JP7260413B2 - 共重合体の製造方法 - Google Patents

共重合体の製造方法 Download PDF

Info

Publication number
JP7260413B2
JP7260413B2 JP2019115807A JP2019115807A JP7260413B2 JP 7260413 B2 JP7260413 B2 JP 7260413B2 JP 2019115807 A JP2019115807 A JP 2019115807A JP 2019115807 A JP2019115807 A JP 2019115807A JP 7260413 B2 JP7260413 B2 JP 7260413B2
Authority
JP
Japan
Prior art keywords
group
copolymer
general formula
tert
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019115807A
Other languages
English (en)
Other versions
JP2021001283A (ja
Inventor
重永 高野
オリビエ タルディフ
昭二郎 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2019115807A priority Critical patent/JP7260413B2/ja
Priority to PCT/JP2020/022421 priority patent/WO2020255761A1/ja
Priority to US17/614,672 priority patent/US20220220238A1/en
Priority to EP20827407.6A priority patent/EP3988583A4/en
Priority to CN202080040252.0A priority patent/CN113906060B/zh
Publication of JP2021001283A publication Critical patent/JP2021001283A/ja
Application granted granted Critical
Publication of JP7260413B2 publication Critical patent/JP7260413B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61908Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61912Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Description

本発明は、共重合体の製造方法に関するものである。
従来、非共役オレフィンと、共役ジエンとを共重合させて、非共役オレフィン-共役ジエン共重合体を製造する方法が知られている。例えば、下記特許文献1には、スカンジウムを中心金属とする錯体の存在下、エチレンとブタジエンを共重合させて、エチレン-ブタジエン共重合体を製造する技術が開示されている。
特開2012-131965号公報
しかしながら、本発明者らが検討したところ、上記のような従来の技術では、生成する共重合体の結晶量と、ビニル結合量(又は、ガラス転移温度)とを制御することが困難であることが分かった。
そこで、本発明は、上記従来技術の問題を解決し、結晶量とビニル結合量(又は、ガラス転移温度)とを制御することが可能な共重合体の製造方法を提供することを課題とする。
上記課題を解決する本発明の要旨構成は、以下の通りである。
本発明の共重合体の製造方法は、下記一般式(I):
Figure 0007260413000001
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、置換シクロペンタジエニル、置換インデニル又は置換フルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミド基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体を含む重合触媒組成物の存在下で、エチレンと、イソプレンと、を共重合させる工程を含み、
上記一般式(I)中のCpR’が、2つ以上の置換基を有することを特徴とする。
かかる本発明の共重合体の製造方法によれば、製造される共重合体の結晶量とビニル結合量(又は、ガラス転移温度)とを制御することができ、所望の結晶量とビニル結合量(又は、ガラス転移温度)を有する共重合体を得ることができる。
本発明の共重合体の製造方法の好適例においては、上記一般式(I)中のCpR’が、置換インデニルである。この場合、製造される共重合体の結晶量とビニル結合量(又は、ガラス転移温度)とを更に制御し易くなる。
ここで、前記置換インデニルの少なくとも1つの置換基が、Siを含むことが好ましい。この場合、製造される共重合体のビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。
また、前記置換インデニルの少なくとも1つの置換基が、当該置換インデニルの五員環上に存在することも好ましい。この場合も、製造される共重合体のビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。
本発明の共重合体の製造方法の他の好適例においては、前記重合触媒組成物が、ハロゲン化合物を含まない。この場合、ビニル結合量が高い共重合体を得ることができる。
本発明によれば、結晶量とビニル結合量(又は、ガラス転移温度)とを制御することが可能な共重合体の製造方法を提供することができる。
以下に、本発明の共重合体の製造方法を、その実施形態に基づき、詳細に例示説明する。
<共重合体の製造方法>
本発明の共重合体の製造方法は、上記一般式(I)で表されるハーフメタロセンカチオン錯体を含む重合触媒組成物の存在下で、エチレンと、イソプレンと、を共重合させる工程を含み、上記一般式(I)中のCpR’が、2つ以上の置換基を有することを特徴とする。
上記一般式(I)で表され、式中のCpR’が、2つ以上の置換基を有するハーフメタロセンカチオン錯体においては、CpR’が嵩高いため、立体障害によって、立体規則的に共重合を進行させることができる。そして、上記一般式(I)で表されるハーフメタロセンカチオン錯体において、中心金属Mや、配位子CpR’を変更することで、製造される共重合体の結晶量とビニル結合量(又は、ガラス転移温度)とを制御することができる。
