots can be reduced to about 1/5 (2/9) even if two foreign particle detection steps are considered. That is, in the present invention, foreign substances can be detected in a short time as compared with a technique based on a conventionally known technique.
  • Two sets of measurement units including the radiation source 21 and the detector 26 are prepared so as not to interfere with each other.
  • One measurement unit irradiates radiation from one side end A of the film reel 10 and the other measurement unit performs irradiation.
  • the first foreign matter detecting step and the second foreign matter detecting step can be simultaneously performed.
  • the time required to inspect the entire surface of the film reel 10 can be further reduced.
  • the inspection of the film reel 10 having a large thickness can be performed accordingly. Further, the film reel 10 can be largely separated from the radiation source 21.
  • FIG. 4 is a diagram illustrating a process for obtaining the position and size of the foreign substance 41 in the thickness direction in such a case.
  • one side of the film reel 10 shown in FIG. 4A is a side end A (reference numeral 14), and the other side is a side end B (reference numeral 15).
  • the first detector 26 detects radiation emitted from the first radiation source 21, incident from the side end A of the film reel 10, transmitted through the reel, and emitted from the side end B. And information on the foreign substance 41.
  • the foreign matter 41 projects an image 42 on the detector 26, and the position of the image 42 is recorded as specific position information of the detector 26. For example, the position of the foreign matter is mapped on the XY coordinates.
  • the distance between the first radiation source 21 and the first detector 26 or between the side ends A, that is, FID and FOD are fixed, and the inside of the side surface of the film reel is scanned, and the foreign matter 41 on the entire film reel is removed.
  • the coordinate information is obtained.
  • the scanning method may be such that the first radiation source 21 and the first detector 26 may be moved in two axes of XY, or the film reel may be rotated while moving in the radial direction of the film reel.
  • the scanning may be performed stepwise, and after irradiating a predetermined radiation dose required for the inspection, the scanning may be performed by moving a predetermined distance so that the irradiation areas do not overlap.
  • recording may be performed as a position on the side surface of the film reel while continuously moving at a very low speed. If the irradiation area per one time is small, the number of times of irradiation increases.
  • the position of the foreign matter on the side surface of the film reel and the size A1 of the image 42 can be obtained. Note that the size of the image 42 is reduced because the radiation is shielded by a metal foreign matter or the like, and thus it is preferable to use a method of counting the number of pixels.
  • the inspection of the film reel 10 is performed from the surface (back surface) opposite to that of FIG. 4A.
  • the second detector 27 detects radiation emitted from the second radiation source 22, incident from the side end B of the film reel, transmitted through the reel, and emitted from the side end A. And information on foreign matter.
  • the foreign matter 41 projects an image 42 on the detector 27, and the position of the image 42 is recorded as specific position information of the detector 27. For example, the position of the foreign matter is displayed on the XY coordinate map.
  • the FID and the FOD are fixed, and the inside of the side surface of the film reel is scanned, so that the coordinate information of the foreign matter 41 on the entire film reel is obtained. Further, the size A2 of the image 42 is obtained.
  • the position information (for example, XY coordinates) on the side surface of the film reel is the same.
  • the sizes A1 and A2 of the image 42 in the first detector 26 and the second detector 27 differ from each other due to the relationship between the distances between the radiation sources 21 and 22.
  • the first foreign matter detection step includes the first radiation source 21 and the first detector 26, and performs inspection by transmitting radiation from the side end A to the side end B of the film reel.
  • the second foreign matter detection step includes the second radiation source 22 and the second detector 27, and performs inspection by transmitting radiation from the side end B to the side end A of the film reel.
  • the distance between the FID in the first foreign matter detection step and the FID in the second foreign matter detection step is adjusted to be equal.
  • the FOD in the first foreign matter detection step and the FOD in the second foreign matter detection step are adjusted so that the distances are equal.
  • the first foreign matter detection step it is the distance between the radiation source 21 and the side end A
  • the second foreign matter detection step it is the distance between the radiation source 22 and the side end B.
  • the FID is 200 mm and the FOD is 45 mm.
  • the respective detection sensitivities and sensitivity irregularities in the first foreign substance detection step and the second foreign substance detection step are as described above.
  • Detection Sensitivity Foreign matter of about 90 ⁇ m or more can be detected at the distance in the thickness direction between the side end A in the first foreign matter detection step and the side end B in the second foreign matter detection step, and the film reel (thickness T) Is about 150 ⁇ m or more at the center position of 60 mm), and the distance in the thickness direction between the side end B in the first foreign matter detection step and the side end B in the second foreign matter detection step is about 210 ⁇ m. The above is detectable.
  • the distance in the thickness direction between the side end A in the first foreign matter detection step and the side end B in the second foreign matter detection step is determined by the size of the 100 ⁇ m square foreign matter.
  • the film is at the center position of the film reel (thickness T is 60 mm), it is about 2.67 times 267 ⁇ m square.
  • the angle is 211 ⁇ m, which is about 2.11 times. It is assumed that a foreign substance 41 whose actual size is a exists in the film reel 10, and a distance from the intermediate position C in the thickness direction of the film reel 10 to the foreign substance 41 is z.
  • the thickness of the film reel 10 is T as described above.
  • the size of the image 42 on the detector 26 due to the foreign substance 41 when the film reel 10 is irradiated with X-rays from one side end and when the film reel 10 is irradiated with X-rays from the other side end is Let A 1 and A 2 . Since generality is not lost even if A 1 ⁇ A 2 is assumed, A 1 ⁇ A 2 is set. Then the foreign matter 41, when viewed from the intermediate position C in the thickness direction of the film reel, the size of the image will be present at a position distant by z in the direction of the radiation source 21 when an A 1. As shown in FIG.
  • the projection magnification A 2 / a at that time is expressed by equations (1) and (2), respectively.
  • a 1 / a FID / (FOD + T / 2-z) (2)
  • a 2 / a FID / ( FOD + T / 2 + z) (3)
  • the actual size a of the foreign matter 41 and the distance z from the intermediate position C can be obtained as shown in the equations (4) and (5).
  • the distance in the thickness direction of the film reel 10 and the actual foreign substance are obtained. Can be determined. This is because the actual size of the foreign matter can be determined irrespective of the distance in the thickness direction, that is, the existing position in the film width direction in the film reel, in the determination of the foreign matter mixed into the film reel. It is possible to determine whether or not the size exceeds the size, and the inspection accuracy can be improved.
  • the distance from the radiation source on both sides of the film reel to the inspection target is
  • the maximum distance from the radiation source to the foreign matter is FOD + 1 / 2T (where T represents the thickness of the film reel). Since the detection sensitivity increases as the distance from the radiation source decreases, the value obtained by dividing FOD + / T by FID is preferably 0.5 or less. On the other hand, since the sensitivity unevenness increases as the distance from the radiation source decreases, the FOD is preferably 20 mm or more.
  • the measurement time is doubled because the measurement is performed twice from the front and back of the film reel. If the measurement area per measurement is increased twice or more, the total time required for inspection is reduced.
  • the measurement area is proportional to the square of the distance.
  • the ratio of the measurement area corresponding to the distance of FOD + / T to the measurement area corresponding to the distance of FOD that is, the ratio of (FOD + / T) / FOD exceeds ⁇ 2.
  • the actual size of the foreign matter 41 may be assumed based on the measured size of the image 42.
  • the radiation transmission inspection method according to the present invention is used, for example, to remove the film reel 10 as a defective product when a foreign substance 41 having a predetermined size or more is mixed in the film reel 10. Even if assumptions are made, the significance of performing a radiographic examination is not lost.
  • FIG. 5 is a characteristic diagram showing, in the thickness direction of the film reel, the presence / absence of foreign matter detection in the first foreign matter detection step and the second foreign matter detection step.
  • the foreign substance 41 can be detected by X-ray irradiation from either side of both side ends (described as “detectable from both side ends”), or either one side It is detected only by X-ray irradiation from the end (described as “detectable from only one side end”) or is not detected by X-ray irradiation from either side end ("Either side end”). Section cannot be detected ”).
  • the radiation source and the detector are scanned on the side surface of the film reel, and the obtained foreign matter defect maps are overwritten, thereby obtaining a finer image.
  • Foreign matter can be detected. Further, it is possible to reduce the time required for calculating the size and position of the foreign matter.
  • the images of these foreign substances 41 may be overlapped and detected as if there is only one foreign substance. .
  • Such overlapping of the images can be eliminated by slightly moving the X-ray irradiation position, for example, at an interval smaller than half of the minimum visual field described above, and the plurality of foreign substances 41 are detected independently. Will be able to do it.
  • a radiation transmission inspection is performed to determine a defective product by detecting a foreign substance, it is not necessary to disassemble the image 42 of such a foreign substance.
  • the incident angle of each radiation on the optical axis and the side surface of the film reel is not perpendicular, but the optical axis may be obliquely obliquely incident on the film reel and the foreign matter may be separated and detected.
  • the required number of X-ray shots is determined according to the minimum viewing angle defined at the side end of the film reel 10 on the radiation source 21 side, and the inspection time is determined. Since the minimum viewing angle can be increased by reducing the thickness of the inspection object, the required number of X-ray shots is inversely proportional to the area based on the minimum viewing angle. In order to further reduce the inspection time, the area between the intermediate position C on the film reel 10 and the side end on the radiation source 21 side is divided into a plurality of areas in the thickness direction, and the inspection of the foreign matter 41 is performed for each area. It is conceivable to perform a plurality of detection scans with different FODs.
  • FIG. 6 shows a film reel 10 having a thickness T of 120 mm, for example, from the intermediate position C in the thickness direction of the film reel 10 to the side end D on the radiation source 21 side in two more regions in the thickness direction.
  • FIG. 7 is a diagram for explaining that a foreign substance 41 is inspected for each area.
  • this is a method in which the inspection is performed by dividing the film reel into four parts in the thickness direction. This is because by increasing the ratio of the distance from the radiation source to the inspection object to the distance from the radiation source to the detector, the sensitivity unevenness is reduced, and a necessary (here, 100 ⁇ m) foreign object is detected. Detection sensitivity is obtained.
  • the number of divisions in the thickness direction of the film reel a case where the region from one side end D (reference numeral 16) of the film reel 10 and the intermediate position C is divided into two will be described. The area from the other side end of the film reel 10 to the intermediate position C can also be divided into two and the foreign substance 41 can be detected in the same manner.
  • the film reel 10 is divided into two regions in the thickness direction at one side end and the other side end, respectively, and the film reel 10 is divided into four regions in the thickness direction in total. It is preferable to inspect the foreign substances 41 for each of them. By applying the concept described here, it is also possible to divide the film reel 10 up to any one of the side ends and the intermediate position C into three or more regions and to inspect the foreign matter 41 for each region.
  • FIG. 6 the position of the side end of the film reel 10 on the radiation source 21 side is D, which is the midpoint between the side end D (reference numeral 16) and the intermediate position C in the thickness direction of the film reel 10.
  • the position is indicated by E.
  • the thickness T of the film reel 10 is 120 mm
  • the distance between the side end D and the position E is 30 mm
  • the distance between the position E and the intermediate position C is also 30 mm.
  • FIG. 6A shows an arrangement of the radiation source 21 and the detector 26 for detecting a foreign substance 41 having a size of, for example, 160 ⁇ m or more in a region between the position E and the intermediate position C.
  • the separation distance FID between the radiation source 21 and the detector 26 is 200 mm, and the separation distance FOD between the radiation source 21 and the side end D on the radiation source 21 side is 20 mm. Then, as shown in a table format in FIG. 6A, the detection sensitivity at the intermediate position C is 160 ⁇ m, and the field size at the position E is 50 mm. When the X-ray irradiation range is a square, the minimum visual field when detecting the foreign substance 41 between the position E and the intermediate position C is 50 mm ⁇ 50 mm. In FIG.
  • a hatched area is an area where a foreign substance having a size of 160 ⁇ m can be detected when scanning using a minimum range of 50 mm ⁇ 50 mm (an area having a detection sensitivity of less than 160 ⁇ m). ).
  • a foreign substance 41 having a size of 160 ⁇ m can be detected even in a part of the region between the side end D and the position E.
  • the portion shown in black is an unexamined region not irradiated with X-rays.
  • FIG. 6B shows an arrangement for detecting a foreign substance 41 having a size of 160 ⁇ m or more in a region between the side end D on the radiation source 21 side and the position E.
  • the distance FID between the radiation source 21 and the detector 26 is 200 mm as in the case of FIG. 6A, and the distance FOD between the radiation source 21 and the side end D on the radiation source 21 side is: 50 mm. That is, as compared with the case of FIG. 6A, the FID is the same, but the FOD is increased by 30 mm.
  • the detection sensitivity at the position E is 160 ⁇ m
  • the visual field size at the position D is 50 mm
  • the minimum size for detecting the foreign matter 41 between the side end D and the position E is small.
  • the field of view is 50 mm ⁇ 50 mm.
  • a hatched area is an area in which a foreign substance 41 having a size of 160 ⁇ m can be detected when scanning is performed using a minimum visual field of 50 mm ⁇ 50 mm (detection sensitivity is less than 160 ⁇ m). Area).
  • the description has been given from the side end D (reference numeral 16) to the intermediate position C of the film reel, but from the other side end to the intermediate position C of the film reel. It is also preferable to inspect the same. At this time, it is preferable to include a third foreign matter detection step and a fourth foreign matter detection step in addition to the first foreign matter detection step and the second foreign matter detection step.
