WO2022123993A1 - 共重合体、ゴム組成物及び樹脂組成物 - Google Patents

共重合体、ゴム組成物及び樹脂組成物 Download PDF

Info

Publication number
WO2022123993A1
WO2022123993A1 PCT/JP2021/041396 JP2021041396W WO2022123993A1 WO 2022123993 A1 WO2022123993 A1 WO 2022123993A1 JP 2021041396 W JP2021041396 W JP 2021041396W WO 2022123993 A1 WO2022123993 A1 WO 2022123993A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
copolymer
compound
mol
component
Prior art date
Application number
PCT/JP2021/041396
Other languages
English (en)
French (fr)
Inventor
重永 高野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2022123993A1 publication Critical patent/WO2022123993A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a copolymer, a rubber composition and a resin composition.
  • Patent Document 1 describes a copolymer of a conjugated diene compound and a non-conjugated olefin as a copolymer having excellent wettability and low temperature characteristics, which is 1 with respect to the total amount of conjugated diene units derived from the conjugated diene compound.
  • the 2-vinyl bond amount is 10 mol% or more
  • the cis-1,4 bond amount is 50 to 90 mol%
  • the content of the non-conjugated olefin unit derived from the non-conjugated olefin in the copolymer is 18 mol% to 45 mol. % Is disclosed.
  • Another object of the present invention is to provide a copolymer having excellent cut resistance and ozone resistance. Another object of the present invention is to provide a rubber composition and a resin composition containing such a copolymer and having excellent cut resistance and ozone resistance.
  • the gist structure of the present invention that solves the above problems is as follows.
  • the copolymer of the present invention is a copolymer having a conjugated diene unit and a non-conjugated olefin unit.
  • the ratio of the non-conjugated olefin unit is 50 mol% or more, and the ratio is 50 mol% or more.
  • the endothermic peak energy ( ⁇ H 2 ) in the range of 100 ° C. or higher and 150 ° C. or lower as measured by a differential scanning calorimeter (DSC) is larger than the endothermic peak energy ( ⁇ H 1 ) in the range of 0 ° C. or higher and lower than 100 ° C. It is characterized by.
  • the rubber composition of the present invention is characterized by containing the above-mentioned copolymer of the present invention.
  • the resin composition of the present invention is characterized by containing the above-mentioned copolymer of the present invention.
  • the present invention it is possible to provide a copolymer having excellent cut resistance and ozone resistance. Further, according to the present invention, it is possible to provide a rubber composition and a resin composition having excellent cut resistance and ozone resistance.
  • FIG. It is a DSC chart of the copolymer of Example 1.
  • FIG. It is a DSC chart of the copolymer of Example 2.
  • FIG. It is a DSC chart of the copolymer of Comparative Example 1.
  • copolymer of the present embodiment is a copolymer having a conjugated diene unit and a non-conjugated olefin unit.
  • the ratio of the non-conjugated olefin unit is 50 mol% or more, and the heat absorption peak energy ( ⁇ H 2 ) in the range of 100 ° C. or higher and 150 ° C. or lower as measured by a differential scanning calorimeter (DSC) is 0 ° C. or higher and lower than 100 ° C. It is characterized in that it is larger than the heat absorption peak energy ( ⁇ H 1 ) in the range of.
  • the proportion of the non-conjugated olefin unit in the above-mentioned copolymer is 50 mol% or more, the amount of double bonds derived from the diene component including the conjugated diene compound is small, and as a result, ozone resistance is improved. Can be improved.
  • the endothermic peak energy ( ⁇ H 2 ) in the range of 100 ° C. or higher and 150 ° C. or lower as measured by a differential scanning calorimeter (DSC) is in the range of 0 ° C. or higher and lower than 100 ° C. It is larger than the endothermic peak energy ( ⁇ H 1 ) ( ⁇ H 2 > ⁇ H 1 ).
  • the fact that the endothermic peak energy is higher on the high temperature side than on the low temperature side with the boundary of 100 ° C. means that the chain derived from the non-conjugated olefin compound is longer. Then, due to such a long chain, crystal melting energy is generated when an impact such as a cut is received, so that the cut resistance can be improved.
  • the ratio of the non-conjugated olefin unit in the copolymer is less than 50 mol%, at least one of ozone resistance and cut resistance becomes insufficient even if ⁇ H 2 > ⁇ H 1 . It is considered to be.
  • the copolymer of the present embodiment preferably has an endothermic peak energy ( ⁇ H 1 ) in the range of 0 ° C. or higher and lower than 100 ° C. of 30 J / g or less.
  • the ratio of the short chain portion to the entire portion derived from the non-conjugated olefin compound is reduced, and the cut resistance can be improved more efficiently.
  • the endothermic peak energy ( ⁇ H 1 ) of the copolymer in the range of 0 ° C. or higher and lower than 100 ° C. is more preferably 27 J / g or less, further preferably 25 J / g or less, and further preferably 20 J / g. It is more preferably / g or less.
  • the copolymer of the present embodiment preferably has an endothermic peak energy ( ⁇ H 2 ) of 35 J / g or more in the range of 100 ° C. or higher and 150 ° C. or lower.
  • the proportion of the long chained portion in the entire portion derived from the non-conjugated olefin compound becomes large, and the cut resistance can be improved more efficiently.
  • the endothermic peak energy ( ⁇ H 2 ) of the copolymer in the range of 100 ° C. or higher and 150 ° C. or lower is more preferably 40 J / g or higher, and further preferably 45 J / g or higher.
  • the upper limit of the endothermic peak energy ( ⁇ H 2 ) in the range of 100 ° C. or higher and 150 ° C. or lower is not particularly limited, but is preferably 200 J / g or less from the viewpoint of maintaining good workability.
  • / ⁇ H 2 ) is preferably 0.63 or less.
  • the proportion of the long chained portion in the entire portion derived from the non-conjugated olefin compound becomes large, and the cut resistance can be improved more efficiently.
  • the above ratio ( ⁇ H 1 / ⁇ H 2 ) is more preferably 0.60 or less, further preferably 0.55 or less, particularly preferably 0.50 or less, and 0. It is more preferably .45 or less.
  • the copolymer of the present embodiment has at least a conjugated diene unit and a non-conjugated olefin unit as a monomer unit, and may consist of only a conjugated diene unit and a non-conjugated olefin unit, or another single amount. It may have a body unit.
  • the conjugated diene unit is a monomer unit derived from the conjugated diene compound.
  • the conjugated diene unit enables cross-linking (vulcanization) of the copolymer, and can exhibit elongation and strength as rubber.
  • the conjugated diene compound refers to a conjugated diene compound.
  • the conjugated diene compound as the monomer of the copolymer preferably has 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the conjugated diene compound as a monomer of the copolymer preferably contains 1,3-butadiene and / or isoprene from the viewpoint of effectively improving durability including cut resistance. , 3-butadiene and / or isoprene alone is more preferred, and 1,3-butadiene alone is even more preferred.
  • the conjugated diene unit in the copolymer preferably contains 1,3-butadiene units and / or isoprene units, and more preferably consists of only 1,3-butadiene units and / or isoprene units. , 1,3-butadiene units are more preferred.
  • the ratio of conjugated diene units in the above copolymer is preferably 5 mol% or more, and less than 50 mol%.
  • the ratio of the conjugated diene unit in the above-mentioned copolymer is 5 mol% or more, the elongation is excellent, and the durability including the cut resistance can be further improved.
  • the ratio of the conjugated diene unit in the above-mentioned copolymer is more preferably 10 mol% or more, further preferably 15 mol% or more.
  • the ratio of the conjugated diene unit in the above-mentioned copolymer is preferably 45 mol% or less, more preferably 40 mol% or less, and more preferably 35 mol% or less from the viewpoint of further improving ozone resistance. More preferred.
  • the non-conjugated olefin unit is a monomer unit derived from a non-conjugated olefin compound.
  • the copolymer has non-conjugated olefin units, which can result in crystallinity.
  • the non-conjugated olefin compound is an aliphatic unsaturated hydrocarbon and refers to a compound having one or more carbon-carbon double bonds.
  • the non-conjugated olefin compound as the monomer of the copolymer preferably has 2 to 10 carbon atoms.
  • non-conjugated olefin compound examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene, vinyl pivalate and 1-phenylthioethane. , N-vinylpyrrolidone and other heteroatomic substituted alkene compounds and the like.
  • the non-conjugated olefin compound may be used alone or in combination of two or more.
  • the non-conjugated olefin compound as the monomer of the copolymer is preferably an acyclic non-conjugated olefin compound, more preferably an ⁇ -olefin, from the viewpoint of further improving the ozone resistance. It is more preferably an ⁇ -olefin containing ethylene, and even more preferably composed only of ethylene.
  • the non-conjugated olefin unit in the copolymer is preferably an acyclic non-conjugated olefin unit, more preferably an ⁇ -olefin unit, and is an ⁇ -olefin unit containing an ethylene unit. It is more preferable that it is composed of only ethylene units.
  • the ratio of the non-conjugated olefin unit in the above copolymer is preferably 50 mol% or more, and preferably 95 mol% or less. If the proportion of the non-conjugated olefin unit in the copolymer is less than 50 mol%, the ozone resistance may not be sufficiently improved. On the other hand, when the ratio of the non-conjugated olefin unit in the above copolymer is 95 mol% or less, the ratio of the conjugated diene unit increases, and the fracture characteristics (particularly, elongation at break (EB)) can be improved.
  • EB elongation at break
  • the proportion of the non-conjugated olefin unit in the copolymer is preferably 55 mol% or more, more preferably 60 mol% or more, further preferably 65 mol% or more, and 90 mol or more. % Or less, more preferably 85 mol% or less.
  • the copolymer preferably has a conjugated diene unit ratio of 5 mol% or more and less than 50 mol%, and a non-conjugated olefin unit ratio of 50 mol% or more and 95 mol% or less.
  • the cut resistance can be further improved and the ozone resistance can be further improved.
  • the copolymer may have other monomer units other than the conjugated diene unit and the non-conjugated olefin unit.
  • the copolymer may further have an aromatic vinyl unit as another monomer unit.
  • the aromatic vinyl unit is a monomer unit derived from an aromatic vinyl compound.
  • the aromatic vinyl compound refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound.
  • the aromatic vinyl compound as the monomer of the copolymer preferably has 8 to 10 carbon atoms. Specific examples of such aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-ethylstyrene. And so on.
  • the aromatic vinyl compound may be used alone or in combination of two or more.
  • the aromatic vinyl compound as the monomer of the copolymer preferably contains styrene, and more preferably consists only of styrene.
  • the aromatic vinyl unit in the copolymer preferably contains a styrene unit, and more preferably consists of only a styrene unit.
  • the aromatic ring in the aromatic vinyl unit is not included in the main chain of the copolymer unless it is bonded to an adjacent unit.
  • the ratio of the aromatic vinyl units is preferably 1 mol% or more, and more preferably 30 mol% or less.
  • the ratio of the aromatic vinyl unit in the above copolymer is 1 mol% or more, the fracture property at high temperature can be improved. Further, when the ratio of the aromatic vinyl unit in the above copolymer is 30 mol% or less, the effect of the conjugated diene unit and the non-conjugated olefin unit can be sufficiently exhibited.
  • the ratio of the other monomer units in the copolymer is preferably 20 mol% or less, preferably 10 mol% or less, from the viewpoint of more reliably obtaining the desired effect. It is more preferably 5 mol% or less, and particularly preferably 0 mol% (that is, the copolymer consists of only conjugated diene units and non-conjugated olefin units).
  • the above-mentioned copolymer has a ratio of butylene units of 0 mol% (does not have butylene units). That is, the copolymer does not contain hydrogenated styrene-butadiene copolymers such as styrene-ethylene / butylene-styrene (SEBS).
  • SEBS hydrogenated styrene-butadiene copolymers
  • the main chain may have a cyclic structure, or the main chain may have only a non-cyclic structure.
  • the main chain has a non-cyclic structure, durability such as cut resistance can be further improved.
  • NMR is used as a main measuring means for confirming whether or not the main chain of the copolymer has a cyclic structure. Specifically, when a peak derived from the cyclic structure existing in the main chain (for example, a peak appearing at 10 to 24 ppm for a three-membered ring to a five-membered ring) is not observed, the main chain of the copolymer is determined. It is shown that it consists only of a non-cyclic structure. On the other hand, when the peak is observed, it indicates that the backbone has a cyclic structure.
  • the copolymer of the present embodiment preferably has a crystallization degree of 0.5% or more and 60% or less.
  • the degree of crystallization is 0.5% or more, the cut resistance can be more sufficiently improved, and when it is 60% or less, appropriate rigidity can be ensured.
  • the degree of crystallization of the copolymer is more preferably 5% or more, further preferably 10% or more, further preferably 15% or more, and 55% or less. It is more preferably present, more preferably 50% or less, and even more preferably 45% or less.
  • the degree of crystallization is a degree of crystallization in the range of 0 to 150 ° C., for example, when the degree of crystallization is divided into a degree of crystallization of less than 0 to 100 ° C. and a degree of crystallization of 100 ° C. to 150 ° C. The sum of these values is the degree of crystallization in the range of 0 to 150 ° C.
  • the copolymer of the present embodiment preferably has a crystallization degree (C 2 ) of 10% or more and 50% or less in the range of 100 ° C. or higher and 150 ° C. or lower.
  • C 2 crystallization degree
  • the degree of crystallization in the range of 100 ° C. or higher and 150 ° C. or lower is 10% or more, the proportion of the long chained portion in the entire portion derived from the non-conjugated olefin compound in the copolymer increases, and the cut resistance is further improved. It can be improved efficiently.
  • the crystallization degree in the range of 100 ° C. or higher and 150 ° C. or lower is 50% or less, good workability can be maintained.
  • the copolymer of the present embodiment preferably has a melting point of 100 ° C. or higher as measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the melting point of the copolymer is more preferably 105 ° C. or higher, further preferably 110 ° C. or higher, and even more preferably 115 ° C. or higher.
  • the upper limit of the melting point of the copolymer is not particularly limited, but it is preferably 200 ° C. or lower from the viewpoint of maintaining good workability.
  • the melting point is a value measured according to JIS K 7121-1987 using a differential scanning calorimeter.
  • the copolymer of the present embodiment preferably has a glass transition temperature of 0 ° C. or lower as measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the glass transition temperature of the copolymer is more preferably ⁇ 50 ° C. or lower, further preferably ⁇ 80 ° C. or lower, and further preferably ⁇ 100 ° C. or lower.
  • the lower limit of the glass transition temperature of the copolymer is not particularly limited, but is preferably ⁇ 150 ° C. or higher.
  • the glass transition temperature is a value measured according to JIS K 7121-1987 using a differential scanning calorimeter.
  • the copolymer of the present embodiment preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 50,000 to 2,000,000.
  • Mw polystyrene-equivalent weight average molecular weight
  • the Mw of the above-mentioned copolymer is more preferably 100,000 or more, further preferably 150,000 or more, and further preferably 1,000,000 or less. It is more preferably 800,000 or less.
  • the copolymer of the present embodiment preferably has a polystyrene-equivalent number average molecular weight (Mn) of 50,000 to 2,000,000.
  • Mn polystyrene-equivalent number average molecular weight
  • the Mn of the above-mentioned copolymer is more preferably 80,000 or more, further preferably 100,000 or more, and further preferably 1,000,000 or less. It is more preferably 500,000 or less, and particularly preferably 300,000 or less.
  • the copolymer of the present embodiment preferably has a molecular weight distribution [Mw / Mn (weight average molecular weight / number average molecular weight)] of 1.00 to 4.00, and preferably 1.50 to 3.50. It is more preferably 1.80 to 3.00, and even more preferably 1.80 to 3.00.
  • Mw / Mn weight average molecular weight / number average molecular weight
  • the molecular weight distribution of the copolymer is 4.00 or less, sufficient homogeneity can be brought about in the physical properties of the copolymer.
  • the molecular weight distribution of the copolymer is more preferably 3.50 or less, and further preferably 3.00 or less.
  • the molecular weight distribution of the above-mentioned copolymer is more preferably 1.50 or more, and further preferably 1.80 or more.
  • polystyrene is used as a standard substance by gel permeation chromatography (GPC).
  • the above-mentioned copolymer of the present embodiment can be prepared, for example, by polymerizing a predetermined monomer using a catalyst component described later. At that time, it is important to control the type and composition of the catalyst components, the ratio of each catalyst component to the amount (or pressure) of the monomers to be added, the timing of the addition of each monomer, the polymerization time, etc. in a complex manner. Is.
  • the copolymer of the present embodiment can be produced through a step of polymerizing using a conjugated diene compound, a non-conjugated olefin compound, and other monomers, if necessary, and further, if necessary. It may go through a coupling step, a cleaning step, and other steps.
  • any method such as a solution polymerization method, a suspension polymerization method, a liquid phase massive polymerization method, an emulsion polymerization method, a vapor phase polymerization method, and a solid phase polymerization method can be used.
  • the solvent may be any one inactive in the polymerization reaction, and examples thereof include toluene, cyclohexane, normal hexane and the like.
  • the polymerization step may be carried out in one step or in multiple steps of two or more steps.
  • the one-step polymerization step is to polymerize all kinds of monomers, i.e., non-conjugated olefin compounds, conjugated diene compounds, and any other monomers, preferably non-conjugated olefin compounds and conjugated diene compounds.
  • It is a step of reacting all at once to polymerize.