従って、本発明の共重合体の製造方法によれば、製造される共重合体の結晶量とビニル結合量(又は、ガラス転移温度)とを制御することができ、所望の結晶量(結晶化度)とビニル結合量(又は、ガラス転移温度)を有する共重合体を得ることができる。
上記一般式(I)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、置換シクロペンタジエニル、置換インデニル又は置換フルオレニルであり、これらの中でも、置換インデニルが好ましい。CpR’が置換インデニルである場合、製造される共重合体の結晶量とビニル結合量(又は、ガラス転移温度)とを更に制御し易くなる。
一般式(I)において、シクロペンタジエニル環を基本骨格とするCpR’(置換シクロペンタジエニル)は、C5-yで示され得る。
ここで、yは、シクロペンタジエニル環上の置換基Rの数であり、1~5の整数である。yは、2以上であり、即ち、置換基Rの数が2つ以上である。置換基Rの数が2つ以上であることで、CpR’が嵩高くなり、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなり、ビニル結合量が増加し易くなり、ガラス転移温度も高くなり易くなる。
置換基Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。また、少なくとも1つの置換基Rは、Siを含むことが好ましい。Siを含む置換基Rは、錯体の安定性を維持しつつ、CpR’を嵩高くでき、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなって、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることがより一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、tert-ブチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、シリルSiに加えて、ゲルミルGe、スタニルSnが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基、tert-ブチルジメチルシリル基等のSiを含む置換基が挙げられる。これらの中でも、少なくとも1つの置換基Rは、tert-ブチルジメチルシリル基、ベンジル基等の嵩高い置換基であることが好ましい。置換基Rが嵩高い置換基であると、CpR’が一層嵩高くなり、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなって、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。また、置換基Rが嵩高い置換基であると、製造される共重合体の結晶量が減少する傾向があり、これは、モノマー転化のランダム性が向上するためと考えられる。
一般式(I)において、インデニル環を基本骨格とするCpR’(置換インデニル)は、C7-y又はC11-yで示され得る。
ここで、yは、インデニル環上の置換基Rの数であり、1~7又は1~11の整数である。yは、2以上であり、即ち、置換インデニルは、2つ以上の置換基を有する。置換インデニルが2つ以上の置換基Rを有することで、CpR’が嵩高くなり、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなり、ビニル結合量が増加し易くなり、ガラス転移温度も高くなり易くなる。
また、置換基Rの少なくとも1つは、置換インデニルの五員環上に存在することが好ましい。置換インデニルは、五員環側で中心金属Mに配位するため、置換基Rが五員環上に存在すると、イソプレンが中心金属Mに接近する際に、CpR’(置換インデニル)による立体障害の影響が大きくなり、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。
置換基Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。また、少なくとも1つの置換基Rは、Siを含むことが好ましい。Siを含む置換基Rは、錯体の安定性を維持しつつ、CpR’を嵩高くでき、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなって、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることがより一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、tert-ブチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、シリルSiに加えて、ゲルミルGe、スタニルSnが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基、tert-ブチルジメチルシリル基等のSiを含む置換基が挙げられる。これらの中でも、少なくとも1つの置換基Rは、tert-ブチルジメチルシリル基、ベンジル基等の嵩高い置換基であることが好ましい。置換基Rが嵩高い置換基であると、CpR’が一層嵩高くなり、重合されるイソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなって、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。また、置換基Rが嵩高い置換基であると、製造される共重合体の結晶量が減少する傾向があり、これは、モノマー転化のランダム性が向上するためと考えられる。
置換インデニルとして、具体的には、1,3-ビス(tert-ブチルジメチルシリル)インデニル、1-tert-ブチルジメチルシリル-3-トリメチルシリルインデニル、1,3-ビス(トリメチルシリル)インデニル、1-tert-ブチルジメチルシリル-3-ベンジルインデニル、1-tert-ブチルジメチルシリル-3-フェニルインデニル、2-tert-ブチルジメチルシリルインデニル、2-トリメチルシリルインデニル等が挙げられる。
一般式(I)において、フルオレニル環を基本骨格とするCpR’(置換フルオレニル)は、C139-y又はC1317-yで示され得る。
ここで、yは、フルオレニル環上の置換基Rの数であり、1~9又は1~17の整数である。yは、2以上であり、即ち、置換基Rの数が2つ以上である。置換基Rの数が2つ以上であることで、CpR’が嵩高くなり、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなり、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。