  • the third foreign matter detection step includes a third radiation source 23 and a third detector 28, and the fourth foreign matter detection step includes a fourth radiation source 24 and a third detector 29. I do.
  • the FID and FOD in the third foreign substance detecting step and the fourth foreign substance detecting step are adjusted so as to have different values from those in the first and second foreign substance detecting steps, and to have the same value in FID and FOD. I do.
  • An inspection method is provided that covers the entire film reel in the thickness direction using two sets of foreign object detection processes from both sides of the film reel. (About foreign substances)
  • Examples of the material of the foreign matter that can be detected by using the present invention include metals (Cu, SUS, Fe, and the like) and oxides thereof, silica, and the like.
  • FIGS. 7A and 7B are diagrams showing a first embodiment of the radiographic inspection apparatus, wherein FIG. 7A is a plan view and FIG. 7B is a front view.
  • a holding portion 46 is provided on the outer peripheral surface of the core 11 for detachably holding the film reel 10 around which a long film is wound a plurality of times as an inspection target.
  • the holding unit 46 holds the film reel 10 via the core 11 such that the central axis 13 of the core 11 is horizontal.
  • the holding section 46 is also provided with a rotation drive section 47 for rotating the film reel 10 around the central axis 13.
  • a radiation source 21 is provided, and an X-ray transmitted through the film reel 10 is detected at a position facing the other side end of the film reel 10 and on the extension of the optical axis 31 of the X-ray from the radiation source 21.
  • a detector 26 is provided. The radiation source 21 and the detector 26 constitute a first measurement unit.
  • the first measuring unit includes a first radiation source that emits radiation that is arranged to enter from the side end A of the film reel, pass through the reel, and exit from the side end B; And a first detector for detecting the radiation emitted from the part B.
  • a radiation source 22 for irradiating the film reel 10 with X-rays is provided at a position facing the other side end of the film reel 10 and separated from the first detector 21.
  • a detector 27 for detecting the X-ray transmitted through the film reel is provided at a position facing one side end of the X-ray 10 and on the extension of the optical axis 31 of the X-ray from the radiation source 22.
  • the radiation source 22 and the detector 27 constitute a second measurement unit.
  • the second measuring unit includes a second radiation source that emits radiation that is arranged to enter from the side end B of the film reel, pass through the reel, and exit from the side end A; And a second detector for detecting radiation emitted from the portion A.
  • Each of the detectors 26 and 27 is configured by a two-dimensional detection device such as an imaging plate. Both the optical axis 31 of the X-ray in the first measuring section and the optical axis 31 of the X-ray in the second measuring section are parallel to the central axis 13 of the core 11, and these optical axis 31 and the core The central axes 13 of 11 are in the same horizontal plane.
  • a direction parallel to the central axis 13 of the core 11 is called an x direction
  • a direction orthogonal to the x direction in a horizontal plane is called a y direction.
  • the radiation sources 21 and 22 are attached to adjustment stages 51 and 52 for moving the radiation sources 21 and 22 in the x direction in a horizontal plane while maintaining the heights of the radiation sources 21 and 22 respectively.
  • the detectors 26 and 27 are attached to adjustment stages 56 and 57 that move the detectors 26 and 27 in the x direction in a horizontal plane while maintaining the heights of the detectors 26 and 27, respectively.
  • the FOD (the distance between the radiation source and the side end of the film reel 10 facing the radiation source) can be changed by moving the radiation source 21 in the x direction by the adjustment stage 51.
  • FID separation distance between the radiation source and the detector
  • a control unit 50 (not shown in FIG. 7A) for controlling the amount of movement of the adjustment stages 51, 52, 56, 57 is provided.
  • the control unit 50 controls the FID and FOD in the first measurement unit. It is preferable to perform control so that FID and FOD in the second measurement unit are equal.
  • Moving stages 61 and 62 are provided to change the irradiation position of the X-rays on the film reel 10 in the radial direction.
  • the adjustment stages 51 and 56 are attached to a moving stage 61.
  • the moving stage 61 integrally adjusts the adjustment stages 51 and 56 to which the radiation source 21 and the detector 26 of the first measuring unit are attached, respectively, in the y direction.
  • the adjustment stages 52 and 57 are attached to the moving stage 62, and the moving stage 62 integrally integrates the adjustment stages 52 and 57 to which the radiation source 22 and the detector 27 of the second measuring unit are respectively attached. In the y direction.
  • the moving stages 61 and 62 move the distance from the center of the film reel 10 (that is, the position of the central axis 13 of the core 11) to the optical axis 31 of the radiation in the first measuring unit and the distance from the center to the second measuring unit. It is preferable to move mutually so that the distance 31 is always the same.
  • the radiation transmission inspection apparatus further includes a processing unit that calculates the size of the foreign matter detected in the film reel 10 based on the detection results of the detectors 26 and 27 based on the principle described with reference to FIGS. 65 are provided.
  • the FID and the FID of the first measurement unit and the second measurement unit are adjusted by the adjustment stages 51, 52, 56, and 57, and then the film drive 10 is rotated by the rotation drive unit 47. Is rotated, and the irradiation positions of the X-rays in the radial direction of the film reel 10 are changed by the moving stages 61 and 62, so that the radiation transmission inspection according to the present invention can be performed over the entire film wound on the film reel 10. The method can be performed.
  • the first measurement unit and the second measurement unit in which the X-ray irradiation directions are opposite to each other are used, and the radiation transmission inspection is performed at the same time, so that one side end of the film reel 10 and the other side end.
  • the foreign material can be inspected over the entire film wound on the film reel 10 in a short time without reversing the side end, that is, the front surface and the back surface.
  • the film reel 10 In the radiation transmission inspection apparatus described with reference to FIG. 7, the film reel 10 is held so that the central axis 13 of the core 11 is horizontal, but the film reel 10 is held so that the central axis 13 is vertical. It can also be configured. In the radiation transmission inspection apparatus whose front view is shown in FIG. 8, the film reel 10 is detachably held by the holding unit 46 such that the central axis 13 of the core 11 is vertical. At this time, since the X-ray optical axis is also vertical, the positions of the radiation sources 21 and 22 and the detectors 26 and 27 cannot be adjusted using the adjustment stage. Therefore, in the radiation transmission inspection apparatus shown in FIG.
  • the radiation source 21 and the radiation source 21 are attached to both ends of a mounting member 66 formed in a C-shape or a U-shape via adjusting members 71 and 76, respectively.
  • the detectors 26 are mounted so as to face each other.
  • the radiation source 22 and the detector 27 are attached to both ends of a C-shaped or U-shaped attachment member 67 via adjustment members 72 and 77, respectively.
  • the adjustment members 71, 72, 76, and 77 are for adjusting FID and FOD, and are controlled by the control unit 50 (not shown in FIG. 8), similarly to the apparatus of FIG.
  • the moving stages 61 and 62 move the mounting members 66 and 67 in the radial direction of the film reel 10, respectively.
  • foreign substances in the film reel 10 can be detected in the same manner as in the radiation transmission inspection apparatus shown in FIG.
  • a processing unit for calculating the size of the foreign matter based on the detection results of the detectors 26 and 27 may be provided.
  • no member other than the film reel 10 that hinders or attenuates the transmission of X-rays is provided between the radiation source 21 (22) and the detector 26 (27), so that the effect of noise is suppressed. It is possible to obtain a clear image while doing so.
  • a table-shaped member on which the X-ray is transmitted may be used as the holding unit 46 on the film reel 10, but in this case, the detector 26 (27) is used. Since the transmitted image of the table is detected as a background signal, which leads to a decrease in the S / N ratio, it is preferable to hold the central axis 13 of the film reel 10 as described above.
  • FIG. 7 shows a radiographic inspection apparatus in which two measuring units are added to the device shown in FIG. 7 and a total of four measuring units are provided.
  • the film reel 10 including the core 11 and the radiation sources 21 to 24 are shown in a side view as viewed from one side end of the film reel 10. Only detectors 26-29 are shown. The elements shown by broken lines in the figure are located on the other side end side of the film reel 10 and are hidden behind the film reel 10 when viewed from one side end side. .
  • a radiation source 23 that irradiates the film reel 10 with X-rays is provided at a position separated from the radiation source 21 and the second detector 27.
  • a detector 28 for detecting X-rays transmitted through the film reel 10 is provided at a position facing the other side end of the film reel 10 and on the extension of the optical axis of X-rays from the radiation source 23. .
  • the radiation source 23 and the detector 28 constitute a third measurement unit.
  • a radiation source 24 for irradiating the film reel 10 with radiation is provided at a position facing the other side end of the film reel 10 and separated from the radiation source 22 and the detectors 26 and 28,
  • a detector 29 for detecting the X-rays transmitted through the film reel 10 is provided at a position facing one side end of the reel 10 and extending along the optical axis of the X-rays from the radiation source 24.
  • the radiation source 24 and the detector 29 constitute a third measurement unit.
  • the first measuring unit, the second measuring unit, the third measuring unit, and the fourth measuring unit are configured to have the same FID.
  • each measurement unit may have the same FOD, narrow the scanning range of each measurement unit, and shorten the inspection time as a whole.
  • the first measuring unit and the second measuring unit have the same FOD
  • the third measuring unit has a larger FOD than the first measuring unit
  • the fourth measuring unit has the same FOD.
  • the radiation transmission inspection apparatus shown in FIGS. 7, 8, and 9 has a plurality of measurement units each including a radiation source and a detector. However, there are cases where a plurality of measurement units cannot be used. When only one measuring unit can be used, some switching mechanism is required to switch between X-ray irradiation from one side end of the film reel 10 and X-ray irradiation from the other side end. It is.
  • FIG. 10 shows a radiation transmission inspection apparatus including one measurement unit and a switching mechanism.
  • a holding portion 46 is provided for detachably holding the film reel 10 via the core 11 so that the central axis 13 of the core 11 is horizontal.
  • the holding section 46 is also provided with a rotation drive section 47 for rotating the film reel 10 around the central axis 13.
  • a radiation source 21 for irradiating the film reel 10 with X-rays is provided at a position facing one side end of the film reel 10, and is located at a position facing the other side end of the film reel 10, from the radiation source 21.
  • a detector 26 for detecting X-rays transmitted through the film reel 10 is provided on an extension of the optical axis 31 of the X-ray.
  • the optical axis 31 is set so as to be parallel to the central axis 13 of the core 11.
  • the radiation source 21 and the detector 26 constitute a measuring unit.
  • the radiation source 21 and the detector 26 are attached to both ends of a C-shaped or U-shaped attachment member 66 via adjustment members 71 and 76, respectively, so as to face each other.
  • the adjusting members 71 and 76 are for adjusting FID and FOD.
  • a vertical moving unit 81 for moving the mounting member 66 in the vertical direction in the figure, and the mounting member 66 is suspended from the vertical moving unit 81. Connected to be connected.
  • a switching unit 82 is provided to rotate the radiation source 21 by 180 ° relative to the film reel 10 about an axis perpendicular to the central axis 13 of the core 11.
  • the switching unit 82 is attached to the ceiling of the space where the radiation transmission inspection device is provided, and the upper end of the vertical moving unit 81 is connected to the switching unit 82.
  • the film reel 10 is rotated by the rotation driving unit 47, and the radius of the film reel 10 is By changing the X-ray irradiation position in the direction, the entire film wound on the film reel 10 can be operated by X-rays.
  • the side on which the X-rays are incident on the film reel 10 must be inverted.
  • the radiation source 21 and the detector 26 are moved by the vertical moving unit 81.
  • the mounting member 66 is pulled up to a position where the mounting member 66 does not mechanically interfere with the film reel 10. After that, the direction of the mounting member 66 is rotated by 180 ° in a horizontal plane by the switching unit 82, and after the rotation, the mounting member is again rotated. 66 may be lowered to perform the next irradiation.
  • the radiation transmission inspection apparatus shown in FIG. 10 requires only one radiation source and one detector, and is an effective apparatus when the cost of the radiation source and the detector becomes a problem.
  • a method for manufacturing a microporous film for determining the quality by the above-described radiation transmission inspection method will be described.
  • a plasticizer such as liquid paraffin is added to a polyolefin resin, and these are melt-kneaded by a twin-screw extruder or the like to obtain a polyolefin solution.
  • the polyolefin solution is discharged using a die such as a T-type die and cooled by a cast cooling device or the like to obtain a gel-like sheet.
  • the gel-like sheet is stretched in the machine direction (MD) and the width direction (TD) to form a stretched sheet, and then the plasticizer is dissolved and removed from the stretched sheet using a washing solvent or the like to obtain a microporous film. Since the microporous film is obtained as a long film by performing the continuous process from the discharge of the polyolefin solution to the dissolution and removal of the plasticizer, the microporous film is wound around the outer peripheral surface of the core 11. Thus, a film reel 10 is obtained. Thereafter, any one of the above-described radiation transmission inspection methods is performed to inspect for foreign substances contained in the film reel 10. As a result of the inspection, products determined to be acceptable products are shipped.
  • the production process to which the inspection method of the present invention is applied is not limited to a polyolefin battery separator film, but a coating separator, a nonwoven fabric battery separator, a film for a capacitor, a film for MLCC release, and a microporous polyolefin film used for high precision filtration. And the like.
  • Reference Signs List 10 Film reel 11 Core 12 Film 13 Core axis 14 Film reel side end A 15 Side end B of film reel 16 Film reel side edge D Reference Signs List 21 first radiation source 22 second radiation source 23 third radiation source 24 fourth radiation source 26 first detector 27 second detector 28 third detector 29 fourth detector 31 light Axis 32 X-ray irradiation range 41 Foreign matter 42 Image 46 Holding unit 47 Rotation driving unit 50 Control unit 51, 52, 56, 57 Adjustment stage 61, 62 Moving stage 65 Processing unit 66, 67 Mounting members 71, 72, 76, 77 Adjusting member 81 Vertical moving part 82 Switching part C Center position in the thickness direction of film reel T Thickness of film reel