  • a part or all of one or two kinds of monomers are first reacted to form a polymer (first polymerization step), and then the remaining kinds of monomers are formed.
  • This is a step of polymerizing by performing one or more steps (second polymerization step to final polymerization step) in which the remainder of the one or two kinds of monomers is added and polymerized.
  • the polymerization temperature is not particularly limited, but is preferably in the range of ⁇ 100 ° C. to 200 ° C., and may be about room temperature.
  • the pressure of the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system.
  • the time spent on the polymerization is preferably in the range of, for example, 1 second to 10 days, but can be appropriately selected depending on the conditions such as the type of the polymerization catalyst and the polymerization temperature. In particular, when the polymerization temperature is 25 to 80 ° C., the range of 5 minutes to 500 minutes is preferable.
  • a polymerization terminator such as methanol, ethanol, or isopropanol may be used to terminate the polymerization.
  • Each monomer raw material may be added simultaneously or sequentially.
  • a monomer raw material that is a gas under the conditions of the polymerization system for example, ethylene as a non-conjugated olefin compound under the conditions of room temperature and normal pressure
  • the above-mentioned monomer is polymerized in the presence of one or more of the following components (A) to (F).
  • the polymerization step it is preferable to use one or more of the following components (A) to (F) as the catalyst component, but a catalyst composition can be obtained by combining two or more of the following components (A) to (F). It is more preferable to use as.
  • the rare earth element compound or the reaction product of the rare earth element compound and the Lewis base is a rare earth element compound having a rare earth element-carbon bond or a reaction product of the rare earth element compound and the Lewis base (hereinafter,). , "(A-1) component”), a rare earth element compound having no carbon bond, or a reaction product of the rare earth element compound and a Lewis base (hereinafter, also referred to as "(A-2) component"). ) Is mentioned.
  • Examples of the component (A-1) include the following general formula (I-1): [In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R independently represents an unsubstituted or substituted indenyl, and Ra to R f independently represent an alkyl having 1 to 3 carbon atoms.
  • a group or a hydrogen atom L indicates a neutral Lewis base, w indicates an integer of 0 to 3], and the following general formula (I-2): [In the formula, M, Cp R , Ra to R f , L, and w are the same as in the formula (I-1 ) , and R g to R l are Each independently represents an alkyl group or a hydrogen atom having 1 to 3 carbon atoms], the following general formula (II-1) :.
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R independently represents an unsubstituted or substituted indenyl
  • X' is a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, or an amino group.
  • L represents a neutral Lewis base
  • w represents an integer of 0 to 3]
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R' represents an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl
  • X is a hydrogen atom, a halogen atom, an alkoxy group or a thiolate group.
  • Amino group, silyl group or monovalent hydrocarbon group having 1 to 20 carbon atoms indicates a neutral Lewis base
  • w indicates an integer of 0 to 3
  • a half-metallosen cation complex represented by [showing a coordinating anion] can be mentioned.
  • Cp R in the formula is an unsubstituted indenyl or a substituted indenyl.
  • Cp R with an indenyl ring as the basic skeleton can be represented by C 9 H 7-x R x or C 9 H 11-x R x .
  • X is an integer of 0 to 7 or 0 to 11.
  • R is independently a hydrocarbyl group or a metalloid group. The number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8.
  • hydrocarbyl group examples include a methyl group, an ethyl group, a phenyl group, a benzyl group and the like.
  • examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group possessed by the metalloid group is the above-mentioned hydrocarbyl group. The same is true.
  • Specific examples of the metalloid group include a trimethylsilyl group and the like.
  • substituted indenyl examples include 2-phenylindenyl, 2-methylindenyl and the like.
  • the two Cp Rs in the general formulas (I-1) and (II-1) may be the same or different from each other.
  • Cp R'in the formula is an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, an unsubstituted or substituted indenyl. Is preferable.
  • Cp R'with the cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-x R x .
  • X is an integer of 0 to 5.
  • R is independently a hydrocarbyl group or a metalloid group.
  • the number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, a benzyl group and the like.
  • examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group possessed by the metalloid group is the above-mentioned hydrocarbyl group.
  • Specific examples of the metalloid group include a trimethylsilyl group and the like.
  • Specific examples of Cp R'with a cyclopentadienyl ring as a basic skeleton are as follows. [In the formula, R represents a hydrogen atom, a methyl group or an ethyl group. ]
  • Cp R'with the indenyl ring as the basic skeleton is defined in the same manner as the Cp R in the general formulas (I-1) and (II-1), and the preferred examples are also the same.
  • Cp R'with the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-x R x or C 13 H 17-x R x .
  • X is an integer of 0 to 9 or 0 to 17.
  • R is independently a hydrocarbyl group or a metalloid group.
  • the number of carbon atoms of the hydrocarbyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, a benzyl group and the like.
  • examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group possessed by the metalloid group is the above-mentioned hydrocarbyl group.
  • Specific examples of the metalloid group include a trimethylsilyl group and the like.
  • the central metal M in each general formula is a lanthanoid element, scandium or yttrium.
  • the lanthanoid element includes 15 elements having atomic numbers 57 to 71, and any of these may be used.
  • Preferable examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, formium Ho, scandium Sc and yttrium Y.
  • the complex represented by the general formulas (I-1) and (I-2) contains a silylamide ligand [-N (SiR 3 ) 2 ].
  • the R groups (Ra to R f , R g to R l ) contained in the silylamide ligand are independently alkyl groups or hydrogen atoms having 1 to 3 carbon atoms. Further, it is preferable that at least one of the R groups is a hydrogen atom. By making at least one of the R groups a hydrogen atom, the synthesis of the catalyst becomes easy, and the bulkiness around silicon becomes low, so that a non-conjugated olefin compound or an aromatic vinyl compound can be easily introduced. ..
  • R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom.
  • R a to R c is a hydrogen atom
  • at least one of R d to R f is a hydrogen atom
  • at least one of R g to R i is.
  • one is a hydrogen atom and at least one of R j to R l is a hydrogen atom.
  • alkyl group a methyl group is preferable.
  • the complexes represented by the general formulas (II-1) and (II-2) contain a silyl ligand [ -SiX'3 ].
  • X'contained in the silyl ligand [ -SiX'3 ] is a group defined in the same manner as X in the general formula (III) described below, and is also the preferred group.
  • X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group and a monovalent hydrocarbon group having 1 to 20 carbon atoms. ..
  • the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferable.
  • the alkoxy group represented by X includes an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group and a tert-butoxy group; a phenoxy group.
  • 2,6-di-tert-butylphenoxy group 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6
  • Examples thereof include an aryloxy group such as a neopentylphenoxy group and a 2-isopropyl-6-neopentylphenoxy group, and among these, a 2,6-di-tert-butylphenoxy group is preferable.
  • examples of the thiolate group represented by X include fats such as thiomethoxy group, thioethoxy group, thiopropoxy group, thion-butoxy group, thioisobutoxy group, thiosec-butoxy group and thiotert-butoxy group.
  • Group thiolate group thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl
  • Examples thereof include an arylthiolate group such as a thiophenoxy group, a 2-tert-butyl-6-thioneopentylphenoxy group, a 2-isopropyl-6-thioneopentylphenoxy group and a 2,4,6-triisopropylthiophenoxy group. Of these, 2,4,6-triisopropylthiophenoxy group is preferable.
  • the amino group represented by X is an aliphatic amino group such as a dimethylamino group, a diethylamino group, or a diisopropylamino group; a phenylamino group, a 2,6-di-tert-butylphenylamino group, 2 , 6-diisopropylphenylamino group, 2,6-dineopentylphenylamino group, 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl- Arylamino groups such as 6-neopentylphenylamino group and 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group are mentioned, and among these, bistrimethylsilyl group. Amino groups are preferred.
  • examples of the silyl group represented by X include a trimethylsilyl group, a tris (trimethylsilyl) silyl group, a bis (trimethylsilyl) methylsilyl group, a trimethylsilyl (dimethyl) silyl group, and a triisopropylsilyl (bistrimethylsilyl) silyl group.
  • the tris (trimethylsilyl) silyl group is preferable.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by X specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like.
  • Linear or branched aliphatic hydrocarbon groups such as isobutyl group, sec-butyl group, tert-butyl group, neopentyl group, hexyl group and octyl group; aromatic hydrocarbons such as phenyl group, trill group and naphthyl group.
  • aralkyl group such as benzyl group
  • hydrocarbon group containing silicon atom such as trimethylsilylmethyl group and bistrimethylsilylmethyl group, among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl Group and the like are preferable.
  • X a bistrimethylsilylamino group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable.
  • examples of the non-coordinating anion represented by [B] ⁇ include a tetravalent boron anion.
  • Specific examples of the tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, and tetrakis (tetrakis).
  • Pentafluorophenyl) borate tetrakis (tetrafluoromethylphenyl) borate, tetra (trill) borate, tetra (kisilyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Examples thereof include decahydride-7,8-dicarbaundecaborate, and among these, tetrakis (pentafluorophenyl) borate is preferable.
  • the number of the complexes represented by the general formulas (I-1), (I-2), (II-1), (II-2) and (III) is further 0 to 3, preferably 0 to 1.
  • Contains the neutral Lewis base L containing the neutral Lewis base L.
  • examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the neutral Lewis bases L may be the same or different.
  • the complex represented by the above general formulas (I-1), (I-2), (II-1), (II-2) and (III) may exist as a monomer. It may exist as a dimer or a multimer.
  • the metallocene complex represented by the above general formula (I-1) is, for example, a lanthanoid trishalide, a scandium trishalide or an ittrium trishalide in a solvent, an indenyl salt (for example, a potassium salt or a lithium salt) and a bis (tri). It can be obtained by reacting with a salt of an alkylsilyl) amine (eg, a potassium salt or a lithium salt). Since the reaction temperature may be about room temperature, it can be produced under mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product, and for example, toluene may be used.
  • An example of the reaction for obtaining the metallocene complex represented by the general formula (I-1) is shown below. [In the formula, X'' indicates a halide. ]
  • the metallocene complex represented by the above general formula (II-1) is, for example, a lanthanoid trishalide, a scandium trishalide or an ittrium trishalide in a solvent, an indenyl salt (for example, a potassium salt or a lithium salt) and a silyl salt. It can be obtained by reacting with (for example, a potassium salt or a lithium salt). Since the reaction temperature may be about room temperature, it can be produced under mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours.
  • the reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product, and for example, toluene may be used.
  • An example of the reaction for obtaining the metallocene complex represented by the general formula (II-1) is shown below. [In the formula, X'' indicates a halide. ]
  • the half metallocene cation complex represented by the above general formula (III) can be obtained, for example, by any of the following reactions.
  • M represents a lanthanoid element, scandium or yttrium, and Cp R'is independently unsubstituted or substituted cyclopenta, respectively. It represents dienyl, indenyl or fluorenyl, X represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group or a monovalent hydrocarbon group having 1 to 20 carbon atoms, and L is neutral. It indicates a Lewis base, and w indicates an integer of 0 to 3. Further, in the ionic compound represented by the general formula [A] + [B] ⁇ , [A] + represents a cation and [B] ⁇ represents a non-coordinating anion.
  • Examples of the cation represented by + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, a ferrosenium cation having a transition metal, and the like.
  • Examples of the carbonium cation include a triphenyl carbonium cation, a tri-substituted carbonium cation such as a tri (substituted phenyl) carbonium cation, and the like, and the tri (substituted phenyl) carbonyl cation is specifically a tri (methylphenyl) cation. ) Carbonyl cation and the like.
  • Examples of the amine cation include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- Examples include N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cations; dialkylammonium cations such as diisopropylammonium cations and dicyclohexylammonium cations.
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cations or carbonium cations are preferable, and N, N-dialkylanilinium cations are particularly preferable.
  • the ionic compound represented by the general formula [ A] + [B]-used in the above reaction is a compound selected and combined from the above non-coordinating anions and cations, respectively, and N, N-dimethylanily. Ionic tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. Further, the ionic compound represented by the general formula [A] + [B] ⁇ is preferably added in an amount of 0.1 to 10 times mol, more preferably about 1 time mol, with respect to the metallocene complex.
  • the half metallocene cation complex represented by the general formula (III) When the half metallocene cation complex represented by the general formula (III) is used in the polymerization reaction, the half metallocene cation complex represented by the general formula (III) may be provided as it is in the polymerization reaction system, or the above The compound represented by the general formula (IV-1) or (IV-2) used in the reaction and the ionic compound represented by the general formula [A] + [B] -are separately provided in the polymerization reaction system. A half metallocene cation complex represented by the general formula (III) may be formed in the reaction system.
  • a metallocene complex represented by the general formula (I-1) or (I-2), or the general formula (II-1) or (II-2), and the general formula [A] + [B] - By using it in combination with the represented ionic compound, a half metallocene cation complex represented by the general formula (III) can also be formed in the reaction system.
  • the structure of the complex represented by the above general formulas (I-1), (I-2), (II-1), (II-2) and (III) is preferably determined by X-ray structure analysis.
  • the component (A-2) is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, and has no bond between the rare earth element and carbon.
  • the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle.
  • the rare earth element compound is a rare earth element (M), that is, a lanthanoid element composed of elements having atomic numbers 57 to 71 in the periodic table, or a compound containing scandium or yttrium.
  • the lanthanoid element include lanthanum, cerium, placeodim, neodym, promethium, samarium, europium, gadolinium, terbium, dysprosium, formium, erbium, thulium, ytterbium, and lutetium.
  • the component (A-2) may be used alone or in combination of two or more.
  • the rare earth element compound is preferably a salt or a complex compound of a divalent or trivalent rare earth metal, and one or more coordinations selected from hydrogen atoms, halogen atoms and organic compound residues. It is more preferably a rare earth element compound containing a child.
  • the rare earth element compound or the reaction product of the rare earth element compound and the Lewis base is described in the following general formula (VIII) or (IX): M 11 X 11 2 ⁇ L 11 w ... (VIII) M 11 X 11 3 ⁇ L 11 w ...
  • M 11 represents a lanthanoid element, scandium or yttrium
  • X 11 independently represents a hydrogen atom, a halogen atom, an alkoxy group, a thiolate group, an amino group, a silyl group, an aldehyde residue, and the like. It indicates a ketone residue, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 indicates a Lewis base, and w indicates 0 to 3].
  • a hydrogen atom, a halogen atom, an alkoxy group (a group excluding hydrogen from the hydroxyl group of alcohol and forming a metal alkoxide), and a thiolate group A hydrogen-free group of the thiol group of a thiol compound, which forms a metal thiolate, and an amino group (a group without one hydrogen atom bonded to the nitrogen atom of an ammonia, a primary amine, or a secondary amine).
  • the group (ligon) include a hydrogen atom; an aliphatic alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; Phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl -6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group,
  • Arylthiolate groups such as -6-isopropylthiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group.
  • An aliphatic amino group such as a dimethylamino group, a diethylamino group, or a diisopropylamino group; a phenylamino group, a 2,6-di-tert-butylphenylamino group, a 2,6-diisopropylphenylamino group, a 2,6-dineo group.
  • aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2'-hydroxyacetophenone, 2'-hydroxybutyrophenone.
  • Residues of hydroxyphenone such as 2,'-hydroxypropiophenone; Ketone residues such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone (particularly residues of diketone); Isoyoshi Grass acid, capric acid, octanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, pivalic acid, versatic acid [Shell Chemistry (Shell Chemistry (Shell Chemistry (Shell Chemistry) Trade name manufactured by Co., Ltd., synthetic acid composed of a mixture of isomers of C10 monocarboxylic acid], residues of carboxylic acids such as phenylacetic acid, benzoic acid, 2-
  • Lewis base examples include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, and neutral diolefins.
  • the Lewis base L 11 may be the same. It may be different.
  • the rare earth element compound is described in the following general formula (X): M- (AQ 1 ) (AQ 2 ) (AQ 3 ) ... (X)
  • M is a scandium, yttrium or lanthanoid element
  • AQ 1 , AQ 2 and AQ 3 are functional groups that may be the same or different