置換基Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。また、少なくとも1つの置換基Rは、Siを含むことが好ましい。Siを含む置換基Rは、錯体の安定性を維持しつつ、CpR’を嵩高くでき、イソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなって、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることがより一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、tert-ブチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、シリルSiに加えて、ゲルミルGe、スタニルSnが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基、tert-ブチルジメチルシリル基等のSiを含む置換基が挙げられる。これらの中でも、少なくとも1つの置換基Rは、tert-ブチルジメチルシリル基、ベンジル基等の嵩高い置換基であることが好ましい。置換基Rが嵩高い置換基であると、CpR’が一層嵩高くなり、重合されるイソプレンが中心金属Mに接近する際の立体障害としての影響が大きくなって、ビニル結合量が増加し易くなり、また、ガラス転移温度も高くなり易い。また、置換基Rが嵩高い置換基であると、製造される共重合体の結晶量が減少する傾向があり、これは、モノマー転化のランダム性が向上するためと考えられる。
一般式(I)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
ここで、中心金属Mは、原子半径が小さい方が、製造される共重合体のビニル結合量が増加する傾向があり、また、製造される共重合体のガラス転移温度が高くなる傾向がある。また、中心金属Mは、原子半径が大きい方が、製造される共重合体の結晶量が増加する傾向があり、これは、モノマー転化のランダム性が低くなるためと考えられる。従って、原子半径が小さい中心金属Mを使用することで、共重合体のビニル結合量を増加させ(共重合体のガラス転移温度を高くし)つつ、共重合体の結晶量を減少させることができる。逆に、原子半径が大きい中心金属Mを使用することで、共重合体のビニル結合量を小さく(共重合体のガラス転移温度を低く)しつつ、共重合体の結晶量を増加させることができる。
上記の中心金属Mの中でも、反応性の観点から、ネオジムNd、ガドリニウムGd、ホルミウムHo、イットリウムYが好ましく、ガドリニウムGd、イットリウムYがより好ましい。
一般式(I)において、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミド基、シリル基又は炭素数1~20の一価の炭化水素基を示す。ここで、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。
一般式(I)において、Xが表すアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシ基等が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。
一般式(I)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基等が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。
一般式(I)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオペンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオペンチルフェニルアミド基、2-イソプロピル-6-ネオペンチルフェニルアミド基、2,4,6-トリ-tert-ブチルフェニルアミド基等のアリールアミド基;ビス(トリメチルシリル)アミド基等のビス(トリアルキルシリル)アミド基;ビス(ジメチルシリル)アミド基等のビス(ジアルキルシリル)アミド基等が挙げられ、これらの中でも、ビス(トリメチルシリル)アミド基、ビス(ジメチルシリル)アミド基が好ましい。
一般式(I)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
一般式(I)において、Xが表す炭素数1~20の一価の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
一般式(I)において、Xとしては、ビス(トリメチルシリル)アミド基、ビス(ジメチルシリル)アミド基又は炭素数1~20の一価の炭化水素基が好ましい。
一般式(I)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
上記一般式(I)で表されるハーフメタロセンカチオン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(I)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記一般式(I)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
Figure 0007260413000002
ここで、一般式(II)又は(III)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、それぞれ独立して置換シクロペンタジエニル、置換インデニル又は置換フルオレニルを示し、Xは、それぞれ独立して水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミド基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。また、一般式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。
[A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン(「トリチルカチオン」ともいう)、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニウムカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。