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象物としてX線透過検査を行なうときに、異物の位置に応じた検出感度の差の影響を軽減して異物を確実に検出できる。 リールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、第1の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器で検出し、異物についての情報を得る第1の異物検知工程と、第2の放射線源から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器で検出し、異物についての情報を得る第2の異物検知工程と、を含む、放射線透過検査方法である。

Description

放射線透過検査方法及び装置、並びに微多孔膜の製造方法
 本発明は、フィルムを巻き取ったフィルムリールに混入する異物を検査する放射線透過検査方法及び装置と、このような放射線透過検査方法を含む微多孔膜の製造方法とに関する。
 各種のポリマーフィルムなどのフィルムは、一般に、フィルム原反として、円筒形状のコアに巻かれた状態で供給される。このようなフィルムリール中に微小な金属片などの異物が混入した場合には、異物は、フィルムを用いて製造される製品における不具合の原因となることがある。例えば、フィルムリールから巻出したフィルムをリチウムイオン二次電池の正極と負極との間に挿入されるバッテリーセパレータフィルムとして使用する場合、フィルムリール中に混入していた異物が微小な金属片であれば、リチウムイオン二次電池における正極と負極との間の短絡を引き起こしたり、金属片が電解液に溶解して電池特性を劣化させたりする。そこで、フィルムリールに微小な金属異物が混入しているか否かを検出する必要がある。バッテリーセパレータフィルムの製造における品質保証の観点からは、フィルムの製造途中よりも、最終製品であるフィルムリールにおいて異物の混入の有無を検査することが好ましい。
 バッテリーセパレータフィルムなどのフィルムはポリマーフィルムであり、検出したい異物は金属であるから、フィルムリール中の金属異物を検出する方法として、フィルムリールの外側からX線やγ線などの放射線を照射し、放射線が透過しにくい異物による影を画像として検出する放射線透過検査方法は有効な方法である。異物の検出に際しては、異物の有無に加えて、フィルムリール中における異物の存在位置を検出することも好ましい。
 特許文献1は、フィルムリール中の異物の検出に関するものではないが、2以上の長尺ラベル基材を金属製の連結部材によって繋ぎ合わせて形成されたラベル連続体をロール状に巻き取った状態で継ぎ目の数を検知する方法がある。ロールの側端部からX線を照射してラベル基材部分と連結部材部分でのX線透過量の差に基づいて継ぎ目の数を検知することを開示している。
 一方、X線を利用し物体の空間配置を求める方法として、X線CT(コンピューター断層撮影)法が知られている。X線CT法では多方面からX線を照射して撮像し、画像合成技術によって三次元像を得ている。そのため、計測に長時間を要する。特許文献2には、X線CTによる計測時間を短縮する技術として、複数の線源と検出器とを同数個、並進走査方向に配置し、隣接の線源までの間を並進走査することによって並進走査の距離を短縮し、計測時間を短縮することを開示している。
特開2015-44602号公報 特開昭63-21039号公報
 X線透過検査では、X線源とイメージングプレートなどの検出器との間に検査対象物が配置され、X線源からは光軸(照射中心軸)を中心にして円錐状または角錐状に拡がるようにX線が放出される。X線源から照射されるX線の照射視野(照射範囲よりも検査対象物が大きい場合には、検査対象物の全体を検査するように、X線源と検出器が検査対象物に応じて走査される必要がある。ここで、検査対象がX線の透過方向に厚さを有する場合、同じ大きさの異物であって厚さ方向での位置によって、検出器上での像の大きさが異なることになり、異物の位置に応じて検出感度にムラが生じることになる。これは、検出器に投影される異物の像の大きさは、X線源に近く検出器から遠いほど、引き伸ばされ、検出器に大きく投影されるためである。そして、検出器の検出感度は、像の画素数が所定値を超えると検出可能となるので、検出器に投影される像の大きさに左右される。それゆえ、異物の位置がX線源から近い場合には、検出しやすく検出感度が向上し、X線源から遠い場合には検出しにくく検出感度が低下する。
 検出感度における厚さ方向の位置に応じたムラを小さくするためには、放射線源から検出器までの距離に対する放射線源から検査対象物までの距離の比率を大きくすればよいが、検査対象物の厚さも考慮するとこの比率を大きくするためには放射線源から検出器までの距離自体を大きくする必要があり、結果としてX線の減衰が大きくなって必要な感度が得られないことがある。つまり、X線の透過方向に厚さを有する検査対象物の場合、高い検出感度で、厚さ方向の異物の位置による感度ムラを抑制することができなかった。そのため、厚み方向の異物の位置によって検出される異物の大きさが異なり(これを感度ムラという)、検査対象物内における異物の位置および実際の異物の大きさを特定することができないという課題があった。
 一方、X線CTによる検査は、異物の形状や位置を容易に特定することができるが、複雑な回転機構や画像処理システムが必要であり、また、X線透過検査に比べて測定時間や処理時間が格段に長いという問題点を有する。
 本発明の目的は、フィルムリールを検査対象物としてX線透過検査を行なうときに、異物の位置に応じた検出感度のムラの影響を軽減して異物を確実に検出できるX線透過検査方法及び装置と、このX線透過検査方法を用いて製造される微多孔膜の製造方法とを提供することにある。
 本発明は、コアの外周面に長尺のフィルムが複数周巻回されたフィルムリール検査対象とした放射線透過検査方法であって、リールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、
 第1の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器で検出し、異物についての情報を得る第1の異物検知工程と、
 第2の放射線源から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器で検出し、異物についての情報を得る第2の異物検知工程と、を含む、放射線透過検査方法である。
 さらに、前記第1の放射線源と第1の検出器間の距離(FID)と、前記第2の放射線源と第2の検出器間の距離(FID)が等しく、かつ、
第1の放射線源と側端部A間の距離(FOD)と、第2の放射線源と側端部B間の距離(FOD)が等しい放射線透過検査方法である。さらに、下記式(1)を充足することを特徴とする、放射線透過検査方法である
 0.2≦(T+2FOD)/2FID≦0.5・・・・(1)
ここで、Tはフィルムリールの厚みを表す。
 さらに、フィルムリール中に混入した異物の位置情報および異物の大きさを求める、請求項1または2に記載の放射線透過検査方法。
 さらに、第1の異物検知工程から得られた異物情報と第2の異物検知工程から得られた異物情報とから、フィルムリール中に混入した異物の位置情報および異物の大きさを求める、放射線透過検査方法である。
 本発明は、コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とできる放射線透過検査装置であって、リールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、前記フィルムリールのコアを把持する保持部と、前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第1の放射線源と、側端部Bから出射した放射線を検出する第1の検出器とからなる第1の測定部と、前記第1の検出器から離間した位置に設けられて前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するように配置された第2の放射線源と、側端部Aから出射した放射線を検出する第2の検出器とからなる第2の測定部とを備えた、放射線透過検査装置を提供する。
 さらに、第1の測定部の放射線源と検出器の位置、および、第2の測定部の放射線源と検出器の位置を調整する調整部を備え、前記第1の放射線源と側端部A間の距離(FOD)および前記第2の放射線源と側端部B間の距離(FOD)が等しく、かつ、前記第1の放射線源と検出器間の距離(FID)および前記第2の放射線源と検出器間の距離(FID)が等しくなるように位置を調整する制御部をさらに備えた、放射線透過検査装置を提供する。さらに、前記第1の測定部及び前記第2の測定部を前記フィルムリールの半径方向に移動させる移動部をさらに備える、放射線透過検査装置を提供する。
 