  • A is nitrogen, oxygen or sulfur. Yes; however, compounds represented by [with at least one MA bond] are preferred.
  • the lanthanoid element is specifically lanthanum, cerium, placeodim, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, formium, erbium, thulium, ytterbium, and lutetium.
  • the compound is a component capable of improving the catalytic activity in the reaction system, shortening the reaction time, and raising the reaction temperature.
  • gadolinium is particularly preferable from the viewpoint of enhancing catalytic activity and reaction controllability.
  • examples of the functional group represented by AQ 1 , AQ 2 and AQ 3 include an amino group and the like. And in this case, it has three MN bonds.
  • amino group examples include aliphatic amino groups such as dimethylamino group, diethylamino group and diisopropylamino group; phenylamino group, 2,6-di-tert-butylphenylamino group and 2,6-diisopropylphenylamino group.
  • 2,6-Zineopentylphenylamino group 2-tert-butyl-6-isopropylphenylamino group, 2-tert-butyl-6-neopentylphenylamino group, 2-isopropyl-6-neopentylphenylamino group, Arylamino groups such as 2,4,6-tri-tert-butylphenylamino group; bistrialkylsilylamino groups such as bistrimethylsilylamino group, and the like, and in particular, solubility in aliphatic hydrocarbons and aromatic hydrocarbons. From the viewpoint of the above, a bistrimethylsilylamino group is preferable.
  • the amino group may be used alone or in combination of two or more.
  • the component (A-2) can be a compound having three MN bonds, each bond is chemically equivalent, and the structure of the compound is stable, so that it is easy to handle. Become. Further, with the above configuration, the catalytic activity in the reaction system can be further improved. Therefore, the reaction time can be further shortened and the reaction temperature can be further increased.
  • the rare earth element-containing compound represented by the general formula (X) (that is, M- (OQ 1 ) (OQ 2 ) (OQ 3 )) is particularly limited.
  • R may be the same or different, and is an alkyl group having 1 to 10 carbon atoms.
  • the rare earth element-containing compound represented by the general formula (X) (that is, M- (SQ 1 ) (SQ 2 ) (SQ 3 )) is particularly limited.
  • R may be the same or different, and is an alkyl group having 1 to 10 carbon atoms.
  • the organometallic compound (component (B)) has the following general formula (XV): YR 1 a R 2 b R 3 c ... (XV) [In the formula, Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are hydrocarbon groups having 1 to 10 carbon atoms or carbon atoms. A hydrogen atom, R 3 is a hydrocarbon group having 1 to 10 carbon atoms, except that R 1 , R 2 and R 3 may be the same or different from each other, and Y is the first group of the periodic table.
  • b and c are 0, and when Y is a metal selected from the second and twelfth groups of the periodic table, a and b. Is 1 and c is 0, and a, b, and c are 1 when Y is a metal selected from Group 13 of the Periodic Table].
  • hydrocarbon group having 1 to 10 carbon atoms represented by R 1 , R 2 and R 3 specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n- Linear or branched aliphatic hydrocarbon groups such as butyl group, isobutyl group, sec-butyl group, tert-butyl group, neopentyl group, hexyl group and octyl group; aromatics such as phenyl group, trill group and naphthyl group. Hydrocarbon groups; aralkyl groups such as benzyl groups are mentioned, and among these, methyl group, ethyl group, isobutyl group and the like are preferable.
  • the component (B) includes the following general formula (XVI): AlR 1 R 2 R 3 ... (XVI) [In the formula, R 1 and R 2 are hydrocarbon groups or hydrogen atoms having 1 to 10 carbon atoms, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, except that R 1 , R 2 and R 3 are used. May be the same or different from each other], preferably organic aluminum compounds.
  • the organoaluminum compound corresponds to a compound in which Y is Al and a, b and c are 1 in the above general formula (XV).
  • Examples of the organic aluminum compound of the general formula (XVI) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, and tripentyl.
  • the component (B) can be used alone or in combination of two or more.
  • the amount of the component (B) used is preferably 1 to 50 times mol, more preferably about 10 times mol, with respect to the component (A). preferable.
  • the aluminoxane (component (C)) is a compound obtained by contacting an organoaluminum compound with a condensing agent.
  • component (C) the catalytic activity in the polymerization reaction system can be further improved, so that the desired copolymer can be easily obtained. Further, the reaction time can be further shortened and the reaction temperature can be further increased.
  • examples of the organic aluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum, and a mixture thereof, and trimethylaluminum, a mixture of trimethylaluminum and tributylaluminum is particularly preferable.
  • examples of the condensing agent include water and the like.
  • Examples of the component (C) include the following formula (XVII): -(Al (R 7 ) O) n -... (XVII) [In the formula, R 7 is a hydrocarbon group having 1 to 10 carbon atoms, where some of the hydrocarbon groups may be substituted with halogen and / or alkoxy groups; R 7 is between repeating units. It may be the same or different; n is 5 or more].
  • the molecular structure of the aluminoxane may be linear or cyclic.
  • the n in the above formula (XVII) is preferably 10 or more.
  • examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isobutyl group and the like, and a methyl group is particularly preferable.
  • the hydrocarbon group may be one kind or a combination of two or more kinds.
  • the hydrocarbon group is preferably a combination of a methyl group and an isobutyl group.
  • the aluminoxane preferably has high solubility in aliphatic hydrocarbons, and preferably has low solubility in aromatic hydrocarbons.
  • aluminoxane commercially available as a hexane solution is preferable.
  • examples of the aliphatic hydrocarbon include hexane and cyclohexane.
  • the component (C) is particularly described by the following formula (XVIII): -(Al (CH 3 ) x (i-C 4 H 9 ) y O) m -... (XVIII) It may be a modified aluminoxane (hereinafter, also referred to as “TMAO”) represented by [in the formula, x + y is 1; m is 5 or more].
  • TMAO modified aluminoxane
  • Examples of TMAO include the product name "TMAO-341" manufactured by Tosoh Fine Chemicals Co., Ltd.
  • component (C) is particularly described in the following formula (XIX) :. -(Al (CH 3 ) 0.7 (i-C 4 H 9 ) 0.3 O) k -... (XIX)
  • XIX It may be a modified aluminoxane (hereinafter, also referred to as “MMAO”) represented by [k is 5 or more in the formula].
  • MMAO include the product name "MMAO-3A" manufactured by Tosoh Fine Chemicals Co., Ltd.
  • component (C) is, in particular, the following formula (XX) :. -[(CH 3 ) AlO] i -... (XX) It may be a modified aluminoxane (hereinafter, also referred to as “PMAO”) represented by [i is 5 or more in the formula].
  • PMAO include the product name "PMAO-211" manufactured by Tosoh Fine Chemicals Co., Ltd.
  • the component (C) is preferably MMAO or TMAO among the MMAO, TMAO, and PMAO from the viewpoint of enhancing the effect of improving the catalytic activity, and particularly from the viewpoint of further enhancing the effect of improving the catalytic activity. It is more preferably TMAO.
  • the component (C) can be used alone or in combination of two or more. Further, from the viewpoint of improving the catalytic activity, the component (C) contains 10 mol of aluminum in the component (C) with respect to 1 mol of the rare earth element in the component (A) when used together with the component (A). It is preferably used so as to be 100 mol or more, further preferably 1000 mol or less, and 800 mol or less. Is even more preferable.
  • the ionic compound (component (D)) is composed of a non-coordinating anion and a cation.
  • the component (D) may include an ionic compound capable of reacting with the component (A) to form a cationic transition metal compound.
  • tetravalent boron anion for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluoro).
  • Phenyl) borate tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (trill) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl) , Phenyl] borate, tridecahydride-7,8-dicarbaundecaborate and the like, and among these, tetrakis (pentafluorophenyl) borate is preferable.
  • examples of the cation include carbonium cation, oxonium cation, amine cation, phosphonium cation, cycloheptatrienyl cation, ferrosenium cation having a transition metal, and the like.
  • Specific examples of the carbonium cation include triphenylcarbonium cations (also referred to as "trityl cations"), tri-substituted carbonium cations such as tri (substituted phenyl) carbonium cations, and tri- (substituted phenyl) carbonyl cations.
  • a tri (methylphenyl) carbonium cation a tri (dimethylphenyl) carbonium cation and the like can be mentioned.
  • the amine cation include an ammonium cation, and specific examples of the ammonium cation include a trimethylammonium cation, a triethylammonium cation, a tripropylammonium cation, a tributylammonium cation (for example, a tri (n-butyl) ammonium cation) and the like.
  • N, N-dialkylanilinium cations such as N, N-dimethylanilinium cations, N, N-diethylanilinium cations, N, N-2,4,6-pentamethylanilinium cations; diisopropyl
  • dialkylammonium cations such as ammonium cations and dicyclohexylammonium cations.
  • Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cations or carbonium cations are preferable, and N, N-dialkylanilinium cations are particularly preferable.
  • ionic compound (component (D)) a compound selected and combined from the above-mentioned non-coordinating anions and cations is preferable, and specifically, N, N-dimethylanilinium tetrakis (pentafluoro) is preferable.
  • Phenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable.
  • the component (D) can be used alone or in combination of two or more.
  • the amount of the component (D) used is preferably 0.1 to 10 times mol, and about 1 times mol, with respect to the component (A) when used together with the above component (A). Is more preferable.
  • halogen compound (component (E)) examples include a halogen-containing compound which is a Lewis acid (hereinafter, also referred to as “component (E-1)”), and a complex compound of a metal halide and a Lewis base (hereinafter, “(”. Examples thereof include “E-2) component”) and an organic compound containing an active halogen (hereinafter, also referred to as "(E-3) component”).
  • component (E) When the component (E) is used together with the component (A) described above, for example, it reacts with the component (A) to form a cationic transition metal compound, a halogenated transition metal compound, or a compound whose transition metal center is insufficiently charged. Can be generated.
  • the elements of the 3rd group, the 4th group, the 5th group, the 6th group, the 8th group, the 13th group, the 14th group or the 15th group in the periodic table for example, the elements of the 3rd group, the 4th group, the 5th group, the 6th group, the 8th group, the 13th group, the 14th group or the 15th group in the periodic table.
  • Halogen compounds containing the above can be used. Preferred are aluminum halides or organometallic halides. Further, as the halogen element, chlorine or bromine is preferable.
  • halogen-containing compound which is Lewis acid examples include methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide, butylaluminum dichloride, dimethylaluminum bromide, and dimethylaluminum chloride.
  • Tri (pentafluorophenyl) borate antimon trichloride, antimon trichloride, phosphorus trichloride, phosphorus pentachloride, tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc.
  • diethylaluminum chloride, ethyl Aluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, and ethylaluminum dibromide are particularly preferred.
  • the above component (E-1) may be used alone or in combination of two or more.
  • Examples of the metal halide constituting the above component (E-2) include berylium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, calcium iodide, and chloride.
  • the Lewis base constituting the component (E-2) is preferably a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol or the like.
  • tributyl phosphate tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoetan, diphenylphosphinoetan, acetylacetone, benzoylacetone.
  • the Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per 1 mol of the metal halide.
  • the reaction product with this Lewis base can be used to reduce the amount of metal remaining in the polymer.
  • the above component (E-2) may be used alone or in combination of two or more.
  • Examples of the above (E-3) component include benzyl chloride and the like.
  • the component (E) can be used alone or in combination of two or more. Further, when the component (E) is used together with the component (A), the amount is preferably 0 to 5 times mol, and further preferably 1 to 5 times mol with respect to the component (A). preferable.
  • the cyclopentadiene skeleton-containing compound (component (F)) has a group selected from a cyclopentadiene group, an indenyl group, and a fluoreneyl group, and the cyclopentadiene skeleton-containing compound (F) is substituted or unsubstituted. At least one compound selected from the group consisting of cyclopentadiene, substituted or unsubstituted indene, substituted or unsubstituted fluorene.
  • the above component (F) may be used alone or in combination of two or more.
  • substituted or unsubstituted cyclopentadiene examples include cyclopentadiene, pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene, (1-benzyldimethylsilyl) cyclopentadiene and the like. Can be mentioned.
  • Examples of the substituted or unsubstituted inden include inden, 2-phenyl-1H-inden, 3-benzyl-1H-inden, 3-methyl-2-phenyl-1H-inden, and 3-benzyl-2-phenyl-.
  • Examples thereof include inden and (1-benzyl-3-t-butyldimethylsilyl) inden, and 3-benzyl-1H-inden and 1-benzyl-1H-inden are particularly preferable from the viewpoint of reducing the molecular weight distribution.
  • substituted or unsubstituted fluorene examples include fluorene, trimethylsilylfluorene, and isopropylfluorene.
  • the cyclopentadiene skeleton-containing compound (component (F)) is preferably substituted cyclopentadiene, substituted indene or substituted fluorene, and more preferably substituted indene.
  • component (F) is preferably substituted cyclopentadiene, substituted indene or substituted fluorene, and more preferably substituted indene.
  • examples of the substituent of the substituted cyclopentadiene, the substituted indene and the substituted fluorene include a hydrocarbyl group and a metalloid group, and the carbon number of the hydrocarbyl group is preferably 1 to 20 and more preferably 1 to 10. It is preferably 1 to 8, and even more preferably.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, a benzyl group and the like.
  • examples of the metalloid of the metalloid group include gelmil Ge, stanyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group of the metalloid group is the same as the above-mentioned hydrocarbyl group.
  • Specific examples of the metalloid group include a trimethylsilyl group and the like.
  • the component (F) can be used alone or in combination of two or more. Further, from the viewpoint of improving the catalytic activity, the amount of the component (F) used is preferably more than 0 as a molar ratio to the component (A) when used together with the component (A), preferably 0.5.
  • the above is more preferable, 1 or more is particularly preferable, 3 or less is preferable, 2.5 or less is further preferable, and 2.2 or less is particularly preferable.
  • Suitable catalyst compositions include the following first catalyst compositions and second catalyst compositions.
  • the first catalyst composition and the second catalyst composition have not been used so far for the polymerization of at least a conjugated diene compound and a non-conjugated olefin compound (synthesis of a binary copolymer).
  • the first catalyst composition contains the component (A-1), the component (B), and the component (D), and further, as optional components, the component (C) and the component (E). It contains one or more of the ingredients.
  • the component (A-1) is a metallocene-based composite catalyst represented by the general formula (V)
  • the component (B) is also an optional component.
  • the second catalyst composition contains the component (A-2), the component (B), and the component (D), and further, as optional components, the component (C) and the component (E). It contains a component and one or more of the components (F).
  • the second catalyst composition contains the component (F)
  • the catalytic activity is improved.
  • the coupling step is a step of performing a reaction (coupling reaction) for modifying at least a part (for example, a terminal) of the polymer chain of the copolymer obtained in the polymerization step.
  • a reaction for example, a terminal
  • the coupling agent used in the coupling reaction is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a tin-containing compound such as bis (-1-octadecyl maleate) dioctyltin (IV); Isocyanate compounds such as 4,4'-diphenylmethane diisocyanate; alkoxysilane compounds such as glycidylpropyltrimethoxysilane, and the like can be mentioned. These may be used alone or in combination of two or more. Among these, bis (-1-octadecyl maleate) dioctyltin (IV) is preferable in terms of reaction efficiency and low gel formation. By performing a coupling reaction, the number average molecular weight (Mn) can be increased.
  • the washing step is a step of washing the copolymer obtained in the polymerization step.
  • the medium used for cleaning is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include methanol, ethanol, isopropanol and the like.
  • a catalyst derived from sulfuric acid is used as the polymerization catalyst.
  • the amount of acid to be added is preferably 15 mol% or less with respect to the solvent. If it is more than this, the acid may remain in the copolymer, which may adversely affect the reaction during kneading and vulcanization.
  • the amount of catalyst residue in the copolymer can be suitably reduced.
  • the copolymer of the present embodiment which is characterized by a curve (DSC curve) obtained by a differential scanning calorimeter, preferably prepares a solution of a conjugated diene compound in a reactor, and then prepares a catalyst component in the reactor. Alternatively, it can be obtained by adding a catalyst composition and heating to a predetermined temperature, and then continuously adding a solution of the conjugated diene compound to the reactor while introducing the non-conjugated olefin compound at a predetermined pressure. Can be done.
  • a curve DSC curve
  • the preparation method for obtaining the above-mentioned copolymer for example, (1) the addition rate of the conjugated diene compound is relatively low (polymerization is carried out over a relatively long time), and (2) a relatively large amount of non-polymer is obtained.
  • examples thereof include the use of a conjugated olefin compound, or (3) a relatively small amount of at least one of the above-mentioned components (B) and (D).