上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(「トリチルテトラキス(ペンタフルオロフェニル)ボレート」ともいう)等が好ましい。また、一般式[A][B]で表されるイオン性化合物は、一般式(II)又は(III)で表される化合物に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(I)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(I)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(II)又は(III)で表される化合物と一般式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中において一般式(I)で表されるハーフメタロセンカチオン錯体を形成させてもよい。
上記一般式(I)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することができる。
なお、重合反応系において、重合触媒組成物に含まれるハーフメタロセンカチオン錯体の濃度は、0.0001~0.1mol/Lの範囲であることが好ましい。
前記重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、本発明においては、中心金属に結合したシクロペンタジエニル又はその誘導体(インデニル、フルオレニル等)が一つであるメタロセン錯体を、ハーフメタロセン錯体と称する。
上記重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択することができる。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、上記重合触媒組成物におけるアルミノキサンの含有量は、ハーフメタロセンカチオン錯体の中心金属Mに対する、アルミノキサンのアルミニウム元素Alの元素比率(Al/M)が、10~1000程度、好ましくは100程度となるようにすることが好ましい。
一方、上記有機アルミニウム化合物としては、一般式AlR(式中、R及びRはそれぞれ独立して炭素数1~10の炭化水素基又は水素原子であり、Rは炭素数1~10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、水素化ジアルキルアルミニウム等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられ、水素化ジアルキルアルミニウムとしては、水素化ジイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、ハーフメタロセンカチオン錯体に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。
上記重合触媒組成物においては、一般式(I)で表されるハーフメタロセンカチオン錯体を、適切な助触媒と組み合わせることで、得られる共重合体のビニル結合量や分子量を制御することができる。
なお、本発明の共重合体の製造方法においては、前記重合触媒組成物が、ハロゲン化合物を含まないことが好ましい。従来の、ハーフメタロセンカチオン錯体やメタロセン錯体を用いた重合反応では、助触媒として、有機アルミニウム化合物を用いる場合、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド等のハロゲン化合物が使用されることが多いが、一般式(I)で表されるハーフメタロセンカチオン錯体を、ハロゲン化合物と併用しないことで、ビニル結合量が高い共重合体を得ることができる。
本発明の共重合体の製造方法は、上記重合触媒組成物の存在下で、エチレンと、イソプレンと、を共重合させる工程(以下、共重合工程とも呼ぶ)を含み、更に、必要に応じて、カップリング工程、洗浄工程、その他の工程を含んでもよい。また、エチレン、イソプレンに加えて、他のモノマーを共重合させることもできる。
共重合工程における、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、ヘキサン(例えば、シクロヘキサン、ノルマルヘキサン)等が挙げられる。中でも、ヘキサンが好ましい。ヘキサンを溶媒として用いて重合を行うと、環境負荷を低減することができる。
上記重合触媒組成物の存在下では、反応温度、反応時間、エチレン及びイソプレンの量及び比率等の反応条件を制御することによって、製造される共重合体における、エチレン単位、イソプレン単位の含有率、結合含量(シス-1,4結合量、トランス-1,4結合量、3,4-ビニル結合量及び1,2-ビニル結合量)を制御することもできる。エチレン単位の含有率は、特に限定しないが、例えば、5質量%~95質量%が好ましく、また、イソプレン単位の含有率は、特に限定しないが、例えば、5質量%~95質量%が好ましい。
共重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。重合反応の重合温度は、特に限定しないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。重合反応の圧力は、0.1~10.0MPaの範囲とすることが好ましい。重合反応の反応時間は、特に限定しないが、例えば、1秒~10日の範囲が好ましく、得られる共重合体について所望するミクロ構造、触媒の種類、重合温度等の条件によって適宜選択することができる。
また、共重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
前記カップリング工程は、前記共重合工程において得られた共重合体の少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
前記カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
前記カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
なお、カップリング反応を行うことにより、共重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を増加させることができる。
前記洗浄工程は、前記共重合工程において得られた共重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノール等が挙げられ、また、これらの溶媒に対して酸(例えば、塩酸、硫酸、硝酸)を加えて使用することもできる。添加する酸の量は、溶媒に対して15mol%以下が好ましい。これ以上では、酸が共重合体中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
この洗浄工程により、共重合体中の触媒残渣量を好適に低下させることができる。
<共重合体>