 本発明は、ポリオレフィン樹脂と可塑剤とを混練してポリオレフィン溶液を調製する工程と、ポリオレフィン溶液をダイから吐出するとともに冷却してゲル状シートを得る工程と、ゲル状シートを延伸して延伸シートを形成する工程と、延伸シートから可塑剤を除去して微多孔膜を得る工程と、微多孔膜をコアに捲回してフィルムリールを得る工程と、本発明の放射線透過検査方法によりフィルムリールに含まれる異物の検査を行う工程と、を含む微多孔膜の製造方法である。すなわち、長尺のフィルムをコアに捲回してフィルムリールを得て、その後、上述の放射線透過検査方法にて前記フィルムリールに含まれる異物の検査を行う異物検知工程とを含む、フィルムリールの製造方法である。
 本発明では、フィルム製品リールに対し、両方の側端部の各々に向けて他方側の側端部から放射線の照射を行なうので、各照射では、フィルム製品リールの厚さ方向での中間位置から照射側の側端部までの領域における異物を検出できればよいことになる。このことは放射線透過検査の観点では検査対象物であるフィルム製品リールの厚さが実質的に半減したことに相当するので感度ムラが低減し、かつ、検出器に形成される像の大きさも拡大することになるので確実に異物を検出できるようになる。
放射線透過検査の基本的な原理を説明する図である。 厚さ方向での異物の位置に基づく感度ムラを説明する図である。 厚さ方向での異物の位置に基づく感度ムラを説明する図である。 厚さ方向での異物の位置に基づく感度ムラを説明する図である。 従来の放射線透過検査方法の原理を説明する図である。 本発明に基づく放射線透過検査方法の原理を説明する図である。 異物の厚さ方向の位置と大きさとを求める処理を説明する図である。 両方の側端部の各々へのX線照射によって同一の異物を検出できる条件を説明する図である。 側端部と厚さ方向の中間位置との間を厚さ方向に複数の領域に分割して異物を検出することを説明する図である。 側端部と厚さ方向の中間位置との間を厚さ方向に複数の領域に分割して異物を検出することを説明する図である。 放射線透過検査装置の第1の実施形態を示す平面図である。 放射線透過検査装置の第1の実施形態を示す正面図である。 放射線透過検査装置の第2の実施形態を示す正面図である。 放射線透過検査装置の第3の実施形態を示す側面図である。 放射線透過検査装置の第4の実施形態を示す正面図である。
 最初に、X線を用いる放射線透過検査に関する用語を以下に示す。
X線源の光軸:X線照射における中心軸のこと。X線は、光軸を中心にして円錐状または角錐状に拡がるように放出される。
視野:X線が照射できる範囲のこと。面積で表す。放射源に近いほど視野は狭い。
照射範囲:X線が照射される範囲。光軸を中心にして円錐状または角錐状に拡がったX線があたる範囲である。
走査:放射線源と検出器のセットを、軸方向など検査対処物に沿って移動させること。
FID:放射線源と検出器との間の離間距離である。
FOD:放射線源とフィルムリールの放射線源から最短の側端部との間の離間距離である。
検出感度:検出可能な検査対象物の大きさ。最小の大きさで表す。
感度ムラ:検査対象物の厚さ方向の位置による検出可能な検査対象物の大きさの違い。
異物検知工程:放射線源から対象物へ放射線を照射し、対象物を通過した放射線を検出する異物検査工程の1つの処理ステップを表す。処理ステップが複数あるときは、第1、第2、第3・・・と呼ぶ。
 (放射線透過検査方法)
 次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1はフィルムリール10を検査対象物とする一般的な放射線透過検査の基本的な原理を示しており、この図では、フィルムリール10は、円筒形状のコア11の長さ方向における中心軸13を含む平面での断面として示されており、ハッチングについては一部省略している。フィルムリール10は、コア11の中心軸13を回転軸としてコア11の外周面に長尺のフィルムを複数回巻回して構成されたものである。符号12は、コア11の外周面に巻回されたフィルムの層を示している。フィルムリール10においてコア11の中心軸13が延びる方向を向いた面をフィルムリール10の側端部と呼ぶ。側端部は、円筒状のフィルムリールの両端にあたる円状の面であって、フィルムリールの側面に位置するので、一方の側の側面を側端部A(図1中符号14)、他方の側の側面を側端部B(図1中符号15)と呼ぶ。コア11の長さ方向における両側端部間の寸法(すなわち、側端部Aと側端部B間の距離)は、当該コア11に巻回されるフィルムの幅寸法に概略一致する。フィルムリール10の側端部は、コア11に巻回されたフィルムの幅方向の側端部が露出する面でもある。図においてTは、フィルムリール10の厚さを示しており、これは、コア11に巻回されるフィルムの幅に等しい。コア11の中心軸13の延びる方向と平行な方向のことをフィルムリール10の厚さ方向と呼ぶ。
 フィルムリール10に微小な金属片などの異物が混入しているか否かを検出するために、X線源などの放射線源21が、フィルムリール10の一方の側端部を臨む位置に配置されている。以下では、放射線源21からはX線が放射されるものとするが、X線の代わりにγ線などの他の放射線を用いてもよい。放射線源21は一般に点光源と考えることができ、放射線源21からは、光軸31がフィルムリール10の一方の側端部に垂直になるように、光軸31に沿って円錐状または角錐状に拡がるようにX線が放射される。図において符号32はX線が拡がる範囲(照射範囲)を示している。そしてフィルムリール10を透過したX線を検出するために、イメージングプレートなどの二次元X線検出器からなる検出器26が、検出器26の中心位置が光軸31の延長上に位置するように、フィルムリール10の他方の側端部を臨む位置に配置している。
フィルムリール10内に金属等の異物があれば、その異物によってX線が遮蔽されるので、検出器26において異物に対応する位置でのX線強度は低下する。X線強度が低下された位置を像として検出することにより、フィルムリール10の異物を、そのフィルムリール10内における位置も含めて検出することができる。ここでの位置は、フィルムリールを側端面から見て、その方向に投影した円状平面における2次元座標である。
 放射線透過検査技術での一般的な用語にしたがって、放射線源21と検出器26との間の離間距離をFID(Focus to Image Distance)と呼ぶ。また、放射線源21と検査対象物であるフィルムリール10の放射線源21側の側端部との間の離間距離をFOD(Focus to Object Distance)と呼ぶ。FODは、本来は放射線源21と検出対象の異物との間の離間距離であるが、放射線透過検査を実行する前の段階では異物の位置は不明であるので、本発明では、放射線源21とフィルムリール10の放射線源21側の側端部との間の離間距離をFODとしている。
(検出感度と感度ムラについて)
 次に、異物の検出感度と感度ムラについて、図2を用いて説明する。ここでは、説明が分かりやすくなるように具体的な数値を使用するが、本発明はこのような具体的な寸法に限定されるものではない。FIDが200mmであり、FODが20mmであり、フィルムリール10の厚さTが60mmである場合を考える。
図2では、図示上方にある放射線源21から図示下方にある検出器26に向けて、フィルムリール10の厚さ方向に沿ってX線が照射される。微小な異物41を確実に検出するためには検出器26上での異物の像42がなるべく大きくなるようにする必要があり、放射線源21から異物41までの距離がFIDに比べて小さくなるようにして投影倍率を大きくする。投影倍率は、異物の像42の大きさを異物41の実際の大きさで除算した値に相当し、投影倍率は、FIDをFODで除した値(FID/FOD)となる。
 図2の(a)は、フィルムリール10の放射線源21側の側端部A(図2の符号14)に異物41が存在する場合を示している。このとき、放射線源21と異物41との間の離間距離は20mmであり、投影倍率は10(=200÷20)となる。したがって、異物41の大きさが100μmであるとすれば、検出器26における異物の像42の大きさ(投影サイズ)は1000μmとなる。逆に、検出感度の下限にあたる異物の大きさは、検出可能な像42の大きさによって次のとおり決まる。検出器26における検出可能な像42の大きさが400μm以上であれば、検出できる異物41の大きさの下限、すなわち検出感度は異物の大きさが40μmとなる。同様に、図2の(b)は、フィルムリール10の厚さ方向の中央に異物41が存在する場合を示している。このとき、放射線源21と異物41との間の離間距離は50mmとなる。図2の(c)は、フィルムリール10の検出器26側の側端部B(図2の符号15)に異物41が存在する場合を示している。このとき、放射線源21と異物41との間の離間距離は80mmとなる。(b)及び(c)の場合についても、(a)の場合と同様に、投影倍率、異物41の大きさが100μmであるときの検出器26での投影サイズ、及び、像42の大きさが400μmとなるときの異物41の大きさすなわち検出感度(下限)を求めることができる。これらの投影倍率、投影サイズ及び検出感度(下限)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、フィルムリール10の厚さTが60mmの場合には感度ムラが40~160μmと大きくなる。また、例えば(c)の場合、検出感度が160μmであるので大きさが100μmの異物を検出することができない。また、フィルムリール中に混入した異物の投影サイズは、異物の大きさと投影倍率で乗じたものである。つまり、投影サイズからは、異物の位置が不明であるので、異物の大きさが特定できない。
 上述のとおり、検出可能な異物の大きさは、異物の厚み方向の位置、つまり、放射線源および検出器との間でどのような比率の場所に存在するかによって決まる。投影倍率はFID/FODであるから、検出器での像の大きさは、FIDに比例し、FODに反比例する。よって、同じ大きさの異物に対する検出感度はFODに反比例する。FODを大きくとり、放射線源から検出器までの距離に対する放射線源から検査対象物までの距離の比率を大きくすることで、厚み方向の位置による検出可能な検査対象物の大きさの違い、すなわち、感度ムラが小さくなる。
具体的に、FIDの距離を1とし、放射線源の位置を0、検出器の位置を1とし、検査対象のファイムリールの厚みの割合がFIDの距離に対して0.3(測定範囲が0.3の幅)の場合の感度ムラは、次のとおりである。
放射線源から側端面Aまでの距離(FOD)が0.2の場合
フィルムリールにおける厚み範囲は、0.2~0.5 
0.2の時  1/0.2=5
0.5の時  1/0.5=2
よって、感度ムラは、5/2=2.5(倍)
放射線源から側端面Aまでの距離(FOD)が0.5の場合
フィルムリールにおける厚み範囲は、0.5~0.8 
0.5の時  1/0.5=2
0.8の時  1/0.8=1.25
よって、感度ムラは、2/1.25=1.6(倍)。
一方、検出感度(微小な異物を検出すること)については、FIDを大きくとるか、FODを小さくすることである。つまり、検出感度と感度ムラは相反する特性であり、微小な異物を検知するには、感度ムラが大きくなってしまう。いずれか一方の側端面から放射線を透過してフィルムリール中の異物を検知すると、フィルムリール中の微小な異物は場所によっては検出されないこともある。また、厚み方向のどの位置に存在しているか分からずに、検出結果からは実際の異物の大きさの特定は困難であった。
(FODが大きい場合における、フィルムリール表裏からの放射線透過検査方法)
従来技術においてフィルムリール10の検出器26側の側端部にある大きさが100μmの異物41を検出可能とするためには、FODをそのままとした場合にはFIDを上記の条件よりも長くする必要がある。このことは、検出器26側でのX線強度の低下をもたらすことになり、X線の照射積算時間を長くする必要があり、測定時間が長くなってしまう。
さらに、FIDが長くなると、放射線の広がりが検出器26の面積より大きくなり、検出器26に入射するX線の広がりが狭くなる。1回のX線ショットで異物検出を行なえる測定範囲も狭くなり、そのため、フィルムリール10の全体の検査のためのX線ショット数も増え、さらに測定時間が長くなる。一方、検出器26側に付着した100μmの大きさの異物41を検出可能とするにあたって、FIDを既述の条件にする場合には、FODを小さくすることになるが、その場合にはFODはゼロ以下に設定できないので厚さTが大きなフィルムリール10を測定できなくなってしまう。
 図3は、本発明に基づく放射線透過検査方法の原理を説明する図であり、図3(a)は従来法による検査を、図3(b)は本発明に基づく検査を示している。図2に示したものと同じ厚さTが60mmであるフィルムリール10を検査対象物として、大きさが100μm以上の異物を検出することとする。図2を用いた説明から明らかなように、検出器26の側の異物の検出の方が難しいから、図3(a)に示す従来法では、検出器26の側の側端部にある大きさ100μmの異物の検出を可能にするために(すなわち検出器26側の側端部での検出感度を100μmとして)、FODを15mmにしている。このとき、フィルムリール10の放射線源21側の側端部については、検出感度20μmで異物41の検出が可能である。すなわち、この例では、検出感度が20μmと100μmとの間でばらつき、感度ムラが大きい。
また、X線の広がりを考慮すると、1ショットの検査で、放射線源21側の側端部では例えば視野が3.5mm×2mmの領域について異物の41検出を行うことができ、検出器26側の側端部では視野が17.5mm×10mmの領域について異物41の検出を行うことができる。フィルムリール10の全体にわたって異物41の検査を行なうためには、最小視野(放射線源21側の側端部でのX線の視野)に基づいて、図示破線で示すようにフィルムリール10をくまなく走査してX線を照射する必要がある。
 一方、図3(b)に示す本発明に基づく方法では、1回のX線ショットでは、フィルムリール10の放射線源21側の側端部Aからフィルムリール10の厚さ方向の中間位置C(一点鎖線)までの領域にある大きさが100μm以上の異物41を検出する。そして、図示していないが、中間位置Cからの領域は、もう一方の面から放射線を照射して検出を行う。放射線源21や検出器26、FIDなどが図3(a)の場合と同じであるとして、フィルムリール10の厚さ方向における中間位置Cにて大きさが100μmの異物41を検出できればよいから、FODを45mmとすることができる。
 このとき、放射線源21側の側端部Aでの検出感度は60μmであり、視野は10.5mm×6mmとなる。厚さ方向の中間位置Cでの検出感度は100μmであって視野は17.5×10mmとなる。検出感度は60μmと100μmとの間でばらつくが、図3(a)の場合に比べ、ばらつきは大幅に小さくなっている。このときの最小視野は10.5×6mmであり、図3(a)に示す従来の場合と比べ、面積比で9倍となる。従って、本発明の手法では、従来の手法と比べて、9倍もの速度で検査できる。
 ところで、図3(b)に示す方法においてフィルムリール10の厚さ方向における中間位置Cと検出器26側の側端部Bとの間の領域では検出感度が100μmよりも悪くなっている。そのため、大きさが100μm以上の異物41を確実に検出するにあたって、本発明では、放射線源21と検出器26とからなる測定部、つまり、第1の検査工程部に対し、フィルムリール10を相対的に裏返し、検査できなかった領域が放射線源21側を向くようにし、再度、放射線透過検査を行なう(第2の検査工程)。結局、本発明の方法では、フィルムリール10に対し、その一方の側端部Aの側から放射線を照射する第1の異物検知工程と、他方の側端部Bの側から放射線を照射する第2の異物検知工程とを実施する。
測定にかかる時間であるが、本発明では、単一の異物検知工程ですべての異物41の検出を行なおうとする図3(a)の場合に比べ、最小視野の面積が9倍となっているから、2回の異物検知工程を行なうことを考慮しても、X線のショット回数を約1/5(2/9)とすることができる。すなわち、本発明では、従来知られている技術に基づいた手法と比べて、短時間での異物検出が可能となる。放射線源21と検出器26とからなる測定部を相互に干渉しないように2組用意し、一方の測定部ではフィルムリール10の一方の側端部Aから放射線を照射し、他方の測定部では他方の側端部Bから放射線を照射すれば、第1の異物検知工程と第2の異物検知工程とを同時に進行させることも可能である。これにより、フィルムリール10の全面を検査するために必要な時間をさらに短縮できる。また、図3(b)に示す方法では、図3(a)の手法と比べて感度ムラを軽減するので、その分、厚さの大きなフィルムリール10の検査も可能になる。また、フィルムリール10を放射線源21から大きく離間させることができる。従って、検査を実行可能なフィルムリール10の種類も増加する。