  • the main factor controlling the length of the chain derived from the non-conjugated olefin compound is the concentration of the conjugated diene compound. Therefore, among the above-mentioned ones, (1) and (2), especially (1), are considered to be more important.
  • the rubber composition according to one embodiment of the present invention (hereinafter, may be referred to as "rubber composition of the present embodiment") is characterized by containing the above-mentioned copolymer. Since the rubber composition of the present embodiment contains the above-mentioned copolymer, it is excellent in cut resistance and ozone resistance.
  • the rubber composition of the present embodiment contains the above-mentioned copolymer as a rubber component, and may further contain other rubber components, if necessary.
  • the other rubber components are not particularly limited and may be appropriately selected depending on the intended purpose.
  • natural rubber NR
  • isoprene rubber IR
  • butadiene rubber BR
  • styrene-butadiene rubber SBR
  • acrylonitrile-butadiene rubber NBR
  • chloroprene rubber ethylene-propylene rubber (EPM)
  • EPM ethylene-propylene-diene rubber
  • EPDM ethylene-propylene-diene rubber
  • polysulfide rubber silicone rubber
  • fluororubber urethane rubber and the like.
  • natural rubber NR
  • isoprene rubber IR
  • butadiene rubber BR
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • the proportion of the above-mentioned copolymer in the rubber component is preferably 10% by mass or more.
  • the proportion of the copolymer in the rubber component is 10% by mass or more, the action of the copolymer is sufficiently exhibited, and the cut resistance and ozone resistance of the rubber composition can be sufficiently improved.
  • the proportion of the above-mentioned copolymer in the rubber component is more preferably 30% by mass or more, further preferably 50% by mass or more, and may be 100% by mass.
  • the rubber composition of the present embodiment can further contain a filler, a cross-linking agent, an anti-aging agent and the like as appropriate.
  • the filler examples include carbon black, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, magnesium oxide, titanium oxide, and titanium acid.
  • Examples include potassium and barium sulfate. These fillers may be used alone or in combination of two or more. Among these, carbon black and silica are preferable as the filler.
  • the content of the filler in the rubber composition of the present embodiment is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the content of the filler is 10 parts by mass or more, the effect of improving the reinforcing property by blending the filler can be obtained, and when it is 100 parts by mass or less, good workability is maintained. be able to.
  • the content of the filler in the rubber composition is more preferably 20 parts by mass or more, further preferably 30 parts by mass or more, and further preferably 80 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferably parts by mass or less, and even more preferably 60 parts by mass or less.
  • cross-linking agent examples include sulfur-based cross-linking agents such as sulfur, organic peroxide-based cross-linking agents, inorganic cross-linking agents, polyamine cross-linking agents, resin cross-linking agents, and oxime-nitrosoamine-based cross-linking agents.
  • sulfur-based cross-linking agents such as sulfur, organic peroxide-based cross-linking agents, inorganic cross-linking agents, polyamine cross-linking agents, resin cross-linking agents, and oxime-nitrosoamine-based cross-linking agents.
  • a sulfur-based cross-linking agent vulcanizing agent
  • sulfur is more preferable.
  • the content of the cross-linking agent in the rubber composition of the present embodiment is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition of the present embodiment may further contain a vulcanization accelerator.
  • a vulcanization accelerator include guanidine-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based, thiourea-based, thiuram-based, dithiocarbamate-based, and zantate-based compounds.
  • the antiaging agent examples include amine-ketone compounds, imidazole compounds, amine compounds, phenol compounds, sulfur compounds, phosphorus compounds and the like.
  • the rubber composition of the present embodiment preferably contains a compound having two or more phenyl groups having a branched alkyl group as an antiaging agent.
  • a compound having two or more phenyl groups with branched alkyl groups as an antiaging agent, the dispersibility of the copolymer of the present embodiment can be improved and the copolymer of the present embodiment can be improved. Can suppress the gelation of.
  • the above-mentioned compound having two or more phenyl groups having a branched alkyl group may be used alone or in combination of two or more.
  • the compound having two or more phenyl groups having a branched alkyl group is preferably a compound having a structure represented by the following formula (1) or formula (2).
  • R 1 to R 8 , R 11 to R 18 , and R 21 to R 24 are hydrogen atoms, linear alkyl groups, cyclic alkyl groups, or branched alkyl groups. Yes, at least one of R 1 to R 8 ; and at least one of R 11 to R 18 and R 21 to R 24 are branched alkyl groups. R 1 to R 8 , R 11 to R 18 , and R 21 to R 24 may be the same or different from each other.
  • R 9 is a hydrocarbon group.
  • a 1 and A 2 are linking groups.
  • E is a trivalent heteroatom.
  • the number of carbon atoms of the linear alkyl group is preferably 1 to 12, more preferably 1 to 8, further preferably 1 to 5, and even more preferably 1 to 3.
  • Specific examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group and an n-octyl group. Examples thereof include an n-nonyl group, an n-decyl group and an n-dodecyl group.
  • the linear alkyl group may further have a substituent such as a halogen atom.
  • the linear alkyl group is preferably an unsubstituted linear alkyl group, more preferably a methyl group, an ethyl group, or an n-propyl group.
  • the cyclic alkyl group preferably has 5 to 12 carbon atoms, more preferably 6 to 12 carbon atoms, and even more preferably 6 to 8 carbon atoms.
  • Specific examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • the cyclic alkyl group may further have a substituent such as an alkyl group having 1 to 3 carbon atoms and a halogen atom.
  • the cyclic alkyl group is preferably an unsubstituted cyclic alkyl group, more preferably a cyclohexyl group.
  • the number of carbon atoms of the branched alkyl group is preferably 3 to 12, more preferably 3 to 8, further preferably 4 to 8, and even more preferably 4 to 6.
  • Specific examples of the branched alkyl group include an isopropyl group, a 2-butyl group, a tert-butyl group, a tert-pentyl group, a 2-hexyl group, a 2-heptyl group, a 2-octyl group, a 2-dodecyl group and the like. Can be mentioned.
  • the branched alkyl group may further have a substituent such as a halogen atom.
  • the branched alkyl group is preferably an unsubstituted branched alkyl group, more preferably an isopropyl group, a 2-butyl group, a tert-butyl group, or a tert-pentyl group, and more preferably a tert-butyl group. Alternatively, it is more preferably a tert-pentyl group.
  • Examples of the hydrocarbon group represented by R 9 include an alkyl group, an alkenyl group, an alkynyl group and the like.
  • Examples of the alkyl group include the linear alkyl group, the cyclic alkyl group, and the branched alkyl group exemplified above, and the preferred range is also the same.
  • the alkenyl group and the alkynyl group those having 2 to 8 carbon atoms are preferable, and examples thereof include a vinyl group and the like.
  • Examples of the linking group represented by A 1 and A 2 include a divalent hydrocarbon group having 1 to 6 carbon atoms, and a heteroatom having a divalent value or more (for example, an oxygen atom, a sulfur atom, etc.). But it may be.
  • the hydrocarbon of the above hydrocarbon group may be a saturated hydrocarbon or an unsaturated hydrocarbon.
  • the linking group is preferably a saturated hydrocarbon group, and the linking group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the linking group may further have a substituent such as a halogen atom, a methyl group or an ethyl group.
  • Examples of the trivalent heteroatom represented by E include a sulfur atom and a phosphorus atom, and among them, a phosphorus atom is preferable.
  • R 1 to R 4 and at least one of R 5 to R 8 are branched alkyl groups, respectively.
  • the group Rb selected from R 15 to R 18 , and the group Rc selected from R 21 to R 24 It is preferred that at least two selected are branched alkyl groups.
  • the phenyl group having a branched alkyl group preferably has a plurality of branched alkyl groups.
  • at least two of R1 to R4 ; at least two of R5 to R8; at least two of R11 to R14 ; and R15 are branched alkyl groups.
  • the compound having the structure represented by the formula (1) is preferably as follows: R 1 and R 8 are branched alkyl groups; R 2 , R 4 , R 5 and R 7 are hydrogen atoms; R 3 and R 6 are branched or linear alkyl groups; R 9 are unsaturated hydrocarbon groups; A 1 is a divalent saturated hydrocarbon group.
  • the compound having the structure represented by the formula (1) is more preferably as follows: R 1 and R 8 are unsubstituted branched alkyl groups having 3 to 6 carbon atoms; R 2 , R 4 , R 5 and R 7 are hydrogen atoms; R 3 and R 6 are unsubstituted branched alkyl groups having 4 to 5 carbon atoms. Alkyl group or unsubstituted linear alkyl group having 1 to 3 carbon atoms; R 9 is an unsubstituted vinyl group; A 1 is an alkyl group substituted or unsubstituted methylene group.
  • the compound having the structure represented by the formula (1) is more preferably a compound having the structure represented by the following formula (3) or the formula (4).
  • R 11 , R 13 , R 16 , R 18 and R 21 are branched alkyl groups;
  • R 12 , R 14 , R 15 , R 17 , R 22 and R 23 are hydrogen atoms;
  • R 24 is a linear alkyl group;
  • a 2 Is a divalent saturated hydrocarbon group containing an oxygen atom;
  • E is a sulfur atom or a phosphorus atom.
  • R 11 , R 13 , R 16 , R 18 and R 21 are unsubstituted branched alkyl groups having 3 to 5 carbon atoms;
  • R 12 , R 14 , R 15 and R 17 , R 22 and R 23 are hydrogen atoms;
  • R 24 is an unsubstituted linear alkyl group having 1 to 3 carbon atoms;
  • a 2 is an unsubstituted alkyleneoxy group having 2 to 5 carbon atoms (in -OR-, R is an unsubstituted alkylene group having 2 to 5 carbon atoms).
  • E is a phosphorus atom.
  • the compound having two or more phenyl groups having a branched alkyl group is particularly preferably a compound having a structure represented by the above formula (4) or the above formula (5).
  • the content of the antiaging agent in the rubber composition of the present embodiment is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the copolymer.
  • the content of the antiaging agent is 0.1 part by mass or more, the effect of improving the dispersibility of the copolymer and suppressing gelation can be sufficiently obtained, and when it is 5 parts by mass or less, the cut resistance is cut. The sex can be well maintained.
  • the content of the antiaging agent in the rubber composition is more preferably 0.5 parts by mass or more, and more preferably 3 parts by mass or less.
  • softeners if necessary, softeners, vulcanization aids, colorants, flame retardants, lubricants, foaming agents, plasticizers, processing aids, and antioxidants are used.
  • Anti-scorch agent, anti-ultraviolet agent, anti-static agent, anti-coloring agent, other compounding agents and the like can be contained in an appropriate amount according to the purpose of use.
  • the rubber composition of the present embodiment can be suitably used for, for example, tires, anti-vibration rubber, seismic isolation rubber, belts such as conveyor belts, rubber crawlers, and rubber products such as various hoses.
  • resin composition of the present embodiment The resin composition according to one embodiment of the present invention (hereinafter, may be referred to as "resin composition of the present embodiment") is characterized by containing the above-mentioned copolymer. Since the resin composition of the present embodiment contains the above-mentioned copolymer, it is excellent in cut resistance and ozone resistance.
  • the resin composition of the present embodiment contains the above-mentioned copolymer as a resin component, and may further contain other resin components, if necessary.
  • the copolymer is treated as a resin component.
  • the other resin components are not particularly limited and may be appropriately selected depending on the intended purpose.
  • heat of polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyamide, polycarbonate, polyoxymethylene, polyphenylene ether and the like can be selected.
  • thermosetting resins such as plastic resins, phenol resins, epoxy resins, urea resins and melamine resins.
  • the proportion of the above-mentioned copolymer in the resin component is preferably 10% by mass or more.
  • the proportion of the copolymer in the resin component is 10% by mass or more, the action of the copolymer is sufficiently exhibited, and the cut resistance and ozone resistance of the resin composition can be sufficiently improved.
  • the proportion of the above-mentioned copolymer in the resin component is more preferably 30% by mass or more, further preferably 50% by mass or more, and may be 100% by mass.
  • the resin composition of the present embodiment can further contain various additives as appropriate.
  • additives include antistatic agents, lubricants, crystal nucleating agents, tackifiers, antifogging agents, mold release agents, plasticizers, fillers, antioxidants, antioxidants, pigments, dyes, and fragrances. , Flame retardants and the like.
  • examples of the antiaging agent include the above-mentioned compounds having two or more branched phenyl groups with a branched alkyl group
  • the resin composition of the present embodiment contains a compound having two or more such branched phenyl groups with a branched alkyl group. It is preferable to contain it.
  • the dispersibility of the copolymer of the present embodiment can be improved and the copolymer of the present embodiment can be improved. Can suppress the gelation of.
  • the above-mentioned compound having two or more phenyl groups having a branched alkyl group may be used alone or in combination of two or more.
  • the preferable structure of the compound having two or more phenyl groups with branched alkyl groups and the content in the resin composition are the same as those described above for the rubber composition.
  • the resin composition of the present embodiment can be suitably used for, for example, various resin products having a resin portion at least partially.
  • Example 1 Preparation of copolymer A
  • a toluene solution containing 5 g of 1,3-butadiene and 480 g of toluene were added.
  • ethylene was added to the pressure resistant stainless steel reactor at a pressure of about 1.0 MPa, and the inside of the system was replaced with ethylene three times.
  • a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex ⁇ 1,3-[(t) is placed in a glass container.
  • ethylene was charged into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and further, copolymerization was carried out at 80 ° C. while adding 100 g of a toluene solution containing 25 g of 1,3-butadiene over 60 minutes. Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to terminate the reaction. Then, separation using a large amount of methanol and vacuum drying at 50 ° C. were carried out to obtain a copolymer A.
  • Example 2 Preparation of copolymer B
  • a toluene solution containing 10 g of 1,3-butadiene and 460 g of toluene were added.
  • ethylene was added to the pressure resistant stainless steel reactor at a pressure of about 1.0 MPa, and the inside of the system was replaced with ethylene three times.
  • a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex ⁇ 1,3-[(t) is placed in a glass container.
  • ethylene was charged into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and further, 200 g of a toluene solution containing 50 g of 1,3-butadiene was added over 90 minutes to carry out copolymerization at 80 ° C. Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to terminate the reaction. Then, separation using a large amount of methanol and vacuum drying at 50 ° C. were carried out to obtain the copolymer B.
  • Example 3 Preparation of copolymer C
  • a toluene solution containing 15 g of 1,3-butadiene and 440 g of toluene were added.
  • ethylene was added to the pressure resistant stainless steel reactor at a pressure of about 1.0 MPa, and the inside of the system was replaced with ethylene three times.
  • a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex ⁇ 1,3-[(t) is placed in a glass container.
  • ethylene was charged into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and further, 300 g of a toluene solution containing 75 g of 1,3-butadiene was added over 90 minutes to carry out copolymerization at 80 ° C. Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to terminate the reaction. Then, separation using a large amount of methanol and vacuum drying at 50 ° C. were carried out to obtain a copolymer C.
  • Example 4 Preparation of copolymer D
  • a toluene solution containing 10 g of 1,3-butadiene and 460 g of toluene were added.
  • ethylene was added to the pressure resistant stainless steel reactor at a pressure of about 1.0 MPa, and the inside of the system was replaced with ethylene three times.
  • a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex ⁇ 1,3-[(t) is placed in a glass container.
  • ethylene was charged into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and further, 200 g of a toluene solution containing 50 g of 1,3-butadiene was added over 180 minutes to carry out copolymerization at 80 ° C. Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to terminate the reaction. Then, separation using a large amount of methanol and vacuum drying at 50 ° C. were carried out to obtain a copolymer D.
  • Ratio of 1,3-butadiene unit and ethylene unit The ratio (mol%) of 1,3-butadiene unit and ethylene unit in the copolymer is determined by 1 H-NMR spectrum (100 ° C, d-tetrachloroethane standard). : 6 ppm) was obtained from the integral ratio of each peak. The results are shown in Table 1.
  • Crystallization degree In addition to the above measurement of endothermic peak energy, a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000") is used to make 100% crystalline polyethylene. The crystal melting energy ( ⁇ H 0 (J / g)) of the above was measured. Then, from the ratio ( ⁇ H 1 / ⁇ H 0 ) of the endothermic peak energy ( ⁇ H 1 ) in the range of 0 ° C. or higher and lower than 100 ° C. of the copolymer to the crystal melting energy ( ⁇ H 0 ) of the polyethylene, the temperature is 0 ° C. or higher and 100 ° C. The degree of crystallization (C 1 (%)) in the range less than was calculated.
  • DSCQ2000 differential scanning calorimeter
  • the endothermic peak energy ( ⁇ H 2 ) in the range of 100 ° C. or higher and 150 ° C. or lower as measured by a differential scanning calorimeter (DSC) and the ratio of the non-conjugated olefin unit is 50 mol or more.
  • DSC differential scanning calorimeter
  • the present invention it is possible to provide a copolymer having excellent cut resistance and ozone resistance. Further, according to the present invention, it is possible to provide a rubber composition and a resin composition having excellent cut resistance and ozone resistance.