本発明の製造方法で得られる共重合体は、エチレン単位と、イソプレン単位と、を含み、また、任意の結晶量とビニル結合量(又は、ガラス転移温度)とを有する。本発明の一好適実施形態において、得られる共重合体は、エチレン-イソプレン共重合体である。
本発明の製造方法で得られる共重合体のビニル結合量は、一般式(I)で表されるハーフメタロセンカチオン錯体の中心金属Mや配位子CpR’を選択することで、任意の値に制御することができる。本発明の一好適実施形態によれば、ビニル結合量が20質量%~50質量%である共重合体が得られ易い。
前記ビニル結合量は、イソプレン単位中の、1,2-結合しているイソプレン単位の含有量(即ち、1,2-ビニル結合量)と、3,4-結合しているイソプレン単位の含有量(即ち、3,4-ビニル結合量)との和である。
本発明の一好適実施形態によれば、1,2-ビニル結合量が、1質量%以下である共重合体が得られ易く、該共重合体は、1,2-ビニル結合量が0.5質量%以下であってもよく、また、0質量%(NMRでの検出下限以下)であってもよい。
本発明の製造方法で得られる共重合体においては、ビニル結合量が増加するに従い、ガラス転移温度が上昇する傾向がある。そのため、一般式(I)で表されるハーフメタロセンカチオン錯体の中心金属Mや配位子CpR’を選択することで、ガラス転移温度を任意の値に制御することができる。本発明の一好適実施形態によれば、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が-60℃~20℃である共重合体が得られ易く、ガラス転移温度(Tg)が-29℃~-15℃である共重合体が更に得られ易い。
本発明の製造方法で得られる共重合体の結晶量は、一般式(I)で表されるハーフメタロセンカチオン錯体の中心金属Mや配位子CpR’を選択することで、任意の値に制御することができる。該結晶量は、共重合体中のエチレン単位が連続している部分の量に対応し、本発明の製造方法においては、中心金属Mや配位子CpR’を選択して、モノマー転化のランダム性を変えることで、共重合体の結晶量を制御できるものと考えられる。
本発明の一好適実施形態によれば、結晶量が10~50%である共重合体が得られ易く、結晶量が14~30%である共重合体が更に得られ易い。共重合体の結晶量が10%以上であれば、エチレン単位に起因する結晶性を十分に確保して、共重合体の耐破壊特性が向上する。また、共重合体の結晶量が50%以下であれば、後述するゴム組成物の混練の際の作業性が向上する。
本発明の製造方法で得られる共重合体は、ポリスチレン換算の重量平均分子量(Mw)が20,000~4,000,000であることが好ましく、50,000~3,000,000であることがより好ましい。共重合体をゴム組成物に使用した際、Mwが20,000以上であると、ゴム組成物の機械的強度を向上させることができ、また、Mwが4,000,000以下であると、ゴム組成物の作業性を向上させることができる。
本発明の製造方法で得られる共重合体は、ポリスチレン換算の数平均分子量(Mn)が10,000~2,000,000であることが好ましく、20,000~1,500,000であることがより好ましい。共重合体をゴム組成物に使用した際、Mnが10,000以上であると、ゴム組成物の機械的強度を向上させることができ、また、Mnが2,000,000以下であると、ゴム組成物の作業性を向上させることができる。
本発明の製造方法で得られる共重合体は、分子量分布(ポリスチレン換算重量平均分子量(Mw)/ポリスチレン換算数平均分子量(Mn))が1~4であることが好ましい。共重合体の分子量分布が4以下であれば、共重合体の物性に十分な均質性をもたらすことができる。
<共重合体の用途>
本発明の製造方法で得られる共重合体は、ゴム組成物のゴム成分として利用することができる。該ゴム組成物は、ゴム成分として、前記共重合体を含み、更に必要に応じて、その他のゴム成分、充填剤、架橋剤、その他の成分を含むことができる。
前記ゴム成分中の、前記共重合体の含有率は、10~100質量%の範囲が好ましく、20~100質量%の範囲が更に好ましく、30~100質量%の範囲がより一層好ましい。なお、その他のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
前記ゴム組成物が充填剤を含む場合、ゴム組成物の補強性を向上させることができる。該充填剤としては、特に制限はなく、カーボンブラック、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられるが、これらの中でも、カーボンブラック及び/又はシリカを用いることが好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記充填剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、10~100質量部が好ましく、20~80質量部がより好ましく、30~60質量部が特に好ましい。前記充填剤の配合量が10質量部以上であることにより、充填剤を配合したことによる補強性向上の効果が得られ、また、100質量部以下であることにより、良好な作業性を保持することができる。
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム-ニトロソアミン系架橋剤等が挙げられる。なお、タイヤ用ゴム組成物としては、これらの中でも硫黄系架橋剤(加硫剤)がより好ましい。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1~10質量部が好ましい。
前記加硫剤を用いる場合には、更に加硫促進剤を併用することもできる。前記加硫促進剤としては、グアニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。
また、前記ゴム組成物には、必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
前記ゴム組成物は、タイヤを始め、防振ゴム、免震ゴム、コンベヤベルト等のベルト、ゴムクローラ、各種ホース等に用いることができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン100gを含むトルエン溶液460gと、トルエン289gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計2時間共重合を行った。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体145gを得た。