(表裏からの放射線透過検査による異物位置と大きさについて)
 ところで、図3(b)を用いて説明した本発明に基づく放射線透過検査方法の場合、フィルムリール10に対して一方の側端部Aから放射線を照射したときと他方の側端部Bから放射線を照射したときに同じ異物41を検出することがある。その場合、異物41の厚さ方向の位置と大きさとを求めることができる。図4は、そのような場合において、異物41の厚さ方向の位置と大きさを求める処理を説明する図である。
 図4(a)に示すフィルムリール10は、その一方の側の側面を側端部A(符号14)とし、他方の側の側面を側端部B(符号15)とする。そして、第1の放射線源21から照射され、前記フィルムリール10の側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器26で検出し、異物41についての情報を得ている。異物41は検出器26に像42を投影するが、その像42の位置は検出器26の特定の位置情報として記録される。たとえば、XY座標にて異物の位置がマップ化される。そして、第1の放射線源21と第1の検出器26間または側端部A間の距離、すなわちFIDとFODを固定して、フィルムリールの側面内を走査させ、フィルムリール全体における異物41の座標情報が得られる。
 走査方法は、第1の放射線源21と第1の検出器26をXYの2軸に移動させてもよいし、フィルムリールの半径方向に移動させながらフィルムリールを回転させてもよい。走査はステップ状に行い、検査に必要な所定の放射線量を照射した後、照射面積が重ならないように一定距離を移動させてもよい。また、ごく低速で連続移動させながら、フィルムリールの側面の位置として記録させてもよい。1回あたりの照射面積が小さければ、照射回数が増える。このように走査することで、フィルムリールの側面における異物の位置と像42の大きさA1が得られる。なお、像42の大きさは、金属異物等によって放射線が遮蔽されて放射線が小さくなっているので、その画素数をカウントする方法を用いることが好ましい。
 図4(b)は、フィルムリール10の検査を、図4(a)とは反対側の面(裏面)から実施する。ここでは、第2の放射線源22から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器27で検出し、異物についての情報を得ている。異物41は、検出器27に像42を投影するが、その像42の位置は検出器27の特定の位置情報として記録される。たとえば、異物の位置がXY座標のマップに表示される。そして、第1の放射線源21と第1の検出器27と同じように、FIDとFODを固定して、フィルムリールの側面内を走査させ、フィルムリール全体における異物41の座標情報が得られる。また、像42の大きさA2が得られる。
 図4(a)と図4(b)における異物41は同じであるので、フィルムリールの側面内の位置情報(たとえばXY座標)が同じとなる。しかし、各放射線源21、22との距離の関係から、第1の検出器26と第2の検出器27における、像42の大きさA1とA2は異なってくる。
 ここで、FIDとFODの比および検出感度(検出可能な最小の大きさ)について、第1の異物検知工程と第2の異物検知工程を比較しながら説明する。第1の異物検知工程は、第1の放射線源21と第1の検出器26を含み、フィルムリールの側端部Aから側端部Bの向きに放射線を透過させて検査を行う。第2の異物検知工程は、第2の放射線源22と第2の検出器27を含み、フィルムリールの側端部Bから側端部Aの向きに放射線を透過させて検査を行う。
 第1の異物検知工程と第2の異物検知工程のFIDとは距離が等しくなるように調整してある。そして、第1の異物検知工程と第2の異物検知工程のFODとは距離が等しくなるように調整してある。ただし、第1の異物検知工程では、放射線源21と側端部Aとの距離であり、第2の異物検知工程では、放射線源22と側端部Bとの距離である。前述のとおり、図4(a)及び図4(b)の一例においては、FIDは200mmであり、FODは45mmである。
 第1の異物検知工程と第2の異物検知工程のそれぞれの検出感度と感度ムラについては、前述のとおりである。
(検出感度)第1の異物検知工程における側端部Aおよび第2の異物検知工程における側端部Bの厚み方向の距離においては約90μm以上の異物が検出可能であり、フィルムリール(厚みTが60mm)の中央位置では約150μm以上が検出可能であり、さらに、第1の異物検知工程における側端部Bおよび第2の異物検知工程における側端部Bの厚み方向の距離においては約210μm以上が検出可能である。
 そして、各検出器に投影された像42の大きさについては、100μm角の異物が第1の異物検知工程における側端部Aおよび第2の異物検知工程における側端部Bの厚み方向の距離にあるとき約4.44倍の444μm角、フィルムリール(厚みTが60mm)の中央位置にあるとき約2.67倍の267μm角、さらに、第1の異物検知工程における側端部Bおよび第2の異物検知工程における側端部Bの距離にあるとき約2.11倍の211μm角となる。
フィルムリール10の中に実寸がaである異物41が存在するものとし、フィルムリール10の厚さ方向における中間位置Cから異物41までの距離をzとする。フィルムリール10の厚さは上述のようにTである。フィルムリール10に対して一方の側端部側からX線を照射する場合と他方の側端部側からX線を照射する場合における、異物41による検出器26での像42の大きさをそれぞれA1,A2とする。A1≧A2を仮定しても一般性は失われないから、A1≧A2とする。すると異物41は、フィルムリールの厚み方向の中間位置Cから見て、像の大きさがA1であるときの放射線源21の方向にzだけ離れた位置に存在することになる。図4(a)に示すように、像42の大きさがA1であるときの投影倍率A1/aと、図4(b)に示すように、像42の大きさがA2であるときの投影倍率A2/aは、それぞれ、式(1), (2)によって表される。
1/a=FID/(FOD+T/2-z)  (2)
/a=FID/(FOD+T/2+z)  (3)
 式(2), (3)から、式(4), (5)に示すように、異物41の実寸aと中間位置Cからの距離zを求めることができる。
z=(A-A)/(A+A)×(FOD+T/2) (4)
a=2×A×A/(A+A)×(FOD+T/2)/FID  (5)
 以上のとおり、フィルムリールの両側面からそれぞれ放射線を入射させる第1の異物検知工程と第2の異物検知工程を用いて異物情報を得ることで、フィルムリール10の厚み方向の距離と実際の異物の大きさを求めることができる。このことは、フィルムリール中に混入する異物の判定において、厚み方向の距離、すなわちフィルムリール中におけるフィルム幅方向の存在位置によらず、異物の実際の大きさが分かるので、たとえば問題となる異物の大きさを超えているかどうかが判定可能となり、検査精度が向上できる。
 このようにフィルムリールの両側面から放射線を入射させ、第1の異物検知工程と第2の異物検知工程を含む検査を行う場合、フィルムリールの両側面の放射線源から検査対象物までの距離は、少なくともフィルムリールの厚み(T)の半分までの厚みに存在する異物が検知しやすい条件とすることが好ましい。すなわち、放射線源から異物までの最大距離は、FOD+1/2T(ここで、Tはフィルムリールの厚みを表す)である。検出感度は、放射線源からの距離が小さいほど高いので、FOD+1/2TをFIDで除した値が、0.5以下であることが好ましい。一方、放射線源からの距離が小さいほど感度ムラが大きくなるので、FODは20mm以上が好ましい。フィルムリールの厚み(T)によるが、FOD+1/2TをFIDで除した値は、T=60mmでは0.25以上が好ましく、T=40mmでは0.2以上が好ましい。すわなち、前述の式(1)を満たす条件が好ましい態様である。
0.2≦(T+2FOD)/2FID≦0.5・・・・(1)
 また、検査時間に関して、フィルムリールの表裏から2回の測定を行うため、測定時間が2倍になる。1回あたりの測定面積を、2倍以上に大きくすると検査にかかる合計時間は短縮される。測定面積は、距離の2乗に比例する。FOD+1/2Tの距離に対応する測定面積とFODの距離に対応する測定面積の比、すなわち、(FOD+1/2T)/FODの比が、√2を超えることが好ましい態様である。
 フィルムリール10のいずれかの一方の側端部からしか異物41を検出できなかった場合には、測定できた像42の大きさに基づいて、異物41の実寸を仮定すればよい。本発明に基づく放射線透過検査方法は、例えば、フィルムリール10に所定の大きさ以上の異物41が混入するときにそのフィルムリール10を不良品として排除するために用いられるので、このような実寸の仮定を行なったとしても、放射線透過検査を行なうことの意義が失われることはない。
 図5は、第1の異物検知工程と第2の異物検知工程における、異物の検出有無を、フィルムリールの厚さ方向に対して示した特性図である。図2(b)に示すような構成(FID=200mm、FOD=20mm)を用いて、厚さが60mmであるフィルムリール10の検査を行なったときに、異物41の厚さ方向での位置と実寸とに応じ、その異物41が両方の側端部のいずれの側からのX線照射によっても検出可能である(「両方の側端部から検出可能」と記載)か、いずれか一方の側端部からのX線照射でしか検出されない(「片方の側端部からのみ検出可能」と記載)か、あるいは、どちらの側端部からのX線照射によっても検出されない(「いずれの側端部からも検出不可」)かを示している。
 このように、第1の異物検知工程と第2の異物検知工程の検出において、放射線源と検出器をフィルムリールの側面上を走査させ、得られるそれぞれの異物欠点マップを重ね書きし、より微細な異物を検出可能となる。また、異物の大きさと位置の計算処理にかかる時間を短縮することができる。 なお、フィルムリール10においてX線の光軸に沿うように複数の異物41が存在する場合には、これらの異物41の像が重なってあたかも1つの異物しか存在しないように検出される場合がある。このような像の重なりは、X線の照射位置をわずかに、例えば上述した最小視野の半分よりもさらに狭い間隔で移動させることによって解消することができ、複数の異物41を独立して検出することができるようになる。しかしながら、異物の検出によって不良品と判定するために放射線透過検査を行なう場合には、このような異物の像42の分解を行なう必要はない。なお、像を分離するために、各放射線の光軸とフィルムリール側面への入射角度を、垂直ではなく光軸を斜めに斜光させてフィルムリールに入射させ異物を分離検出させてもよい。
 以上説明した本発明に基づく放射線透過検査方法では、フィルムリール10における放射線源21側の側端部において規定される最小視角に応じて必要なX線ショット回数が定まり、検査時間が定まる。最小視角は、検査対象の厚さを薄くすれば大きくすることができるから、必要なX線のショット回数は最小視角による面積に反比例する。そこで、更に検査時間を短縮する場合には、フィルムリール10における中間位置Cと放射線源21側の側端部との間を厚さ方向に複数の領域に分け、領域ごとに異物41の検査を行なう、即ちFODの異なる複数回の検出走査を行うことが考えられる。同一方向からのX線の照射であるので、異物41の検出が重複することがあるが、その場合は、1個の異物41の検出でもって不良品として判断すればよい。
(フィルムリールの厚みが大きい場合について)
フィルムリールの厚みが大きいほど、フィルムリール中に混在する異物の検査は困難となる。図6は、厚さTが例えば120mmであるフィルムリール10を対象として、フィルムリール10の厚さ方向の中間位置Cから放射線源21側の側端部Dまでを厚さ方向にさらに2つの領域に分け、領域ごとに異物41の検査を行なうことを説明する図である。すなわち、フィルムリールを厚み方向に4分割して検査を行う方法である。これは、放射線源から検出器までの距離に対する放射線源から検査対象物までの距離の比率を大きくすることで、感度ムラを小さくするとともに、必要な(ここでは100μmの大きさ)異物を検出する検出感度が得られる。
フィルムリールの厚み方向における分割数として、ここでは、フィルムリール10の一方の側端部D(符号16)と中間位置Cまでの領域を2つに分割する場合を説明する。フィルムリール10の他方の側端部と中間位置Cまでの領域も2つに分割して同様に異物41の検出を行うことができる。実際には、フィルムリール10の一方の側端部側と他方の側端部側でそれぞれ厚さ方向に2つの領域に分割し、合計でフィルムリール10を厚さ方向に4つの領域に分割してそれぞれについて異物41の検査を行なうことが好ましい。ここで説明する考え方を適用すれば、フィルムリール10のいずれかの側端部と中間位置Cまでを3以上の領域に分割して領域ごとに異物41の検査を行なうことも可能である。
 図6において、フィルムリール10の放射線源21側の側端部の位置がDで、側端部D(符号16)とフィルムリール10の厚さ方向の中間位置Cとの間の中点となる位置がEで示されている。フィルムリール10の厚さTが120mmであると仮定すると、側端部Dと位置Eとの間隔は30mmであり、位置Eと中間位置Cとの間隔も30mmである。図6(a)は、位置Eと中間位置Cとの間の領域における大きさが例えば160μm以上の異物41を検出するための放射線源21と検出器26との配置を示している。放射線源21と検出器26との間の離間距離FIDは200mmであり、放射線源21と放射線源21側の側端部Dの間の離間距離FODは20mmである。すると、図6(a)において表形式で示すように、中間位置Cにおける検出感度は160μmであり、位置Eにおける視野サイズは50mmである。X線の照射範囲が正方形であると、位置Eと中間位置Cとの間の異物41を検出するときの最小視野は50mm×50mmとなる。図6(a)において斜線のハッチングが付された領域は、50mm×50mmの最小範囲を使用して走査したときに大きさが160μmである異物を検出できる領域(検出感度が160μm未満である領域)である。図6に示されるように、側端部Dと位置Eの間の領域の一部においても大きさが160μmである異物41が検出可能となっている。側端部Dと位置Eの間の領域のうち、黒塗りで示された部分は、X線が照射されない未検査領域である。
 図6(b)は、放射線源21側の側端部Dと位置Eとの間の領域における大きさが160μm以上の異物41を検出するための配置を示している。放射線源21と検出器26との間の離間距離FIDは、図6(a)の場合と同じく200mmであり、放射線源21と放射線源21側の側端部Dとの間の離間距離FODは50mmである。すなわち、図6(a)の場合と比べ、FIDは同じであるがFODが30mm増加している。このとき、位置Eにおける検出感度は160μmであり、位置Dにおける視野サイズは50mmであり、正方形の照射野を仮定すれば側端部Dと位置Eとの間の異物41を検出するときの最小視野は50mm×50mmとなる。図6(b)において斜線のハッチングが付された領域は、50mm×50mmの最小視野を使用して走査したときに大きさが160μmである異物41を検出できる領域(検出感度が160μm未満である領域)である。
 図6を用いて説明した方法では、50mm×50mmの視野を用いる走査を2回行っている。これに対し、ここで示した機器構成を使用して、側端部Dと中間位置Cとの間の、大きさが160μm以上の異物41を一回の検査で検出しようとすると、図6(a)の場合と同様にFODを20mmとする必要があり、このとき、側端部Dでの視野サイズは20mmであるので、20mm×20mmの視野を用いる走査を1回行う必要がある。50mm×50mmの視野の面積は2500mm2であって、20mm×20mmの視野の面積である400mm2よりも6倍以上広いので、図6を用いて説明した方法の方が、走査を2回行うとしても、側端部Dと中間位置Cとの間の異物を1回の走査で検出する場合に比べて全体としての測定時間を短縮することができる。
 さらに、図6(a)と図6(b)において、側端部D(符号16)からフィルムリールの中間位置Cまでについて説明したが、他方の側端部からフィルムリールの中間位置Cまでについても同様に検査することが好ましい。このとき、第1の異物検知工程と第2の異物検知工程のほかに、第3の異物検知工程と第4の異物検知工程を含むことが好ましい。第3の異物検知工程には第3の放射線源23と第3の検出器28を含み、第4の異物検知工程には第4の放射線源24と第3の検出器29を含むように構成する。そして、第3の異物検知工程と第4の異物検知工程のFIDとFODについては、第1と第2の異物検知工程とは別の値で、かつ、FIDおよびFODが同じ値なるように調整する。フィルムリールの両側面から、2セットの異物検知工程を用いて、フィルムリールの厚み方向全体をカバーする検査方法が提供される。