Abstract

耐カット性及び耐オゾン性に優れる共重合体を提供する。共重合体は、共役ジエン単位と、非共役オレフィン単位とを有し、前記非共役オレフィン単位の割合が50mol%以上であり、示差走査熱量計(DSC)で測定した、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH2)が、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH1)よりも大きい、ことを特徴とする。

Description

共重合体、ゴム組成物及び樹脂組成物
 本発明は、共重合体、ゴム組成物及び樹脂組成物に関するものである。
 2種類以上の単量体を同一の反応系で重合すると、1本の重合体鎖中にそれらの単量体単位が含まれた共重合体が生成される。
 例えば、特許文献1には、ウェット性及び低温特性に優れた共重合体として、共役ジエン化合物と非共役オレフィンとの共重合体であって、共役ジエン化合物に由来する共役ジエン単位の総量に対する1,2-ビニル結合量が10mol%以上で且つシス-1,4結合量が50~90mol%であり、共重合体中の非共役オレフィンに由来する非共役オレフィン単位の含有量が18mol%~45mol%である共重合体が開示されている。
特開2012-131965号公報
 一方で、ゴム製品(タイヤ、コンベヤベルト、防振ゴム、免震ゴム等)や樹脂製品には、耐カット性及び耐オゾン性の両立が要求されることが多く、かかる要求を満たすような重合体又は共重合体を開発することが、有用である。しかしながら、上記特許文献1では、耐カット性及び耐オゾン性のいずれにも、着目されていない。
 そこで、本発明は、耐カット性及び耐オゾン性に優れる共重合体を提供することを課題とする。
 また、本発明は、かかる共重合体を含み、耐カット性及び耐オゾン性に優れるゴム組成物、及び樹脂組成物を提供することを課題とする。
 上記課題を解決する本発明の要旨構成は、以下の通りである。
 本発明の共重合体は、共役ジエン単位と、非共役オレフィン単位とを有する共重合体であって、
 前記非共役オレフィン単位の割合が50mol%以上であり、
 示差走査熱量計(DSC)で測定した、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)よりも大きい、ことを特徴とする。
 本発明のゴム組成物は、上述した本発明の共重合体を含有することを特徴とする。
 本発明の樹脂組成物は、上述した本発明の共重合体を含有することを特徴とする。
 本発明によれば、耐カット性及び耐オゾン性に優れる共重合体を提供することができる。
 また、本発明によれば、耐カット性及び耐オゾン性に優れるゴム組成物、及び樹脂組成物を提供することができる。
実施例1の共重合体のDSCチャートである。 実施例2の共重合体のDSCチャートである。 実施例3の共重合体のDSCチャートである。 実施例4の共重合体のDSCチャートである。 比較例1の共重合体のDSCチャートである。
 以下に、本発明の共重合体、ゴム組成物、及び樹脂組成物を、その実施形態に基づき、詳細に例示説明する。
(共重合体)
 本発明の一実施形態に係る共重合体(以下、「本実施形態の共重合体」と称することがある。)は、共役ジエン単位と、非共役オレフィン単位とを有する共重合体であって、前記非共役オレフィン単位の割合が50mol%以上であり、示差走査熱量計(DSC)で測定した、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)よりも大きい、ことを特徴とする。
 上述の通り、上記共重合体は、非共役オレフィン単位の割合が50mol%以上であるので、共役ジエン化合物をはじめとするジエン成分に由来する二重結合の量が少なく、結果として耐オゾン性を向上させることができる。また、上述の通り、上記共重合体は、示差走査熱量計(DSC)で測定した、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)よりも大きい(ΔH>ΔHである)。このように、100℃を境界として、低温側よりも高温側の方が吸熱ピークエネルギーが高いということは、非共役オレフィン化合物に由来する連鎖がより長いことを意味する。そして、かかる長い連鎖により、カット等の衝撃を受けた際に結晶融解エネルギーが発生するため、耐カット性を向上させることができる。
 なお、共重合体における非共役オレフィン単位の割合が50mol%未満である場合には、たとえΔH>ΔHであったとしても、耐オゾン性及び耐カット性の少なくともいずれかが不十分となるものと考えられる。
 本実施形態の共重合体は、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)が、30J/g以下であることが好ましい。この場合、共重合体において、非共役オレフィン化合物に由来する部分全体に占める短い連鎖部分の割合が少なくなり、耐カット性をより効率的に向上させることができる。同様の観点から、共重合体の0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)は、27J/g以下であることがより好ましく、25J/g以下であることが更に好ましく、20J/g以下であることが一層好ましい。
 本実施形態の共重合体は、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、35J/g以上であることが好ましい。この場合、共重合体において、非共役オレフィン化合物に由来する部分全体に占める長い連鎖部分の割合が多くなり、耐カット性をより効率的に向上させることができる。同様の観点から、共重合体の100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)は、40J/g以上であることがより好ましく、45J/g以上であることが更に好ましい。また、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)の上限は、特に限定されないが、良好な作業性を保持する観点から、200J/g以下であることが好ましい。
 本実施形態の共重合体は、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)と、100℃以上150℃℃以下の範囲における吸熱ピークエネルギー(ΔH)との比(ΔH/ΔH)が、0.63以下であることが好ましい。この場合、共重合体において、非共役オレフィン化合物に由来する部分全体に占める長い連鎖部分の割合が多くなり、耐カット性をより効率的に向上させることができる。同様の観点から、上記比(ΔH/ΔH)は、0.60以下であることがより好ましく、0.55以下であることが更に好ましく、0.50以下であることが特に好ましく、0.45以下であることがより特に好ましい。
 本実施形態の共重合体は、単量体単位として、共役ジエン単位と非共役オレフィン単位とを少なくとも有し、共役ジエン単位及び非共役オレフィン単位のみからなってもよいし、更に他の単量体単位を有していてもよい。
 共役ジエン単位は、共役ジエン化合物に由来する単量体単位である。共役ジエン単位は、共重合体の架橋(加硫)を可能とし、また、ゴムとしての伸びや強度を発現することができる。ここで、共役ジエン化合物とは、共役系のジエン化合物を指す。共重合体の単量体としての共役ジエン化合物は、炭素数が4~8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。上記共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、共重合体の単量体としての共役ジエン化合物は、耐カット性をはじめとする耐久性を効果的に向上させる観点から、1,3-ブタジエン及び/又はイソプレンを含むことが好ましく、1,3-ブタジエン及び/又はイソプレンのみからなることがより好ましく、1,3-ブタジエンのみからなることが更に好ましい。別の言い方をすると、共重合体における共役ジエン単位は、1,3-ブタジエン単位及び/又はイソプレン単位を含むことが好ましく、1,3-ブタジエン単位及び/又はイソプレン単位のみからなることがより好ましく、1,3-ブタジエン単位のみからなることが更に好ましい。
 上記共重合体における共役ジエン単位の割合は、5mol%以上であることが好ましく、また、50mol%未満である。上記共重合体における共役ジエン単位の割合が5mol%以上であると、伸びに優れ、耐カット性をはじめとする耐久性をより向上させることができる。同様の観点から、上記共重合体における共役ジエン単位の割合は、10mol%以上であることがより好ましく、15mol%以上であることが更に好ましい。また、上記共重合体における共役ジエン単位の割合は、耐オゾン性をより向上させる観点から、45mol%以下であることが好ましく、40mol%以下であることがより好ましく、35mol%以下であることが更に好ましい。
 非共役オレフィン単位は、非共役オレフィン化合物に由来する単量体単位である。共重合体が非共役オレフィン単位を有することで、結晶性をもたらすことができる。ここで、非共役オレフィン化合物とは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する化合物を指す。共重合体の単量体としての非共役オレフィン化合物は、炭素数が2~10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィン、ピバリン酸ビニル、1-フェニルチオエテン、N-ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。上記非共役オレフィン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、共重合体の単量体としての非共役オレフィン化合物は、耐オゾン性をより向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、α-オレフィンであることがより好ましく、エチレンを含むα-オレフィンであることが更に好ましく、エチレンのみからなることが一層好ましい。別の言い方をすると、共重合体における非共役オレフィン単位は、非環状の非共役オレフィン単位であることが好ましく、α-オレフィン単位であることがより好ましく、エチレン単位を含むα-オレフィン単位であることが更に好ましく、エチレン単位のみからなることが一層好ましい。
 上記共重合体における非共役オレフィン単位の割合は、50mol%以上であり、また、95mol%以下であることが好ましい。上記共重合体における非共役オレフィン単位の割合が50mol%未満であると、耐オゾン性が十分に向上しない虞がある。一方、上記共重合体における非共役オレフィン単位の割合が95mol%以下であると、共役ジエン単位の割合が増加し、破壊特性(特には、破断時伸び(EB))を向上させることができる。同様の観点から、上記共重合体における非共役オレフィン単位の割合は、55mol%以上であることが好ましく、60mol%以上であることがより好ましく、65mol%以上であることが更に好ましく、また、90mol%以下であることがより好ましく、85mol%以下であることが更に好ましい。
 そして、上記共重合体は、上記共役ジエン単位の割合が5mol%以上50mol%未満であり、上記非共役オレフィン単位の割合が50mol%以上95mol%以下であることが好ましい。この場合、耐カット性をより向上させるとともに、耐オゾン性をより向上させることができる。
 また、上述の通り、上記共重合体は、共役ジエン単位及び非共役オレフィン単位以外のその他の単量体単位を有してもよい。例えば、上記共重合体は、その他の単量体単位として、芳香族ビニル単位を更に有してもよい。
 芳香族ビニル単位は、芳香族ビニル化合物に由来する単量体単位である。ここで、芳香族ビニル化合物とは、少なくともビニル基で置換された芳香族化合物を指し、共役ジエン化合物には包含されないものとする。共重合体の単量体としての芳香族ビニル化合物は、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物として、具体的には、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。上記芳香族ビニル化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、共重合体の単量体としての芳香族ビニル化合物は、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。別の言い方をすると、共重合体における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。
 なお、芳香族ビニル単位における芳香族環は、隣接する単位と結合しない限り、共重合体の主鎖には含まれない。
 上記共重合体が芳香族ビニル単位を有する場合、当該芳香族ビニル単位の割合は、1mol%以上であることが好ましく、また、30mol%以下であることが好ましい。上記共重合体における芳香族ビニル単位の割合が1mol%以上であると、高温における破壊特性を向上させることができる。また、上記共重合体における芳香族ビニル単位の割合の割合が30mol%以下であると、共役ジエン単位及び非共役オレフィン単位による効果を十分に発現させることができる。
 但し、上記共重合体における上記その他の単量体単位の割合は、所望の効果をより確実に得る観点から、共重合体全体の20mol%以下であることが好ましく、10mol%以下であることがより好ましく、5mol%以下であることが更に好ましく、0mol%である(即ち、共重合体が共役ジエン単位及び非共役オレフィン単位のみからなる)ことが特に好ましい。
 なお、上記共重合体は、ブチレン単位の割合が0mol%である(ブチレン単位を有しない)。つまり、上記共重合体は、スチレン-エチレン/ブチレン-スチレン(SEBS)といった、スチレン-ブタジエン共重合体の水添物を含まない。
 本実施形態の共重合体は、主鎖が環状構造を有してもよく、また、主鎖が非環状構造のみからなってもよい。主鎖が非環状構造である場合には、耐カット性をはじめとする耐久性を更に向上させることができる。
 なお、共重合体の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環~五員環については、10~24ppmに現れるピーク)が観測されない場合、その共重合体の主鎖は、非環状構造のみからなることを示す。一方で、当該ピークが観測される際には、主鎖が環状構造を有することを示す。
 本実施形態の共重合体は、結晶化度が0.5%以上60%以下であることが好ましい。結晶化度が0.5%以上であれば、耐カット性をより十分に向上させることができ、また、60%以下であれば、適度な剛性を確保することができる。同様の観点から、共重合体の結晶化度は、5%以上であることがより好ましく、10%以上であることが更に好ましく、15%以上であることが一層好ましく、また、55%以下であることがより好ましく、50%以下であることが更に好ましく、45%以下であることが一層好ましい。
 なお、上記結晶化度は、0~150℃の範囲における結晶化度であり、例えば、0~100℃未満の結晶化度と100℃~150℃の結晶化度に分けて記載されている場合には、それらを合算した値が0~150℃の範囲における結晶化度となる。
 また、本実施形態の共重合体は、100℃以上150℃以下の範囲における結晶化度(C)が、10%以上50%以下であることが好ましい。100℃以上150℃以下の範囲における結晶化度が10%以上であれば、共重合体において、非共役オレフィン化合物に由来する部分全体に占める長い連鎖部分の割合が多くなり、耐カット性をより効率的に向上させることができる。また、100℃以上150℃以下の範囲における結晶化度が50%以下であれば、良好な作業性を保持することができる。
 本実施形態の共重合体は、示差走査熱量計(DSC)で測定した融点が100℃以上であることが好ましい。共重合体の融点が100℃以上であれば、非共役オレフィン化合物に由来する部分全体に占める長い連鎖部分の割合が多くなり、耐カット性をより効率的に向上させることができる。同様の観点から、共重合体の融点は、105℃以上であることがより好ましく、110℃以上であることが更に好ましく、115℃以上であることが一層好ましい。また、共重合体の融点の上限は特に限定されないが、良好な作業性を保持する観点から、200℃以下であることが好ましい。
 なお、該融点は、示差走査熱量計を用い、JIS K 7121-1987に準拠して測定した値である。
 本実施形態の共重合体は、示差走査熱量計(DSC)で測定したガラス転移温度が0℃以下であることが好ましい。共重合体のガラス転移温度が0℃以下であれば、作業性が向上する。同様の観点から、共重合体のガラス転移温度は、-50℃以下であることがより好ましく、-80℃以下であることが更に好ましく、-100℃以下であることが一層好ましい。また、共重合体のガラス転移温度の下限は特に限定されないが、-150℃以上であることが好ましい。
 なお、該ガラス転移温度は、示差走査熱量計を用い、JIS K 7121-1987に準拠して測定した値である。
 本実施形態の共重合体は、ポリスチレン換算の重量平均分子量(Mw)が50,000~2,000,000であることが好ましい。共重合体のMwが50,000以上であることにより、機械的強度を十分に確保することができ、また、Mwが2,000,000であることにより、高い作業性を保持することができる。同様の観点から、上記共重合体のMwは、100,000以上であることがより好ましく、150,000以上であることが更に好ましく、また、1,000,000以下であることがより好ましく、800,000以下であることが更に好ましい。
 本実施形態の共重合体は、ポリスチレン換算の数平均分子量(Mn)が50,000~2,000,000であることが好ましい。共重合体のMnが50,000以上であることにより、機械的強度を十分に確保することができ、また、Mnが2,000,000であることにより、高い作業性を保持することができる。同様の観点から、上記共重合体のMnは、80,000以上であることがより好ましく、100,000以上であることが更に好ましく、また、1,000,000以下であることがより好ましく、500,000以下であることが更に好ましく、300,000以下であることが特に好ましい。
 本実施形態の共重合体は、分子量分布[Mw/Mn(重量平均分子量/数平均分子量)]が1.00~4.00であることが好ましく、1.50~3.50であることがより好ましく、1.80~3.00であることが更に好ましい。共重合体の分子量分布が4.00以下であれば、共重合体の物性に十分な均質性をもたらすことができる。同様の観点から、上記共重合体の分子量分布は、3.50以下であることがより好ましく、3.00以下であることが更に好ましい。また、上記共重合体の分子量分布は、1.50以上であることがより好ましく、1.80以上であることが更に好ましい。
 なお、上述した重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。
 上述した本実施形態の共重合体は、例えば、後述する触媒成分を用いて所定の単量体を重合させることにより、調製することができる。その際、触媒成分の種類及び組成、投入する単量体の量(又は圧力)に対する各触媒成分の割合、各単量体の投入のタイミング、重合時間などを、複合的にコントロールすることが重要である。
<共重合体の調製>
 本実施形態の共重合体は、共役ジエン化合物と、非共役オレフィン化合物と、必要に応じてその他の単量体とを用いて重合する工程を経て製造することができ、更に、必要に応じ、カップリング工程、洗浄工程、その他の工程を経てもよい。
 重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。
 重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、即ち、非共役オレフィン化合物、共役ジエン化合物、及び任意のその他の単量体、好ましくは、非共役オレフィン化合物及び共役ジエン化合物を、一斉に反応させて重合させる工程である。また、多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残る種類の単量体や前記1種類又は2種類の単量体の残部を添加して重合させる1以上の段階(第2重合段階~最終重合段階)を行って重合させる工程である。
 重合温度は、特に制限されないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、重合に費やす時間は、例えば、1秒~10日の範囲が好ましいが、重合触媒の種類、重合温度等の条件によって適宜選択することができる。特に、重合温度を25~80℃とした場合には、5分~500分の範囲が好ましい。
 前記共役ジエン化合物の重合に際しては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
 各単量体原料は、同時に添加してもよく、逐次添加してもよい。重合系に対して単量体原料を導入する際には、各単量体原料の流量を制御して、重合系に対して連続的に添加すること(所謂、ミータリング)が好ましい。
 重合系の条件下で気体である単量体原料(例えば、室温、常圧の条件下における非共役オレフィン化合物としてのエチレン等)を用いる場合には、所定の圧力で重合反応系に導入することができる。
 ここで、上記の単量体の重合は、下記(A)~(F)成分の1種以上の存在下で行うことが好ましい。なお、重合工程には、触媒成分として、下記(A)~(F)成分を1種以上用いることが好ましいが、下記(A)~(F)成分の2種以上を組み合わせて、触媒組成物として用いることが更に好ましい。
 (A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物
 (B)成分:有機金属化合物
 (C)成分:アルミノキサン
 (D)成分:イオン性化合物
 (E)成分:ハロゲン化合物
 (F)成分:置換又は無置換のシクロペンタジエン(シクロペンタジエニル基を有する化合物)、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレン(フルオレニル基を有する化合物)から選択されるシクロペンタジエン骨格含有化合物(以下、単に「シクロペンタジエン骨格含有化合物」と称することがある。)
 以下、(A)~(F)成分について詳細に説明する。
 前記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物((A)成分)としては、希土類元素-炭素結合を有する、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(以下、「(A-1)成分」ともいう。)、希土類元素-炭素結合を有しない、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(以下、「(A-2)成分」ともいう。)が挙げられる。
 前記(A-1)成分としては、例えば、下記一般式(I-1):
Figure JPOXMLDOC01-appb-C000001
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R~Rは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す]で表されるメタロセン錯体、及び下記一般式(I-2):
Figure JPOXMLDOC01-appb-C000002
[式中、M、Cp、R~R、L、及びwは、式(I-1)と同様であり、R~Rは、
それぞれ独立して炭素数1~3のアルキル基又は水素原子を示す]で表される錯体、下記一般式(II-1):
Figure JPOXMLDOC01-appb-C000003
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す]で表されるメタロセン錯体、及び下記一般式(II-2):
Figure JPOXMLDOC01-appb-C000004
[式中、M、Cp、X’、L、及びwは、式(II-1)と同様である]で表される錯体、並びに下記一般式(III):
Figure JPOXMLDOC01-appb-C000005
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]は、非配位性アニオンを示す]で表されるハーフメタロセンカチオン錯体が挙げられる。
 上記一般式(I-1)、(I-2)、(II-1)及び(II-2)で表される錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7-x又はC11-xで示され得る。ここで、Xは、0~7又は0~11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、一般式(I-1)及び(II-1)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
 上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。
 一般式(III)において、上記シクロペンタジエニル環を基本骨格とするCpR’は、C5-xで示される。ここで、Xは、0~5の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR’として、具体的には、以下のものが例示される。
Figure JPOXMLDOC01-appb-C000006
[式中、Rは水素原子、メチル基又はエチル基を示す。]
 一般式(III)において、上記インデニル環を基本骨格とするCpR’は、一般式(I-1)及び(II-1)のCpと同様に定義され、好ましい例も同様である。
 一般式(III)において、上記フルオレニル環を基本骨格とするCpR’は、C139-x又はC1317-xで示され得る。ここで、Xは、0~9又は0~17の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
 各一般式における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