(実施例2)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン61gを含むトルエン溶液280gと、トルエン470gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計1時間共重合を行った。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体98gを得た。
(実施例3)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン100gを含むトルエン溶液460gと、トルエン290gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ((1-tert-ブチルジメチルシリル-3-ベンジル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1-[(t-Bu)MeSi]-3-BnCGd[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計2時間共重合を行った。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体95gを得た。
(実施例4)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン100gを含むトルエン溶液460gと、トルエン290gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ((1-tert-ブチルジメチルシリル-3-ベンジル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1-[(t-Bu)MeSi]-3-BnCGd[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計2時間5分共重合を行った。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体100gを得た。
(実施例5)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン82gを含むトルエン溶液380gと、トルエン370gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ((1-tert-ブチルジメチルシリル-3-ベンジル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1-[(t-Bu)MeSi]-3-BnCGd[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計1時間16分共重合を行った。なお、エチレンの投入開始から30分後、エチレンの供給を停止したところ、エチレンの圧力は1.0MPaから0.5MPaに変化した。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体52gを得た。
(実施例6)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン82gを含むトルエン溶液380gと、トルエン370gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ((1-tert-ブチルジメチルシリル-3-ベンジル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1-[(t-Bu)MeSi]-3-BnCGd[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計2時間5分共重合を行った。なお、エチレンの投入開始から30分後、エチレンの供給を停止したところ、エチレンの圧力は1.0MPaから0.5MPaに変化した。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体80gを得た。
(実施例7)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン82gを含むトルエン溶液380gと、トルエン370gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ((1-tert-ブチルジメチルシリル-3-ベンジル)インデニル)ビス(ビス(ジメチルシリル)アミド)イットリウム錯体{1-[(t-Bu)MeSi]-3-BnCY[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計1時間30分共重合を行った。なお、エチレンの投入開始から45分後、エチレンの供給を停止したところ、エチレンの圧力は1.0MPaから0.5MPaに変化した。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体111gを得た。
(実施例8)
十分に乾燥した2000mL耐圧ステンレス反応器に、イソプレン82gを含むトルエン溶液380gと、トルエン350gと、を加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ((1-tert-ブチルジメチルシリル-3-ベンジル)インデニル)ビス(ビス(ジメチルシリル)アミド)イットリウム錯体{1-[(t-Bu)MeSi]-3-BnCY[N(SiHMe}0.010mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.010mmol、トリイソブチルアルミニウム0.020mmol及び水素化ジイソブチルアルミニウム2.5mmolを仕込み、トルエン5mLを加えて触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、85℃に加温した。
次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器に投入し、85℃で計1時間30分共重合を行った。なお、エチレンの投入開始から45分後、エチレンの供給を停止したところ、エチレンの圧力は1.0MPaから0.5MPaに変化した。
次いで、2,2’-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体68gを得た。
<共重合体の分析>
得られた共重合体について、触媒活性、重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)、エチレン単位、イソプレン単位の含有率、ビニル結合量(1,2-ビニル結合量、3,4-ビニル結合量)、ガラス転移温度(Tg)、融点(Tm)、結晶量を、下記の方法で測定した。結果を表1に示す。