(異物について)
 本発明を用いて検出可能な異物の材質としては、例えば金属(Cu、SUS、Feなど)およびそれらの酸化物、シリカ等を挙げることができるが、異物のない箇所を透過したX線強度(ばらつき含む)に比べて、異物のある箇所を透過したX線強度に有意差があれば(=S/N比が高ければ)上記に限らず検出可能である。なお一般的に、異物の比重が大きいほど透過後のX線強度は小さく、S/N比が高くなり検出しやすい傾向にある。また、厚さTが大きいほどフィルム透過後のX線強度ばらつきは積算され大きくなるため、同一異物でもS/N比は小さくなり検出しにくくなる傾向にある。
 (放射線透過検査装置の第1の実施形態)
 次に、上述した放射線透過検査方法を実施するために用いられる放射線透過検査装置について説明する。図7は、放射線透過検査装置の第1の実施形態を示す図であって、(a)は平面図、(b)は正面図である。コア11の外周面に長尺のフィルムが複数周巻回されたフィルムリール10を検査対象物として取り外し可能に保持する保持部46が設けられている。保持部46は、コア11の中心軸13が水平となるように、コア11を介してフィルムリール10を保持する。保持部46には、フィルムリール10を中心軸13の周りで回転させるための回転駆動部47も設けられている。
 フィルムリールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、フィルムリール10の一方の側端部を臨む位置にフィルムリール10に向けてX線を照射する放射線源21が設けられ、フィルムリール10の他方の側端部を臨む位置であって放射線源21からのX線の光軸31の延長上には、フィルムリール10を透過したX線を検出する検出器26が設けられている。放射線源21と検出器26によって第1の測定部が構成されている。つまり、第1の測定部は、前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第1の放射線源と、側端部Bから出射した放射線を検出する第1の検出器とからなる。同様に、フィルムリール10の他方の側端部を臨む位置であって第1の検出器21から離間した位置にはフィルムリール10に向けてX線を照射する放射線源22が設けられ、フィルムリール10の一方の側端部を臨む位置であって放射線源22からのX線の光軸31の延長上には、フィルムリールを透過したX線を検出する検出器27が設けられている。放射線源22と検出器27によって第2の測定部が構成されている。つまり、第2の測定部は、前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するよう配置された放射線を照射する第2の放射線源と、側端部Aから出射した放射線を検出する第2の検出器とからなる。
 検出器26,27は、いずれも、イメージングプレートなどの二次元検出装置によって構成されている。第1の測定部でのX線の光軸31と第2の測定部でのX線の光軸31はいずれもコア11の中心軸13に平行であり、かつ、これらの光軸31とコア11の中心軸13は同一の水平面内にある。
 以下の説明において、コア11の中心軸13に平行な方向をx方向と呼び、水平面内においてx方向に直交する方向をy方向と呼ぶ。放射線源21,22は、それぞれ、放射線源21,22の高さを保ったまま放射線源21,22を水平面内でx方向に移動させる調整ステージ51,52に取り付けられている。同様に検出器26,27は、それぞれ、検出器26,27の高さを保ったまま検出器26,27を水平面内でx方向に移動させる調整ステージ56,57に取り付けられている。第1の測定部において、調整ステージ51により放射線源21をx方向に移動させることによってFOD(放射線源とフィルムリール10の放射線源を向いた側端部との離間距離)を変化させることができ、調整ステージ51による放射線源21のx方向への移動及び調整ステージ56による検出器26のx方向への移動の少なくとも一方を行なうことで、FID(放射線源と検出器との離間距離)を変化させることができる。同様に第2の測定部についてもそのFID及びFODを調整することができる。調整ステージ51,52,56,57の移動量を制御する制御部50(図7(a)には不図示)が設けられており、制御部50は、第1の測定部におけるFID及びFODと第2の測定部におけるFID及びFODとが等しくなるように制御を行なうことが好ましい。
 フィルムリール10での半径方向でのX線の照射位置を変化させるために、移動ステージ61,62(図7(b)には不図示)が設けられている。調整ステージ51,56は移動ステージ61に取り付けられており、移動ステージ61は、第1の測定部の放射線源21及び検出器26がそれぞれ取り付けられている調整ステージ51,56を一体的にy方向に移動させる。同様に、調整ステージ52,57が移動ステージ62に取り付けられており、移動ステージ62は、第2の測定部の放射線源22及び検出器27がそれぞれ取り付けられている調整ステージ52,57を一体的にy方向に移動させる。このとき、移動ステージ61,62は、フィルムリール10の中心(すなわちコア11の中心軸13の位置)から第1の測定部における放射線の光軸31までの距離と前記第2の測定部までの距離31とが常に同じとなるように相互に移動することが好ましい。
 さらにこの放射線透過検査装置には、検出器26,27での検出結果に基づき、図4及び図5を用いて説明した原理によってフィルムリール10内の検出された異物の大きさを計算する処理部65が設けられている。
 図7に示した放射線透過検査装置では、調整ステージ51,52,56,57によって第1の測定部及び第2の測定部のFID及びFIDを調整した上で、回転駆動部47によってフィルムリール10を回転させ、また、移動ステージ61,62によってフィルムリール10の半径方向でのX線の照射位置を変化させることにより、フィルムリール10に巻回されたフィルムの全体にわたって本発明に基づく放射線透過検査方法を実行することができる。この装置では、X線の照射方向が相互に逆向きの第1の測定部及び第2の測定部を用い、同時に放射線透過検査を行なうことにより、フィルムリール10の一方の側端部と他方の側端部、すなわち表面と裏面とを反転させることなく、短時間でフィルムリール10に巻回されたフィルムの全体にわたって異物の検査を行なうことができる。また、放射線源21(22)と検出器26(27)との間にはフィルムリール10以外のX線の透過を阻害あるいは減衰させる部材が設けられていないので、ノイズの影響を抑制しながら鮮明な画像を得ることができる。
 (放射線透過検査装置の第2の実施形態)
 図7を用いて説明した放射線透過検査装置では、フィルムリール10はコア11の中心軸13が水平となるように保持されていたが、中心軸13が垂直になるようにフィルムリール10を保持する構成とすることもできる。図8に正面図を示す放射線透過検査装置では、保持部46によって、コア11の中心軸13が垂直になるようにフィルムリール10が取り外し可能に保持されている。このとき、X線の光軸も垂直となるので、調整ステージを用いて放射線源21,22や検出器26,27の位置を調整することはできない。そこで図8に示す放射線透過検査装置では、第1の測定部に関し、C字状あるいはコの字状に形成された取り付け部材66の両端に、それぞれ調整部材71,76を介して放射線源21及び検出器26が相互に向かい合うように取り付けている。同様に第2の測定部に関し、C字状あるいはコの字状の取り付け部材67の両端に、それぞれ調整部材72,77を介して放射線源22及び検出器27が取り付けられている。調整部材71,72,76,77は、FID及びFODを調整するためのものであって、図7の装置と同様に制御部50(図8には不図示)によって制御される。そして、移動ステージ61,62がそれぞれ取り付け部材66,67をフィルムリール10の半径方向に移動させる。図8に示す放射線透過検査装置においても、図7に示した放射線透過検査装置と同様にしてフィルムリール10中の異物を検出することができる。また、検出器26,27での検出結果に基づいて異物の大きさを計算する処理部を設けてもよい。この例においても、放射線源21(22)と検出器26(27)との間にはフィルムリール10以外のX線の透過を阻害あるいは減衰させる部材が設けられていないので、ノイズの影響を抑制しながら鮮明な画像を得ることができる。従って、第2の実施形態では、保持部46としてフィルムリール10においてX線が透過する部分も含めて載置するテーブル状の部材を用いても良いが、その場合には検出器26(27)にテーブルの透過画像がバックグラウンド信号として検出されてS/N比の低下につながってしまうので、既述のようにフィルムリール10の中心軸13を保持する構成が好ましい。
 (放射線透過検査装置の第3の実施形態)
 図7に示した放射線透過検査装置は、放射線源21と検出器27からなる第1の測定部と、放射線源22と検出器27からなる第2の測定部との2つの測定部を備えている。しかしながら本発明に基づく放射線透過検査装置では、測定部の数をさらに増やして同時に異物検知工程を実行することにより、検査時間をさらに短縮することができる。図9は、図7に示す装置に対して2つの測定部を追加し、合計で4つの測定部を有する放射線透過検査装置を示している。図9では、放射線源と検出器との配置を明確にするために、フィルムリール10の一方の側端部側から見た側面図として、コア11を含むフィルムリール10と放射線源21~24と検出器26~29のみが示されている。図において破線で示されている要素は、フィルムリール10の他方の側端部側に位置しており、一方の側端部側から見た場合にはフィルムリール10に隠れて見えない要素である。
 図9に示す放射線透過検査装置では、図7に示すように既に第1の測定部と第2の測定部が設けられているとして、フィルムリール10の一方の側端部を臨む位置であって放射線源21と第2の検出器27とから離間した位置に、フィルムリール10に向けてX線を照射する放射線源23が設けられている。フィルムリール10の他方の側端部を臨む位置であって放射線源23からのX線の光軸の延長上には、フィルムリール10を透過したX線を検出する検出器28が設けられている。放射線源23と検出器28によって第3の測定部が構成される。さらに、フィルムリール10の他方の側端部を臨む位置であって放射線源22及び検出器26,28から離間した位置に、フィルムリール10に向けて放射線を照射する放射線源24が設けられ、フィルムリール10の一方の側端部を臨む位置であって放射線源24からのX線の光軸の延長上には、フィルムリール10を透過したX線を検出する検出器29が設けられている。放射線源24と検出器29によって第3の測定部が構成される。第1の測定部、第2の測定部、第3の測定部及び第4の測定部は、同一のFIDを有するように構成されている。
 特に図9に示す放射線検査装置では、各測定部が同一のFODを有して測定部ごとの走査範囲を狭くして全体としての検査時間を短くするようにしてもよい。しかしながらこの装置では、第1の測定部と第2の測定部が同一のFODを有し、第3の測定部は第1の測定部よりも大きなFODを有し、第4の測定部は第2の測定部よりも大きなFODを有するように構成することにより、図6を用いて説明した、側端部と厚さ方向の中間位置との間を厚さ方向に複数の領域に分割して異物を検出する方法を実施することが可能になる。
 (放射線透過検査装置の第4の実施形態)
 図7、図8及び図9に示した放射線透過検査装置は、放射線源と検出器からなる測定部を複数有する。しかしながら、複数の測定部を用いることができない場合もある。1つの測定部しか用いることができない場合には、フィルムリール10の一方の側端部からX線を照射する場合と他方の側端部からX線を照射する場合とを切り替える何らかの切り替え機構が必要である。図10は、1つの測定部と切り替え機構を備える放射線透過検査装置を示している。
 コア11の中心軸13が水平となるようにコア11を介してフィルムリール10を取り外し可能に保持する保持部46が設けられている。保持部46には、フィルムリール10を中心軸13の周りで回転させるための回転駆動部47も設けられている。フィルムリール10の一方の側端部を臨む位置にフィルムリール10に向けてX線を照射する放射線源21が設けられ、フィルムリール10の他方の側端部を臨む位置であって放射線源21からのX線の光軸31の延長上には、フィルムリール10を透過したX線を検出する検出器26が設けられている。光軸31は、コア11の中心軸13と平行になるように設定されている。放射線源21と検出器26によって測定部が構成されている。ここでは、C字状あるいはコの字状に形成された取り付け部材66の両端に、それぞれ調整部材71,76を介して放射線源21及び検出器26が相互に向かい合うように取り付けている。調整部材71,76は、FID及びFODを調整するためのものである。光軸31の位置をフィルムリール10の半径方向で移動させるために、取り付け部材66を図示上下方向に移動させる上下移動部81が設けられ、取り付け部材66は、上下移動部81に対して吊り下げられるように接続している。さらに、コア11の中心軸13に垂直な軸の周りで放射線源21をフィルムリール10に対して相対的に180°回転させるために、切り替え部82が設けられている。例えば、切り替え部82は、放射線透過検査装置を設ける空間の天井に取り付けられ、上下移動部81の上端が切り替え部82に接続する。
 図10に示した放射線透過検査装置では、調整部材71,76によってFOD及びFIDを調整した上で、回転駆動部47によってフィルムリール10を回転させ、また、上下移動部81によってフィルムリール10の半径方向でのX線の照射位置を変化させることにより、フィルムリール10に巻回されたフィルムの全体をX線で操作することができる。本発明に基づく放射線透過検査方法を実施するためには、フィルムリール10においてX線が入射する側を反転させなければならないが、そのためには、上下移動部81によって放射線源21や検出器26がフィルムリール10に機械的に干渉することがない位置にまで取り付け部材66を上方に引き上げ、そののち、切り替え部82によって取り付け部材66の向きを水平面内で180°回転させ、回転後、再び取り付け部材66を下降させて次の照射を行なうようにすればよい。
 図10に示した放射線透過検査装置は、放射線源と検出器とをそれぞれ1つしか必要としないので、放射線源や検出器のコストが問題となるときには有効な装置である。
 (微多孔膜の製造方法)
 次に、上述した放射線透過検査方法によっての良否を判定する微多孔膜の製造方法について説明する。微多孔膜としてポリオレフィン微多孔膜を製造する場合、まず、ポリオレフィン樹脂に流動パラフィンなどの可塑剤を添加して二軸押出機などによりこれらを溶融混練し、ポリオレフィン溶液を得る。そして、T型ダイなどの口金を用いてポリオレフィン溶液を吐出し、キャスト冷却装置などによって冷却してゲル状シートを得る。ゲル状シートを機械方向(MD)及び幅方向(TD)に延伸して延伸シートとし、その後、洗浄溶剤などを用いて延伸シートから可塑剤を溶解除去することにより、微多孔膜フィルムを得る。ポリオレフィン溶液の吐出から可塑剤の溶解除去までの連続工程で実行することによって、微多孔膜フィルムは長尺のフィルムとして得られるから、この微多孔膜フィルムをコア11の外周面に巻回することによって、フィルムリール10が得られる。その後、上述した放射線透過検査方法のいずれか1つを実施してフィルムリール10に含まれる異物の検査を実施する。検査の結果、合格品と判定されたものが出荷される。
 本発明の検査方法を適用する製造工程は、ポリオレフィン製バッテリーセパレータフィルムに限られず、コーティングセパレータ、不織布製バッテリーセパレータ、コンデンサ用フィルム、MLCC離型用フィルム、高精度ろ過用途として用いられるポリオレフィン微多孔フィルム等の製造工程にも好適である。
 10  フィルムリール
 11  コア
 12  フィルム
 13  コアの軸
 14  フィルムリールの側端部A
 15  フィルムリールの側端部B
 16  フィルムリールの側端部D
 21  第1の放射線源
 22  第2の放射線源
 23  第3の放射線源
 24  第4の放射線源
 26  第1の検出器
 27  第2の検出器
 28  第3の検出器
 29  第4の検出器
 31  光軸
 32  X線の照射範囲
 41  異物
 42  像
 46  保持部
 47  回転駆動部
 50  制御部
 51,52,56,57  調整ステージ
 61,62  移動ステージ
 65  処理部
 66,67  取り付け部材
 71,72,76,77  調整部材
 81  上下移動部
 82  切り替え部
 C フィルムリールの厚み方向の中心位置
 T フィルムリールの厚さ