 一般式(I-1)及び(I-2)で表される錯体は、シリルアミド配位子[-N(SiR]を含む。シリルアミド配位子に含まれるR基(R~R、R~R)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、当該R基のうち少なくとも一つが水素原子であることが好ましい。当該R基のうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりの嵩高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、一般式(I-1)においては、R~Rのうち少なくとも一つが水素原子であり、R~Rのうち少なくとも一つが水素原子であることが更に好ましい。また、一般式(I-2)においては、R~Rのうち少なくとも一つが水素原子であり、R~Rのうち少なくとも一つが水素原子であり、R~Rのうち少なくとも一つが水素原子であり、R~Rのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
 一般式(II-1)及び(II-2)で表される錯体は、シリル配位子[-SiX’]を含む。シリル配位子[-SiX’]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。
 一般式(III)において、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1~20の一価の炭化水素基からなる群より選択される基である。ここで、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。
 一般式(III)において、Xが表すアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシ基等が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。
 一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基等が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。
 一般式(III)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基等が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。
 一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
 また、一般式(III)において、Xが表す炭素数1~20の一価の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
 一般式(III)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1~20の一価の炭化水素基が好ましい。
 一般式(III)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
 上記一般式(I-1)、(I-2)、(II-1)、(II-2)及び(III)で表される錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
 また、上記一般式(I-1)、(I-2)、(II-1)、(II-2)及び(III)で表される錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
 上記一般式(I-1)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えば、カリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンを用いればよい。以下に、一般式(I-1)で表されるメタロセン錯体を得るための反応例を示す。
Figure JPOXMLDOC01-appb-C000007
[式中、X’’はハライドを示す。]
 上記一般式(II-1)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えば、カリウム塩やリチウム塩)及びシリルの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間~数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンを用いればよい。以下に、一般式(II-1)で表されるメタロセン錯体を得るための反応例を示す。
Figure JPOXMLDOC01-appb-C000008
[式中、X’’はハライドを示す。]
 上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次のいずれかの反応により得ることができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 ここで、一般式(IV-1)及び(IV-2)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。また、一般式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。
 [A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。
 上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV-1)又は(IV-2)で表される化合物と一般式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I-1)又は(I-2)、或いは、一般式(II-1)又は(II-2)で表されるメタロセン錯体と、一般式[A][B]で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
 上記一般式(I-1)、(I-2)、(II-1)、(II-2)及び(III)で表される錯体の構造は、X線構造解析により決定することが好ましい。
 前記(A-2)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、且つ、希土類元素と炭素との結合を有しない。該希土類元素化合物及び反応物が希土類元素-炭素結合を有しない場合、化合物が安定であり、取り扱い易い。ここで、希土類元素化合物とは、希土類元素(M)、即ち、周期律表中の原子番号57~71の元素から構成されるランタノイド元素、又はスカンジウム若しくはイットリウムを含有する化合物である。
 なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A-2)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 また、上記希土類元素化合物は、2価若しくは3価の希土類金属の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(VIII)又は(IX):
   M1111 ・L11  ・・・ (VIII)
   M1111 ・L11  ・・・ (IX)
[それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0~3を示す]で表されることが好ましい。
 上記希土類元素化合物の希土類元素に結合する基(配位子)としては、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基が挙げられる。
 該基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。
 該基(配位子)として、更には、サリチルアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、2-ヒドロキシ-3-ナフトアルデヒド等のアルデヒドの残基;2’-ヒドロキシアセトフェノン、2’-ヒドロキシブチロフェノン、2’-ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のケトン残基(特には、ジケトンの残基);イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2-ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2-ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(ブチル)(2-エチルヘキシル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)等のリン酸エステルの残基;2-エチルヘキシルホスホン酸モノブチル、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、フェニルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ホスホン酸モノ-2-エチルヘキシル、ホスホン酸モノ-1-メチルヘプチル、ホスホン酸モノ-p-ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、ブチル(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(1-メチルヘプチル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2-エチルヘキシルホスフィン酸、1-メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p-ノニルフェニルホスフィン酸等のホスフィン酸の残基等を挙げることもできる。
 なお、これらの基(配位子)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(一般式(VIII)及び(IX)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
 好適には、上記希土類元素化合物としては、下記一般式(X):
   M-(AQ)(AQ)(AQ) ・・・ (X)
[式中、Mは、スカンジウム、イットリウム又はランタノイド元素であり;AQ、AQ及びAQは、同一であっても異なっていてもよい官能基であり;Aは、窒素、酸素又は硫黄であり;但し、少なくとも1つのM-A結合を有する]で表される化合物が好ましい。ここで、ランタノイド元素とは、具体的には、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。該化合物は、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能な成分である。
 一般式(X)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
 一般式(X)中のAが窒素である場合、AQ、AQ及びAQ(即ち、NQ、NQ及びNQ)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM-N結合を有する。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基等が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記構成によれば、(A-2)成分を3つのM-N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
 また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
 一般式(X)中のAが酸素である場合、一般式(X)(即ち、M-(OQ)(OQ)(OQ))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XI):
   (RO)M ・・・ (XI)
で表される希土類アルコラートや、下記一般式(XII):
   (R-COM・・・ (XII)
で表される希土類カルボキシレート等が挙げられる。
 ここで、上記一般式(XI)及び(XII)中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 一般式(X)中のAが硫黄である場合、一般式(X)(即ち、M-(SQ)(SQ)(SQ))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XIII):
   (RS)M ・・・ (XIII)
で表される希土類アルキルチオラートや、下記一般式(XIV):
   (R-CSM ・・・ (XIV)
で表される化合物等が挙げられる。
 ここで、上記一般式(XIII)及び(XIV)中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
 前記有機金属化合物((B)成分)は、下記一般式(XV):
   YR  ・・・ (XV)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、炭素数1~10の炭化水素基又は水素原子で、Rは炭素数1~10の炭化水素基であり、但し、R、R及びRはそれぞれ互いに同一でも異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される。
 上記一般式(XV)において、R、R及びRが示す炭素数1~10の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基等が好ましい。
 前記(B)成分としては、下記一般式(XVI):
   AlR ・・・ (XVI)
[式中、R及びRは、炭素数1~10の炭化水素基又は水素原子で、Rは炭素数1~10の炭化水素基であり、但し、R、R及びRはそれぞれ互いに同一又は異なっていてもよい]で表される有機アルミニウム化合物が好ましい。該有機アルミニウム化合物は、上記一般式(XV)において、YがAlで、a、b及びcが1である化合物に相当する。
 上記一般式(XVI)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;ジエチルアルミニウムハイドライド、ジ-n-プロピルアルミニウムハイドライド、ジ-n-ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド、ジイソヘキシルアルミニウムハイドライド、ジオクチルアルミニウムハイドライド、ジイソオクチルアルミニウムハイドライド;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドが好ましい。
 前記(B)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(B)成分の使用量は、上述の(A)成分と共に用いる場合、該(A)成分に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。
 前記アルミノキサン((C)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。(C)成分を用いることによって、重合反応系における触媒活性を更に向上させることができるので、目的とする共重合体を容易に得ることができる。また、反応時間を更に短くし、反応温度を更に高くすることもできる。
 ここで、前記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
 一方、前記縮合剤としては、例えば、水等が挙げられる。
 前記(C)成分としては、例えば、下記式(XVII):
   -(Al(R)O)- ・・・ (XVII)
[式中、Rは、炭素数1~10の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;Rは、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である]で表されるアルミノキサンを挙げることができる。
 上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
 上記式(XVII)中のnは、10以上であることが好ましい。
 また、上記式(XVII)中のRに関して、炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。該炭化水素基は、1種でもよいし、2種以上を組み合わせてもよい。式(XVII)中のRに関して、炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
 上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
 ここで、脂肪族炭化水素としては、ヘキサン、シクロヘキサン等が挙げられる。
 前記(C)成分は、特に、下記式(XVIII):
   -(Al(CH(i-CO)- ・・・ (XVIII)
[式中、x+yは1であり;mは5以上である]で表される修飾アルミノキサン(以下、「TMAO」ともいう。)としてもよい。TMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「TMAO-341」が挙げられる。
 また、前記(C)成分は、特に、下記式(XIX):
   -(Al(CH0.7(i-C0.3O)- ・・・ (XIX)
[式中、kは5以上である]で表される修飾アルミノキサン(以下、「MMAO」ともいう。)としてもよい。MMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「MMAO-3A」が挙げられる。
 更に、前記(C)成分は、特に、下記式(XX):
   -[(CH)AlO]- ・・・ (XX)
[式中、iは5以上である]で表される修飾アルミノキサン(以下、「PMAO」ともいう。)としてもよい。PMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「PMAO-211」が挙げられる。
 前記(C)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、特に、触媒活性を向上させる効果を更に高める観点から、TMAOであることが更に好ましい。
 前記(C)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(C)成分は、触媒活性を向上させる観点から、前記(A)成分と共に用いる場合、該(A)成分中の希土類元素1molに対して、当該(C)成分中のアルミニウムが10mol以上となるように使用されることが好ましく、100mol以上となるように使用されることが更に好ましく、また、1000mol以下となるように使用されることが好ましく、800mol以下となるように使用されることが更に好ましい。
 前記イオン性化合物((D)成分)は、非配位性アニオンとカチオンとからなる。該(D)成分を上述の(A)成分と共に用いる場合、(D)成分としては、前記(A)成分と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。
 ここで、非配位性アニオンとしては、4価のホウ素アニオン、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
 一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン(「トリチルカチオン」ともいう)、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、アンモニウムカチオン等が挙げられ、アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。
 従って、前記イオン性化合物((D)成分)としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。
 前記(D)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(D)成分の使用量は、上述の(A)成分と共に用いる場合、該(A)成分に対して0.1~10倍molであることが好ましく、約1倍molであることが更に好ましい。
 前記ハロゲン化合物((E)成分)としては、ルイス酸であるハロゲン含有化合物(以下、「(E-1)成分」ともいう。)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E-2)成分」ともいう。)、活性ハロゲンを含む有機化合物(以下、「(E-3)成分」ともいう。)等が挙げられる。該(E)成分は、例えば、上述の(A)成分と共に用いる場合、該(A)成分と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。
 上記(E-1)成分としては、例えば、周期律表中の第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン化合物を用いることができる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。
 上記ルイス酸であるハロゲン含有化合物として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチルスズジクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、トリ(ペンタフルオロフェニル)ボレート、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
 上記(E-1)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記(E-2)成分を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
 また、上記(E-2)成分を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 上記ルイス塩基は、上記金属ハロゲン化物1mol当り、0.01~30mol、好ましくは0.5~10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
 上記(E-2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記(E-3)成分としては、ベンジルクロライド等が挙げられる。
 前記(E)成分は、一種単独で使用することも、2種以上を混合して用いることもできる。また、前記(E)成分の使用量は、前記(A)成分と共に用いる場合、該(A)成分に対して0~5倍molであることが好ましく、1~5倍molであることが更に好ましい。
 前記シクロペンタジエン骨格含有化合物((F)成分)は、シクロペンタジエニル基、インデニル基、及びフルオレニル基から選択される基を有し、該シクロペンタジエン骨格含有化合物(F)は、置換又は無置換シクロペンタジエン、置換又は無置換のインデン、置換又は無置換のフルオレンからなる群から選択される少なくとも1種の化合物である。上記(F)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記置換又は無置換のシクロペンタジエンとしては、例えば、シクロペンタジエン、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル-テトラメチルシクロペンタジエン、(1-ベンジルジメチルシリル)シクロペンタ[l]フェナントレン等が挙げられる。
 前記置換又は無置換のインデンとしては、例えば、インデン、2-フェニル-1H-インデン、3-ベンジル-1H-インデン、3-メチル-2-フェニル-1H-インデン、3-ベンジル-2-フェニル-1H-インデン、1-ベンジル-1H-インデン、1-メチル-3-ジメチルベンジルシリル-インデン、1,3-ビス(t-ブチルジメチルシリル)-インデン、(1-ベンジルジメチルシリル-3-シクロペンチル)インデン、(1-ベンジル-3-t-ブチルジメチルシリル)インデン等が挙げられ、特に、分子量分布を小さくする観点から、3-ベンジル-1H-インデン、1-ベンジル-1H-インデンが好ましい。
 前記置換又は無置換のフルオレンとしては、フルオレン、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。
 特に、シクロペンタジエン骨格含有化合物((F)成分)は、置換シクロペンタジエン、置換インデン又は置換フルオレンであることが好ましく、置換インデンであることがより好ましい。これにより、重合触媒としてのかさ高さが有利に増大するため、反応時間を短くし、反応温度を高くすることができる。また、共役電子を多く具えるため、反応系における触媒活性を更に向上させることができる。
 ここで、置換シクロペンタジエン、置換インデン、置換フルオレンの置換基としては、ヒドロカルビル基、メタロイド基が挙げられ、ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることがより一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
 前記(F)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(F)成分の使用量は、触媒活性を向上させる観点から、前記(A)成分と共に用いる場合、該(A)成分に対するモル比として、0超であることが好ましく、0.5以上であることが更に好ましく、1以上であることが特に好ましく、また、3以下であることが好ましく、2.5以下であることが更に好ましく、2.2以下であることが特に好ましい。
 上述の(A)~(F)成分は、様々に組み合わせ、触媒組成物として、前記重合工程に用いることが好ましい。好適な触媒組成物としては、以下の第一の触媒組成物及び第二の触媒組成物が挙げられる。なお、当該第一の触媒組成物及び第二の触媒組成物は、少なくとも共役ジエン化合物及び非共役オレフィン化合物の重合(二元共重合体の合成)には、これまで用いられていない。
 第一の触媒組成物は、前記(A-1)成分と、前記(B)成分と、前記(D)成分と、を含み、更に、任意成分として、前記(C)成分及び前記(E)成分の一種以上を含むものである。なお、前記(A-1)成分が、前記一般式(V)で表わされメタロセン系複合触媒である場合は、前記(B)成分も任意成分となる。
 第二の触媒組成物は、前記(A-2)成分と、前記(B)成分と、前記(D)成分と、を含み、更に、任意成分として、前記(C)成分、前記(E)成分及び前記(F)成分の一種以上を含むものである。なお、第二の触媒組成物が(F)成分を含む場合、触媒活性が向上する。