(1)触媒活性
触媒活性を、下記式:
[共重合体の収量(kg)]/[ハーフメタロセンカチオン錯体の使用量(mol)]/[反応時間(時間)]}
から算出した。
(2)重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8320GPC、カラム:東ソー社製GMHHL×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、得られた各共重合体のポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃、測定流速は1mL/min、移動相はテトラヒドロフラン(THF)、溶液濃度は1mg/mL、注入量は100μLである。
(3)エチレン単位、イソプレン単位の含有率
共重合体中のエチレン単位、イソプレン単位の含有率を、H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)における、各ピークの積分比より求めた。
(4)ビニル結合量(1,2-ビニル結合量、3,4-ビニル結合量)
得られた各共重合体について、NMR(Bruker社製、AVANCE 600)を用いてNMRスペクトルを得た。H-NMR及び13C-NMRの測定により得られたピーク(H-NMR:δ 4.6-4.8(3,4-ビニルユニットの=CH)、5.0-5.2(1,4-ユニットの-CH=)、5.6-5.8(1,2-ユニットの-CH=)、4.8-4.9(1,2-ユニットの=CH)、13C-NMR:δ 23.4(1,4-シスユニット)、15.9(1,4-トランスユニット、18.6(3,4-ユニット))の積分比から、1,2-ビニル結合量、3,4-ビニル結合量を算出し、その合計からビニル結合量を算出した。
(5)ガラス転移温度(Tg)
示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体のガラス転移温度(Tg)を測定した。
(6)融点(Tm)
示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体の融点(Tm)を測定した。
(7)結晶量
示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用いて、-150℃~150℃まで、10℃/minで昇温し、共重合体の吸熱ピークエネルギー(ΔH)と、100%結晶成分のポリエチレンの結晶融解エネルギー(ΔH)とを測定し、共重合体とポリエチレンとのエネルギー比率(ΔH/ΔH)から、結晶量(%)を算出した。
Figure 0007260413000003
表1から、一般式(I)で表されるハーフメタロセンカチオン錯体において、中心金属Mや配位子CpR’を変更することで、更には、反応時間、イソプレンの量、エチレン圧等の反応条件を制御することによって、製造される共重合体の結晶量とビニル結合量(又は、ガラス転移温度)とを制御できることが分かる。
例えば、実施例1と、実施例3との対比から、配位子CpR’の置換基として、ベンジル基を導入することで、同程度のエチレン単位含有量で比較して、製造される共重合体の結晶量が減少する傾向があることが分かり、これは、モノマー転化のランダム性が向上したためと考えられる。
また、実施例3及び4と、実施例7及び8との対比から、中心金属Mの原子半径が大きい方が、同程度のエチレン単位含有量で比較して、製造される共重合体の結晶量が増加する傾向があることが分かり、これは、モノマー転化のランダム性が低くなったためと考えられる。
本発明の共重合体の製造方法は、ゴム組成物のゴム成分として利用することが可能な共重合体の製造に利用できる。

Claims (5)

  1. 下記一般式(I):
    Figure 0007260413000004
    (式中、Mは、ランタノイド原子、スカンジウム又はイットリウムを示し、CpR’は、置換シクロペンタジエニル、置換インデニル又は置換フルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミド基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体を含む重合触媒組成物の存在下で、エチレンと、イソプレンと、を共重合させる工程を含み、
    上記一般式(I)中のCpR’が、2つ以上の置換基を有し、該置換基が、それぞれ独立してtert-ブチル基、フェニル基、ベンジル基又はメタロイド基であることを特徴とする、共重合体の製造方法。
  2. 上記一般式(I)中のCpR’が、置換インデニルである、請求項1に記載の共重合体の製造方法。
  3. 前記置換インデニルの少なくとも1つの置換基が、Siを含む、請求項2に記載の共重合体の製造方法。
  4. 前記置換インデニルの少なくとも1つの置換基が、当該置換インデニルの五員環上に存在する、請求項2又は3に記載の共重合体の製造方法。
  5. 前記重合触媒組成物が、ハロゲン化合物を含まない、請求項1~4のいずれか一項に記載の共重合体の製造方法。
JP2019115807A 2019-06-21 2019-06-21 共重合体の製造方法 Active JP7260413B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019115807A JP7260413B2 (ja) 2019-06-21 2019-06-21 共重合体の製造方法
PCT/JP2020/022421 WO2020255761A1 (ja) 2019-06-21 2020-06-05 共重合体の製造方法
US17/614,672 US20220220238A1 (en) 2019-06-21 2020-06-05 Method for manufacturing copolymer
EP20827407.6A EP3988583A4 (en) 2019-06-21 2020-06-05 PROCESS FOR MAKING A COPOLYMER
CN202080040252.0A CN113906060B (zh) 2019-06-21 2020-06-05 共聚物的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115807A JP7260413B2 (ja) 2019-06-21 2019-06-21 共重合体の製造方法

Publications (2)

Publication Number Publication Date
JP2021001283A JP2021001283A (ja) 2021-01-07
JP7260413B2 true JP7260413B2 (ja) 2023-04-18