Claims (18)

  1.  コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とした放射線透過検査方法であって、リールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、
    第1の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第1の検出器で検出し、異物についての情報を得る第1の異物検知工程と、
    第2の放射線源から照射され、前記フィルムリールの側端部Bから入射し、リール中を透過し、側端部Aから出射する放射線を、第2の検出器で検出し、異物についての情報を得る第2の異物検知工程とを含む、放射線透過検査方法。
  2.  前記第1の放射線源と第1の検出器間の距離(FID)と、前記第2の放射線源と第2の検出器間の距離(FID)が等しく、かつ、
    第1の放射線源と側端部A間の距離(FOD)と、第2の放射線源と側端部B間の距離(FOD)が等しい、請求項1に記載の放射線透過検査方法。
  3.  前記FIDとFODが式(1)を充足することを特徴とする、請求項2に記載の放射線透過検査方法。
    0.2≦(T+2FOD)/2FID≦0.5・・・・(1)
    ここで、Tはフィルムリールの厚みを表す。
  4.  第1の異物検知工程から得られた異物情報と第2の異物検知工程から得られた異物情報とから、フィルムリール中に混入した異物の位置情報および異物の大きさを求める、請求項1乃至3のいずれか1項に記載の放射線透過検査方法。
  5.  前記第1の異物検知工程と前記第2の異物検知工程を同時に実行する、請求項1乃至4のいずれか1項に記載の異物の放射線透過検査方法。
  6.  第1の放射線源を第2の放射線源として使用する、請求項1乃至4のいずれか1項に記載の放射線透過検査方法。
  7.  第3の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第3の検出器で検出し、異物についての情報を得る第3の異物検知工程と、第4の放射線源から照射され、前記フィルムリールの側端部Aから入射し、リール中を透過し、側端部Bから出射する放射線を、第4の検出器で検出し、異物についての情報を得る第4の異物検知工程をさらに備え、
    前記第3の放射線源と側端部A間の距離(FOD)および前記第4の放射線源と側端部B間の距離(FOD)が、前記第1の放射線源と側端部A間の距離(FOD)および前記第2の放射線源と側端部B間の距離(FOD)とは、異なる距離である、請求項2または3に記載の放射線透過検査方法。
  8.  前記第1の異物検知工程から得られた情報と前記第2の異物検知工程から得られた情報に基づき、異物の大きさを計算する工程をさらに有する、請求項1乃至6のいずれか1項に記載の放射線透過検出方法。
  9.  コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とできる放射線透過検査装置であって、リールの一方の側の側面を側端部A、他方の側の側面を側端部Bとして、
     前記フィルムリールのコアを把持する保持部と、
     前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第1の放射線源と、側端部Bから出射した放射線を検出する第1の検出器とからなる第1の測定部と、
     前記第1の検出器から離間した位置に設けられて前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するように配置された第2の放射線源と、側端部Aから出射した放射線を検出する第2の検出器とからなる第2の測定部とを備えた、放射線透過検査装置。
  10.  第1の測定部の放射線源と検出器の位置、および、第2の測定部の放射線源と検出器の位置を調整する調整部を備え、前記第1の放射線源と側端部A間の距離(FOD)および前記第2の放射線源と側端部B間の距離(FOD)が等しく、かつ、前記第1の放射線源と検出器間の距離(FID)および前記第2の放射線源と検出器間の距離(FID)が等しくなるように位置を調整する制御部をさらに備えた、請求項9に記載の放射線透過検査装置。
  11.  前記第1の測定部及び前記第2の測定部を前記フィルムリールの半径方向に移動させる移動部をさらに備える、請求項9または10に記載の放射線透過検査装置。
  12.  前記移動部は、前記フィルムリールの厚み方向の中心から第1の測定部までの距離と前記第2の測定部までの距離とが常に等しくなるように、前記第1の測定部及び前記第2の測定部を移動させる機構である、請求項11に記載の放射線透過検査装置。
  13.  前記フィルムリールの周方向に沿って放射線によって前記フィルムリールを走査できるように前記第1の測定部及び前記第2の測定部を前記フィルムリールの軸周りに相対的に回転させる回転機構を備える、請求項9乃至12のいずれか1項に記載の放射線透過検査装置。
  14.  前記第1の測定部により検出された検出結果と前記第2の測定部により検出された検出結果とに基づいて、検出された異物の大きさを計算する処理部をさらに備える、請求項9乃至13のいずれか1項に記載の放射線透過検査装置。
  15.  前記フィルムリールの側端部Aから入射し、リールを透過して側端部Bから出射するよう配置された放射線を照射する第3の放射線源と、側端部Bから出射した放射線を検出する第3の検出器とからなる第3の測定部と、
     前記第3の検出器から離間した位置に設けられて前記フィルムリールの側端部Bから入射し、リールを透過して側端部Aから出射するように配置された第4の放射線源と、側端部Aから出射した放射線を検出する第4の検出器とからなる第4の測定部とをさらに備え、放射線源と検出器との離間距離をFIDとし、放射線源と前記フィルムリールの側端部Aとの離間距離をFODとして、
     第3の測定部のFIDは、前記第1の測定部のFIDと等しく、第3の測定部のFODは、前記第1の測定部のFODよりも大きく、かつ、第4の測定部のFIDは、前記第2の測定部のFIDと等しく、第4の測定部のFODは、前記第2の測定部のFODよりも大きく、かつ、第3の測定部のFODと第4の測定部のFODは等しい、請求項9に記載の放射線透過検査装置。
  16.  コアの外周面に長尺のフィルムが複数周巻回されたフィルムリールを検査対象とできる放射線透過検査装置であって、
     前記フィルムリールのコア把持する保持部と、
     前記フィルムリールの一方の側端部から入射し、リールを透過して他方の側端部から出射するよう配置された放射線を照射する放射線源と、他方の側端部から出射した放射線を検出する検出器とからなる測定部と、 前記コアの軸に垂直な軸の周りで前記フィルムリールを放射線源に対して相対的に180°回転させるように、前記測定部及び前記フィルムリールの少なくとも一方を移動させる切り替え部と、 を有する、請求項9乃至15のいずれか1項に記載の放射線透過検査装置。
  17.  長尺のフィルムをコアに捲回してフィルムリールを得る工程と、請求項1乃至8のいずれか1項に記載の放射線透過検査方法により前記フィルムリールに含まれる異物の検査を行う異物検知工程とを含む、フィルムリールの製造方法。
  18.  前記フィルムは、ポリオレフィン微多孔フィルムである、請求項17に記載のフィルムリールの製造方法。
PCT/JP2019/025288 2018-06-27 2019-06-26 放射線透過検査方法及び装置、並びに微多孔膜の製造方法 WO2020004435A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980033727.0A CN112154322A (zh) 2018-06-27 2019-06-26 放射线透过检查方法和装置、以及微多孔膜的制造方法
JP2019567390A JP7283398B2 (ja) 2018-06-27 2019-06-26 放射線透過検査方法及び装置、並びに微多孔膜の製造方法
KR1020207027239A KR20210024438A (ko) 2018-06-27 2019-06-26 방사선 투과 검사 방법 및 장치, 및 미다공막의 제조 방법
US17/046,523 US20210181125A1 (en) 2018-06-27 2019-06-26 Radiation transmission inspection method and device, and method of manufacturing microporous film
EP19824880.9A EP3816616A4 (en) 2018-06-27 2019-06-26 RADIATION TRANSMISSION INSPECTION METHOD AND DEVICE AND MICROPOROUS FILM MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121994 2018-06-27
JP2018-121994 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004435A1 true WO2020004435A1 (ja) 2020-01-02