 前記カップリング工程は、前記重合工程において得られた共重合体の高分子鎖の少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
 前記カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
 前記カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
 なお、カップリング反応を行うことにより、数平均分子量(Mn)の増加を行うことができる。
 前記洗浄工程は、前記重合工程において得られた共重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノールなどが挙げられるが、重合触媒としてルイス酸由来の触媒を使用する際は、特にこれらの溶媒に対して酸(例えば、塩酸、硫酸、硝酸等)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では、酸が共重合体中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
 この洗浄工程により、共重合体中の触媒残渣量を好適に低下させることができる。
 示差走査熱量計で得られる曲線(DSC曲線)に特徴を有する本実施形態の共重合体は、好適には、共役ジエン化合物の溶液を反応器内に準備し、次いで、当該反応器に触媒成分又は触媒組成物を加えて所定温度に加温し、次いで、当該反応器に、非共役オレフィン化合物を所定の圧力で導入しつつ、共役ジエン化合物の溶液を連続的に添加することにより、得ることができる。
 上記共重合体を得るための調整方法としては、例えば、(1)共役ジエン化合物の添加速度を比較的小さくする(比較的長時間かけて重合を行う)こと、(2)比較的多量の非共役オレフィン化合物の用いること、或いは、(3)上記(B)成分及び(D)成分の少なくともいずれかの量を比較的少量とすること、等が挙げられる。この点に関し、非共役オレフィン化合物に由来する連鎖の長さを制御する主な因子は、共役ジエン化合物の濃度である。そのため、上述したものの中でも、(1)及び(2)、特に(1)がより肝要と考えられる。
(ゴム組成物)
 本発明の一実施形態に係るゴム組成物(以下、「本実施形態のゴム組成物」と称することがある。)は、上述した共重合体を含有することを特徴とする。かかる本実施形態のゴム組成物は、上述した共重合体を含有するため、耐カット性及び耐オゾン性に優れる。
 本実施形態のゴム組成物は、ゴム成分として上述の共重合体を含有し、更に必要に応じて、その他のゴム成分を含有することができる。
 なお、その他のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらゴム成分は、一種単独で用いてもよいし、二種以上の組み合わせで用いてもよい。特に、その他のゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)が好ましい。
 本実施形態のゴム組成物において、ゴム成分中の上記共重合体の割合は、10質量%以上であることが好ましい。ゴム成分中の上記共重合体の割合が10質量%以上であれば、上記共重合体による作用が十分に発揮され、ゴム組成物の耐カット性及び耐オゾン性を十分に向上させることができる。同様の観点から、ゴム成分中の上記共重合体の割合は、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、また、100質量%とすることもできる。
 本実施形態のゴム組成物は、更に、充填剤、架橋剤、老化防止剤等を適宜含有することができる。
 充填剤としては、例えば、カーボンブラック、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられる。これら充填剤は、一種単独で用いてもよいし、二種以上の組み合わせで用いてもよい。これらの中でも、充填剤としては、カーボンブラック及びシリカが好ましい。
 本実施形態のゴム組成物における充填剤の含有量は、ゴム成分100質量部に対して10質量部以上100質量部以下であることが好ましい。上記充填剤の含有量が10質量部以上であることにより、充填剤を配合したことによる補強性向上の効果が得られ、また、100質量部以下であることにより、良好な作業性を保持することができる。同様の観点から、上記ゴム組成物における充填剤の含有量は、ゴム成分100質量部に対し、20質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、また、80質量部以下であることがより好ましく、60質量部以下であることが更に好ましい。
 架橋剤としては、例えば、硫黄などの硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、オキシム-ニトロソアミン系架橋剤等が挙げられる。これらの中でも、架橋剤としては、硫黄系架橋剤(加硫剤)が好ましく、硫黄がより好ましい。
 本実施形態のゴム組成物における架橋剤の含有量は、ゴム成分100質量部に対して0.1~20質量部が好ましい。
 上記加硫剤を用いる場合、本実施形態のゴム組成物は、加硫促進剤を更に含有することもできる。上記加硫促進剤としては、グアニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。
 老化防止剤としては、例えば、アミン-ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。特に、本実施形態のゴム組成物は、老化防止剤として、分岐アルキル基を有するフェニル基を2つ以上有する化合物を含有することが好ましい。このように、分岐アルキル基付きフェニル基を2つ以上有する化合物を老化防止剤として用いることにより、本実施形態の共重合体の分散性を向上させることができるとともに、本実施形態の共重合体のゲル化を抑制することができる。上記の分岐アルキル基を有するフェニル基を2つ以上有する化合物は、一種単独で用いてもよいし、二種以上を組み合わせで用いてもよい。
 より具体的に、分岐アルキル基を有するフェニル基を2つ以上有する化合物としては、下記式(1)又は式(2)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記式(1)及び式(2)において、R~R、R11~R18、及び、R21~R24は、水素原子、直鎖アルキル基、環状アルキル基、又は分岐アルキル基であり、R~Rのうち少なくとも1つ;並びに、R11~R18及びR21~R24のうち少なくとも1つは、分岐アルキル基である。R~R、R11~R18、及び、R21~R24は、互いに同じであってもよいし、異なっていてもよい。Rは、炭化水素基である。A及びAは、連結基である。Eは、3価のヘテロ原子である。
 上記直鎖アルキル基の炭素数は、1~12であることが好ましく、1~8であることがより好ましく、1~5であることが更に好ましく、1~3であることが一層好ましい。直鎖アルキル基として、具体的には、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ぺンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。なお、直鎖アルキル基は、ハロゲン原子等の置換基を更に有していてもよい。
 直鎖アルキル基は、以上の中でも、無置換の直鎖アルキル基であることが好ましく、メチル基、エチル基、又はn-プロピル基であることがより好ましい。
 上記環状アルキル基の炭素数は、5~12であることが好ましく、6~12であることがより好ましく、6~8であることが更に好ましい。環状アルキル基として、具体的には、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。なお、環状アルキル基は、炭素数1~3のアルキル基、ハロゲン原子等の置換基を更に有していてもよい。
 環状アルキル基は、以上の中でも、無置換の環状アルキル基であることが好ましく、シクロヘキシル基であることがより好ましい。
 上記分岐アルキル基の炭素数は、3~12であることが好ましく、3~8であることがより好ましく、4~8であることが更に好ましく、4~6であることが一層好ましい。分岐アルキル基として、具体的には、例えば、イソプロピル基、2-ブチル基、tert-ブチル基、tert-ペンチル基、2-ヘキシル基、2-ヘプチル基、2-オクチル基、2-ドデシル基等が挙げられる。なお、分岐アルキル基は、ハロゲン原子等の置換基を更に有していてもよい。
 分岐アルキル基は、以上の中でも、無置換の分岐アルキル基であることが好ましく、イソプロピル基、2-ブチル基、tert-ブチル基、又はtert-ペンチル基であることがより好ましく、tert-ブチル基又はtert-ペンチル基であることが更に好ましい。
 Rで表される炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。アルキル基としては、上で例示した直鎖アルキル基、環状アルキル基、及び分岐アルキル基が挙げられ、好ましい範囲も同様である。また、アルケニル基及びアルキニル基としては、炭素数2~8のものが好ましく、例えば、ビニル基等が挙げられる。
 A及びAで表される連結基としては、炭素数1~6の2価の炭化水素基が挙げられ、また、2価以上のヘテロ原子(例えば、酸素原子、硫黄原子等)を含んでもよい。上記炭化水素基の炭化水素は、飽和炭化水素であってもよく、不飽和炭化水素であってもよい。中でも、連結基は、飽和炭化水素基であることが好ましく、また、上記連結基の炭素数は、1~5であることが好ましく、1~4であることがより好ましい。なお、連結基は、ハロゲン原子、メチル基、エチル基等の置換基を更に有していてもよい。
 Eで表される3価のヘテロ原子としては、硫黄原子、リン原子等が挙げられ、中でも、リン原子であることが好ましい。
 式(1)においては、R~Rのうち少なくとも1つ、及び、R~Rのうち少なくとも1つが、それぞれ、分岐アルキル基であることが好ましい。また、式(2)においては、R11~R14から選択される基Ra;R15~R18から選択される基Rb;及び、R21~R24から選択される基Rcからなる群より選択される少なくとも2つが、分岐アルキル基であることが好ましい。
 更に、分岐アルキル基を有するフェニル基(分岐アルキル基付きフェニル基)は、複数の分岐アルキル基を有することが好ましい。中でも、式(1)及び式(2)において、R~Rのうち少なくとも2つ;R~Rのうち少なくとも2つ;R11~R14のうち少なくとも2つ;及び、R15~R18のうち少なくとも2つが、分岐アルキル基であることが好ましい。
 式(1)で表される構造を有する化合物としては、以下の通りであることが好ましい:
 R及びRが分岐アルキル基;R、R、R及びRが水素原子;R及びRが分岐アルキル基又は直鎖アルキル基;Rが不飽和炭化水素基;Aが2価の飽和炭化水素基。
 式(1)で表される構造を有する化合物としては、以下の通りであることがより好ましい:
 R及びRが炭素数3~6の無置換の分岐アルキル基;R、R、R及びRが水素原子;R及びRが炭素数4~5の無置換の分岐アルキル基又は炭素数1~3の無置換の直鎖アルキル基;Rが無置換のビニル基;Aがアルキル基で置換された、もしくは無置換のメチレン基。
 式(1)で表される構造を有する化合物としては、下記式(3)又は式(4)で表される構造を有する化合物であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(2)で表される構造としては、以下の通りであることが好ましい:
 R11、R13、R16、R18及びR21が分岐アルキル基;R12、R14、R15、R17、R22及びR23が水素原子;R24が直鎖アルキル基;Aが酸素原子を含む2価の飽和炭化水素基;Eが硫黄原子又はリン原子。
 また、式(2)で表される構造としては、以下の通りであることがより好ましい:
 R11、R13、R16、R18及びR21が炭素数3~5の無置換の分岐アルキル基;R12、R14、R15、R17、R22及びR23が水素原子;R24が炭素数1~3の無置換の直鎖アルキル基;Aが炭素数2~5の無置換のアルキレンオキシ基(-OR-において、Rが炭素数2~5の無置換のアルキレン);Eがリン原子。
 式(2)で表される構造を有する化合物としては、下記式(5)で表される構造を有する化合物であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000015
 そして、分岐アルキル基を有するフェニル基を2つ以上有する化合物としては、以上の中でも、上記式(4)又は式(5)で表される構造を有する化合物であることが特に好ましい。
 本実施形態のゴム組成物における上記老化防止剤の含有量は、共重合体100質量部に対して0.1質量部以上5質量部以下であることが好ましい。老化防止剤の含有量が0.1質量部以上であれば、共重合体の分散性の向上及びゲル化の抑制の効果が十分に得られ、また、5質量部以下であれば、耐カット性を良好に保持することができる。同様の観点から、上記ゴム組成物における上記老化防止剤の含有量は、0.5質量部以上であることがより好ましく、また、3質量部以下であることがより好ましい。
 また、本実施形態のゴム組成物は、上述したもののほか、必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものを、その使用目的に応じて適量含有することができる。
 本実施形態のゴム組成物は、例えば、タイヤ、防振ゴム、免震ゴム、コンベヤベルト等のベルト、ゴムクローラ、各種ホースなどのゴム製品に、好適に用いることができる。
(樹脂組成物)
 本発明の一実施形態に係る樹脂組成物(以下、「本実施形態の樹脂組成物」と称することがある。)は、上述した共重合体を含有することを特徴とする。かかる本実施形態の樹脂組成物は、上述した共重合体を含有するため、耐カット性及び耐オゾン性に優れる。
 本実施形態の樹脂組成物は、樹脂成分として上述の共重合体を含有し、更に必要に応じて、その他の樹脂成分を含有することができる。なお、本実施形態の樹脂組成物に関しては、該共重合体を樹脂成分として扱うこととする。
 なお、その他の樹脂成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポリカーボネート、ポリオキシメチレン、ポリフェニレンエーテル等の熱可塑性樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂等の熱硬化性樹脂が挙げられる。
 本実施形態の樹脂組成物において、樹脂成分中の上記共重合体の割合は、10質量%以上であることが好ましい。樹脂成分中の上記共重合体の割合が10質量%以上であれば、上記共重合体による作用が十分に発揮され、樹脂組成物の耐カット性及び耐オゾン性を十分に向上させることができる。同様の観点から、樹脂成分中の上記共重合体の割合は、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、また、100質量%とすることもできる。
 本実施形態の樹脂組成物は、更に、各種添加剤を適宜含有することができる。かかる添加剤としては、例えば、帯電防止剤、滑剤、結晶核剤、粘着性付与剤、防曇剤、離型剤、可塑剤、充填剤、酸化防止剤、老化防止剤、顔料、染料、香料、難燃剤等が挙げられる。
 特に、老化防止剤としては、既述した分岐アルキル基付きフェニル基を2つ以上有する化合物が挙げられ、本実施形態の樹脂組成物は、かかる分岐アルキル基付きフェニル基を2つ以上有する化合物を含有することが好ましい。このように、分岐アルキル基付きフェニル基を2つ以上有する化合物を老化防止剤として用いることにより、本実施形態の共重合体の分散性を向上させることができるとともに、本実施形態の共重合体のゲル化を抑制することができる。上記の分岐アルキル基を有するフェニル基を2つ以上有する化合物は、一種単独で用いてもよいし、二種以上を組み合わせで用いてもよい。
 なお、分岐アルキル基付きフェニル基を2つ以上有する化合物に関する好ましい構造、及び樹脂組成物中の含有量については、ゴム組成物に関して既述したものと同じである。
 本実施形態の樹脂組成物は、例えば、少なくとも一部に樹脂部分を有する種々の樹脂製品に、好適に用いることができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1:共重合体Aの調製)
 十分に乾燥した2000mLの耐圧ステンレス反応器に、1,3-ブタジエン5gを含むトルエン溶液20gと、トルエン480gとを加えた。次いで、この耐圧ステンレス反応器に、エチレンを約1.0MPaの圧力で加え、エチレンで系内を3回置換した。
 一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.025mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.025mmol、及びトリイソブチルアルミニウム0.75mmolを仕込み、トルエン15mLを加えて触媒溶液とした。1時間熟成後、その触媒溶液を上記耐圧ステンレス反応器に加え、80℃に加温した。
 次いで、エチレンを圧力1.0MPaでその耐圧ステンレス反応器に投入し、更に、1,3-ブタジエン25gを含むトルエン溶液100gを60分間かけて加えながら80℃で共重合を行った。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、その耐圧ステンレス反応器に加え、反応を停止させた。
 次いで、大量のメタノールを用いた分離、及び50℃での真空乾燥を行って、共重合体Aを得た。
(実施例2:共重合体Bの調製)
 十分に乾燥した2000mL耐圧ステンレス反応器に、1,3-ブタジエン10gを含むトルエン溶液40gと、トルエン460gとを加えた。次いで、この耐圧ステンレス反応器に、エチレンを約1.0MPaの圧力で加え、エチレンで系内を3回置換した。
 一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.075mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.025mmol、及びトリイソブチルアルミニウム0.25mmolを仕込み、トルエン10mLを加えて触媒溶液とした。1時間熟成後、その触媒溶液を上記耐圧ステンレス反応器に加え、80℃に加温した。
 次いで、エチレンを圧力1.0MPaでその耐圧ステンレス反応器に投入し、更に、1,3-ブタジエン50gを含むトルエン溶液200gを90分間かけて加えながら80℃で共重合を行った。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加え、反応を停止させた。
 次いで、大量のメタノールを用いた分離、及び50℃での真空乾燥を行って、共重合体Bを得た。
(実施例3:共重合体Cの調製)
 十分に乾燥した2000mL耐圧ステンレス反応器に、1,3-ブタジエン15gを含むトルエン溶液60gと、トルエン440gとを加えた。次いで、この耐圧ステンレス反応器に、エチレンを約1.0MPaの圧力で加え、エチレンで系内を3回置換した。
 一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.025mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.025mmol、及びトリイソブチルアルミニウム0.75mmolを仕込み、トルエン10mLを加えて触媒溶液とした。1時間熟成後、その触媒溶液を上記耐圧ステンレス反応器に加え、80℃に加温した。
 次いで、エチレンを圧力1.0MPaでその耐圧ステンレス反応器に投入し、更に、1,3-ブタジエン75gを含むトルエン溶液300gを90分間かけて加えながら80℃で共重合を行った。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加え、反応を停止させた。
 次いで、大量のメタノールを用いた分離、及び50℃での真空乾燥を行って、共重合体Cを得た。
(実施例4:共重合体Dの調製)
 十分に乾燥した2000mL耐圧ステンレス反応器に、1,3-ブタジエン10gを含むトルエン溶液40gと、トルエン460gとを加えた。次いで、この耐圧ステンレス反応器に、エチレンを約1.0MPaの圧力で加え、エチレンで系内を3回置換した。
 一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.075mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.025mmol、及びトリイソブチルアルミニウム0.25mmolを仕込み、トルエン10mLを加えて触媒溶液とした。1時間熟成後、その触媒溶液を上記耐圧ステンレス反応器に加え、80℃に加温した。
 次いで、エチレンを圧力1.0MPaでその耐圧ステンレス反応器に投入し、更に、1,3-ブタジエン50gを含むトルエン溶液200gを180分間かけて加えながら80℃で共重合を行った。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加え、反応を停止させた。
 次いで、大量のメタノールを用いた分離、及び50℃での真空乾燥を行って、共重合体Dを得た。
(比較例1:共重合体Eの調製)
 十分に乾燥した2000mL耐圧ステンレス反応器に、1,3-ブタジエン15gを含むトルエン溶液60gと、トルエン340gとを加えた。次いで、この耐圧ステンレス反応器に、エチレンを約1.0MPaの圧力で加え、エチレンで系内を3回置換した。
 いっぽう窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.040mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート[PhCB(C]0.040mmol、及びトリイソブチルアルミニウム1.0mmolを仕込み、トルエン25mLを加えて触媒溶液とした。1時間熟成後、その触媒溶液を上記耐圧ステンレス反応器に加え、80℃に加温した。
 次いで、エチレンを圧力1.0MPaでその耐圧ステンレス反応器に投入し、更に、1,3-ブタジエン75gを含むトルエン溶液300gを38分間かけて加えながら80℃で共重合を行った。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加え、反応を停止させた。
 次いで、大量のメタノールを用いた分離、及び50℃での真空乾燥を行って、共重合体Eを得た。
 得られた共重合体について、以下の測定を行った。
(1)重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8121GPC/HT、カラム:東ソー社製GMHHR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体のポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。結果を表1に示す。
(2)1,3-ブタジエン単位、エチレン単位の割合
 共重合体中の1,3-ブタジエン単位及びエチレン単位の割合(mol%)を、H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)の各ピークの積分比より求めた。結果を表1に示す。
(3)主鎖構造の確認
 得られた共重合体について、13C-NMRスペクトルを測定した。得られた13C-NMRスペクトルチャートにおいて、10~24ppmにピークが観測されなかった。このことから、合成した共重合体は、主鎖が非環状構造のみからなることを確認した。
(4)吸熱ピークエネルギー
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、得られた共重合体を、-150℃~150℃まで、10℃/minで昇温した。そして、その時(1st run)の0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH(J/g))と、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH(J/g))とを測定した。結果を表1に示す。また、参考として、実施例1~4及び比較例1の共重合体のDSCチャートを、図1~図5にそれぞれ示す。
(5)結晶化度
 上記の吸熱ピークエネルギーの測定に加え、更に、示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、100%結晶成分のポリエチレンの結晶融解エネルギー(ΔH(J/g))を測定した。
 そして、上記ポリエチレンの結晶融解エネルギー(ΔH)に対する、共重合体の0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)の比率(ΔH/ΔH)から、0℃以上100℃未満の範囲における結晶化度(C(%))を算出した。また、上記ポリエチレンの結晶融解エネルギー(ΔH)に対する、共重合体の100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)の比率(ΔH/ΔH)から、100℃以上150℃以下の範囲における結晶化度(C(%))を算出した。結果を表1に示す。
(6)融点
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体の融点を測定した。結果を表1に示す。
(7)ガラス転移温度
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体のガラス転移温度(Tg)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
 表1から、実施例では、非共役オレフィン単位の割合が50mol以上であり、且つ、示差走査熱量計(DSC)で測定した、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)よりも大きい共重合体が得られたことが分かり、かかる実施例の共重合体は、高い耐カット性及び耐オゾン性を有するものと考えられる。
 本発明によれば、耐カット性及び耐オゾン性に優れる共重合体を提供することができる。
 また、本発明によれば、耐カット性及び耐オゾン性に優れるゴム組成物、及び樹脂組成物を提供することができる。
 