Family

ID=73995412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115807A Active JP7260413B2 (ja) 2019-06-21 2019-06-21 共重合体の製造方法

Country Status (5)

Country Link
US (1) US20220220238A1 (ja)
EP (1) EP3988583A4 (ja)
JP (1) JP7260413B2 (ja)
CN (1) CN113906060B (ja)
WO (1) WO2020255761A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131965A (ja) 2010-11-30 2012-07-12 Bridgestone Corp 共重合体及びその製造方法、並びに、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2013155359A (ja) 2012-01-31 2013-08-15 Bridgestone Corp 空気入りタイヤ
JP2016210940A (ja) 2015-05-12 2016-12-15 株式会社ブリヂストン イソブチレン系重合体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065301A1 (ja) * 2015-10-16 2017-04-20 株式会社ブリヂストン 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
WO2017065299A1 (ja) * 2015-10-16 2017-04-20 株式会社ブリヂストン 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
JP7002310B2 (ja) * 2017-12-05 2022-02-04 株式会社ブリヂストン 多元共重合体の製造方法
JP7336454B2 (ja) * 2018-09-25 2023-08-31 株式会社ブリヂストン 多元共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131965A (ja) 2010-11-30 2012-07-12 Bridgestone Corp 共重合体及びその製造方法、並びに、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2013155359A (ja) 2012-01-31 2013-08-15 Bridgestone Corp 空気入りタイヤ
JP2016210940A (ja) 2015-05-12 2016-12-15 株式会社ブリヂストン イソブチレン系重合体の製造方法

Also Published As

Publication number Publication date
EP3988583A1 (en) 2022-04-27
CN113906060B (zh) 2023-05-09
JP2021001283A (ja) 2021-01-07
EP3988583A4 (en) 2023-08-02
WO2020255761A1 (ja) 2020-12-24
US20220220238A1 (en) 2022-07-14
CN113906060A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
JP5918345B2 (ja) 共重合体の製造方法
RU2663660C2 (ru) Способ получения многокомпонентного сополимера
JP5918132B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5918134B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ
JP5771683B2 (ja) ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012014457A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JPWO2012014455A1 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012105274A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP7155112B2 (ja) 多元共重合体の製造方法、多元共重合体、ゴム組成物およびタイヤ
JP7155113B2 (ja) 多元共重合体の製造方法、多元共重合体、ゴム組成物およびタイヤ
JP7404350B2 (ja) ポリイソプレンの製造方法
JP6983048B2 (ja) 共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品
JP7260413B2 (ja) 共重合体の製造方法
JP5823674B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体
JP2013151583A (ja) ゴム組成物、ビードフィラー、チェーファー及びタイヤ
JP5612511B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5675434B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5898978B2 (ja) 空気ばね用ゴム組成物及びそれを用いた空気ばね
JP5917886B2 (ja) 共役ジエン系重合体
JP5917808B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2022123993A1 (ja) 共重合体、ゴム組成物及び樹脂組成物
JP7244432B2 (ja) 共重合体、共重合体の製造方法、ゴム組成物及びタイヤ
JP2022090555A (ja) 共重合体、ゴム組成物及び樹脂組成物
JP5557642B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体
JP5656686B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7260413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150