Family

ID=68985465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025288 WO2020004435A1 (ja) 2018-06-27 2019-06-26 放射線透過検査方法及び装置、並びに微多孔膜の製造方法

Country Status (6)

Country Link
US (1) US20210181125A1 (ja)
EP (1) EP3816616A4 (ja)
JP (1) JP7283398B2 (ja)
KR (1) KR20210024438A (ja)
CN (1) CN112154322A (ja)
WO (1) WO2020004435A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210190706A1 (en) * 2019-12-24 2021-06-24 Toyota Jidosha Kabushiki Kaisha Foreign substance inspection method and foreign substance inspection apparatus
WO2022044418A1 (ja) * 2020-08-26 2022-03-03 東レ株式会社 フィルム製品リールの放射線透過検査装置およびこれを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法
EP3964823A1 (en) * 2020-09-02 2022-03-09 FORCE Technology A device for testing a flat plate-shaped material
WO2022054794A1 (ja) * 2020-09-10 2022-03-17 株式会社ビームセンス X線透視装置
WO2023189135A1 (ja) * 2022-03-31 2023-10-05 東レ株式会社 検査装置及び検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491254B1 (ko) * 2022-09-01 2023-01-27 주식회사 엘시스 피사체 결함 탐지를 위한 x선 촬영 위치 결정 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321039A (ja) 1986-07-15 1988-01-28 株式会社日立製作所 多線源ctスキヤナ
JP2004354215A (ja) * 2003-05-29 2004-12-16 Ihi Aerospace Co Ltd 放射線透過非破壊検査装置
JP2010127702A (ja) * 2008-11-26 2010-06-10 Kyocera Chemical Corp 絶縁性樹脂組成物中の金属粉異物の自動検知方法
JP2015044602A (ja) 2013-08-27 2015-03-12 株式会社フジシールインターナショナル ラベル連続体の継ぎ目検知方法、及びラベル連続体
WO2016203330A1 (en) * 2015-06-16 2016-12-22 Dylog Italia S.P.A. A non-destructive x-ray inspection machine, devices provided for such machine and method for operating the same
JP2018092890A (ja) * 2016-11-30 2018-06-14 住友化学株式会社 欠陥検査装置、欠陥検査方法、及びセパレータ捲回体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886772A (en) * 1996-02-17 1999-03-23 Sony Corporation Film processing apparatus
JP2912608B1 (ja) * 1998-03-27 1999-06-28 近畿コンクリート工業株式会社 コンクリート製品の非破壊検査方法
GB0525593D0 (en) * 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
AU2008340164A1 (en) * 2007-12-25 2009-07-02 Rapiscan Systems, Inc. Improved security system for screening people
US20120314836A1 (en) * 2011-06-08 2012-12-13 Steven Winn Smith X-ray Shoe Inspection
EP3213295B1 (en) * 2014-10-29 2022-09-07 Pirelli Tyre S.p.A. Method and apparatus for controlling production and feeding of semifinished products in a tyre building process
KR20180114548A (ko) * 2016-03-05 2018-10-18 미쯔비시 케미컬 주식회사 점착 필름의 제조방법
CN108132262A (zh) * 2016-11-30 2018-06-08 住友化学株式会社 缺陷检查装置、缺陷检查方法及隔膜卷绕体的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321039A (ja) 1986-07-15 1988-01-28 株式会社日立製作所 多線源ctスキヤナ
JP2004354215A (ja) * 2003-05-29 2004-12-16 Ihi Aerospace Co Ltd 放射線透過非破壊検査装置
JP2010127702A (ja) * 2008-11-26 2010-06-10 Kyocera Chemical Corp 絶縁性樹脂組成物中の金属粉異物の自動検知方法
JP2015044602A (ja) 2013-08-27 2015-03-12 株式会社フジシールインターナショナル ラベル連続体の継ぎ目検知方法、及びラベル連続体
WO2016203330A1 (en) * 2015-06-16 2016-12-22 Dylog Italia S.P.A. A non-destructive x-ray inspection machine, devices provided for such machine and method for operating the same
JP2018092890A (ja) * 2016-11-30 2018-06-14 住友化学株式会社 欠陥検査装置、欠陥検査方法、及びセパレータ捲回体の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210190706A1 (en) * 2019-12-24 2021-06-24 Toyota Jidosha Kabushiki Kaisha Foreign substance inspection method and foreign substance inspection apparatus
US11774378B2 (en) * 2019-12-24 2023-10-03 Toyota Jidosha Kabushiki Kaisha Foreign substance inspection method and foreign substance inspection apparatus
WO2022044418A1 (ja) * 2020-08-26 2022-03-03 東レ株式会社 フィルム製品リールの放射線透過検査装置およびこれを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法
EP3964823A1 (en) * 2020-09-02 2022-03-09 FORCE Technology A device for testing a flat plate-shaped material
WO2022048720A1 (en) * 2020-09-02 2022-03-10 Force Technology A device for testing a flat plate-shaped material
WO2022054794A1 (ja) * 2020-09-10 2022-03-17 株式会社ビームセンス X線透視装置
WO2023189135A1 (ja) * 2022-03-31 2023-10-05 東レ株式会社 検査装置及び検査方法

Also Published As

Publication number Publication date
JPWO2020004435A1 (ja) 2021-05-13
EP3816616A4 (en) 2022-03-23
JP7283398B2 (ja) 2023-05-30
KR20210024438A (ko) 2021-03-05
EP3816616A1 (en) 2021-05-05
US20210181125A1 (en) 2021-06-17
CN112154322A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2020004435A1 (ja) 放射線透過検査方法及び装置、並びに微多孔膜の製造方法
US9625257B2 (en) Coordinate measuring apparatus and method for measuring an object
WO2016170685A1 (ja) X線検査装置、x線検査方法および構造物の製造方法
CN111684269B (zh) 异物的检查方法、检查装置、薄膜辊以及薄膜辊的制造方法
JP2013178242A (ja) X線検査装置、検査方法およびx線検出器
US11041818B2 (en) Dimensional X-ray computed tomography system and CT reconstruction method using same
JP2003294655A (ja) タイヤのx線検査方法及びその装置
US8199878B2 (en) Methods and systems for performing differential radiography
JPH01235839A (ja) 透過線像を作製するための装置及び方法
JP2013184017A (ja) X線撮影装置
TWI768027B (zh) 檢查裝置、檢查方法及檢查對象物之製造方法
CN111649704A (zh) 一种基于x射线的珍珠层厚度测量装置及测量方法
JP7051847B2 (ja) X線インライン検査方法および装置
WO2022044418A1 (ja) フィルム製品リールの放射線透過検査装置およびこれを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法
CN212432076U (zh) 一种基于x射线的珍珠层厚度测量装置
JP3928126B2 (ja) 中空円筒形部材の放射線透過非破壊検査装置及び方法
CN117826519A (zh) 射线检测双胶片一次曝光方法及装置
JP6921578B2 (ja) 表面異物検出装置およびそれを用いた表面異物検出方法
KR810001806B1 (ko) 용접부의 비파괴 시험기
KR20160101903A (ko) 테스트 대상과 x-레이 검사 시스템 사이의 위험 구역을 결정하기 위한 방법
JPH04225152A (ja) X線自動結晶方位解析装置
JPH04174349A (ja) X線トポグラフィ装置
CN112666187A (zh) 电池检查方法
JPH0368846A (ja) 大根の欠陥の非破壊検査方法
JPH06254084A (ja) 放射線ct

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567390

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019824880

Country of ref document: EP

Effective date: 20210127