 

Claims (15)

  1.  共役ジエン単位と、非共役オレフィン単位とを有する共重合体であって、
     前記非共役オレフィン単位の割合が50mol%以上であり、
     示差走査熱量計(DSC)で測定した、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)よりも大きい、ことを特徴とする、共重合体。
  2.  前記100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH)が、35J/g以上である、請求項1に記載の共重合体。
  3.  前記0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH)が、30J/g以下である、請求項1又は2に記載の共重合体。
  4.  前記共役ジエン単位の割合が5mol%以上50mol%未満であり、前記非共役オレフィン単位の割合が50mol%以上95mol%以下である、請求項1~3のいずれかに記載の共重合体。
  5.  示差走査熱量計(DSC)で測定した融点が100℃以上である、請求項1~4のいずれかに記載の共重合体。
  6.  ポリスチレン換算の重量平均分子量が50,000~2,000,000である、請求項1~5のいずれかに記載の共重合体。
  7.  結晶化度が0.5~60%である、請求項1~6のいずれかに記載の共重合体。
  8.  前記非共役オレフィン単位が、非環状の非共役オレフィン単位である、請求項1~7のいずれかに記載の共重合体。
  9.  前記非共役オレフィン単位が、エチレン単位のみからなる、請求項1~8のいずれかに記載の共重合体。
  10.  前記共役ジエン単位が、1,3-ブタジエン単位及び/又はイソプレン単位を含む、請求項1~9のいずれかに記載の共重合体。
  11.  前記芳香族ビニル単位を更に有する、請求項1~10のいずれかに記載の共重合体。
  12.  請求項1~11のいずれかに記載の共重合体を含有することを特徴とする、ゴム組成物。
  13.  老化防止剤として、分岐アルキル基を有するフェニル基を2つ以上有する化合物を更に含有する、請求項12に記載のゴム組成物。
  14.  請求項1~11のいずれかに記載の共重合体を含有することを特徴とする、樹脂組成物。
  15.  老化防止剤として、分岐アルキル基を有するフェニル基を2つ以上有する化合物を更に含有する、請求項14に記載の樹脂組成物。
     
PCT/JP2021/041396 2020-12-07 2021-11-10 共重合体、ゴム組成物及び樹脂組成物 WO2022123993A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-203020 2020-12-07
JP2020203020A JP2022090554A (ja) 2020-12-07 2020-12-07 共重合体、ゴム組成物及び樹脂組成物

Publications (1)

Publication Number Publication Date
WO2022123993A1 true WO2022123993A1 (ja) 2022-06-16

Family

ID=81972944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041396 WO2022123993A1 (ja) 2020-12-07 2021-11-10 共重合体、ゴム組成物及び樹脂組成物

Country Status (2)

Country Link
JP (1) JP2022090554A (ja)
WO (1) WO2022123993A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027179A (ja) * 2002-05-08 2004-01-29 Inst Of Physical & Chemical Res 重合用触媒
JP2014037498A (ja) * 2012-08-20 2014-02-27 Bridgestone Corp 共重合体の製造方法
WO2019171679A1 (ja) * 2018-03-05 2019-09-12 株式会社ブリヂストン 共重合体、共重合体の製造方法、ゴム組成物及びタイヤ
WO2019225146A1 (ja) * 2018-05-21 2019-11-28 株式会社ブリヂストン 重合触媒、及び、共重合体の製造方法
WO2020208902A1 (ja) * 2019-04-12 2020-10-15 株式会社ブリヂストン ポリイソプレンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027179A (ja) * 2002-05-08 2004-01-29 Inst Of Physical & Chemical Res 重合用触媒
JP2014037498A (ja) * 2012-08-20 2014-02-27 Bridgestone Corp 共重合体の製造方法
WO2019171679A1 (ja) * 2018-03-05 2019-09-12 株式会社ブリヂストン 共重合体、共重合体の製造方法、ゴム組成物及びタイヤ
WO2019225146A1 (ja) * 2018-05-21 2019-11-28 株式会社ブリヂストン 重合触媒、及び、共重合体の製造方法
WO2020208902A1 (ja) * 2019-04-12 2020-10-15 株式会社ブリヂストン ポリイソプレンの製造方法

Also Published As

Publication number Publication date
JP2022090554A (ja) 2022-06-17

Similar Documents

Publication Publication Date Title
JP7094402B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
JP5775873B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5918132B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2019171679A1 (ja) 共重合体、共重合体の製造方法、ゴム組成物及びタイヤ
JPWO2015190072A1 (ja) 多元共重合体、ゴム組成物及びタイヤ
WO2012014459A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012014455A1 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP7311091B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物、ゴム製品、及びタイヤ
WO2012014463A1 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ
JP5909121B2 (ja) タイヤ用ゴム組成物
WO2012164914A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012105271A1 (ja) 共重合体、ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP7094403B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
WO2012105274A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2013132846A1 (ja) 重合体、前記重合体を含むゴム組成物、前記ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記架橋ゴム組成物を有するタイヤ
JP2013155257A (ja) ゴム組成物及びタイヤ
JP5917810B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP7431817B2 (ja) 多元共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品
WO2022123993A1 (ja) 共重合体、ゴム組成物及び樹脂組成物
JP7160620B2 (ja) 共重合体、共重合体の製造方法、ゴム組成物及びタイヤ
JP5612511B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5612512B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2022090555A (ja) 共重合体、ゴム組成物及び樹脂組成物
JP7097152B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
JP7041706B2 (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903097

Country of ref document: EP

Kind code of ref document: A1