JP5898978B2 - 空気ばね用ゴム組成物及びそれを用いた空気ばね - Google Patents

空気ばね用ゴム組成物及びそれを用いた空気ばね Download PDF

Info

Publication number
JP5898978B2
JP5898978B2 JP2012017153A JP2012017153A JP5898978B2 JP 5898978 B2 JP5898978 B2 JP 5898978B2 JP 2012017153 A JP2012017153 A JP 2012017153A JP 2012017153 A JP2012017153 A JP 2012017153A JP 5898978 B2 JP5898978 B2 JP 5898978B2
Authority
JP
Japan
Prior art keywords
group
conjugated diene
rubber
diene compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012017153A
Other languages
English (en)
Other versions
JP2013155296A (ja
Inventor
岡田 治
治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012017153A priority Critical patent/JP5898978B2/ja
Publication of JP2013155296A publication Critical patent/JP2013155296A/ja
Application granted granted Critical
Publication of JP5898978B2 publication Critical patent/JP5898978B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fluid-Damping Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、空気ばね用ゴム組成物及びそれを用いた空気ばねに関する。
一般に、空気ばねは、鉄道車両の枕ばね装置や自動車のエアサスペンション等に用いられている(特許文献1)。前記鉄道車両及び自動車は、様々な使用環境に晒されるため、高い耐候性を有するゴム組成物を用いることが特に重要である。このような状況下、前記空気ばね用ゴム組成物の耐候性を向上させる方法として、一般に様々な特性をバランスよく発揮するクロロプレンゴムに対し、耐候性が極めて良好なゴム成分として公知のエチレン−プロピレン−ジエンゴムをブレンドする方法が考えられる。しかしながら、クロロプレンゴムとエチレン−プロピレン−ジエンゴムとをブレンドして得られるゴム組成物は、耐候性が向上するものの、両物質の相溶性が悪いために耐亀裂成長性が低下するという問題が生じ、かかるゴム組成物を空気ばねに用いると、その性能が早期に低下し得る。従って、耐亀裂成長性を維持しつつ、エチレン−プロピレン−ジエンゴム由来の高い耐候性を享受することのできるゴム組成物が求められている。
クロロプレンゴムとエチレン−プロピレン−ジエンゴムとを原料に用いたゴム組成物として、特許文献2は、アクリロニトリルを3〜40重量%共重合させたクロロプレン−アクリロニトリル共重合体と、エチレン−プロピレン−ジエンゴムとをブレンドすることにより、クロロプレンゴム由来の耐油性を犠牲にすることなく、耐候性に優れたゴム組成物が得られることを開示している。しかしながら、かかる方法では、ゴム組成物の耐亀裂成長性の低下は避けられない。
特開昭54−70520号公報 特公昭60−32656号公報
そこで、本発明の目的は、上述の問題を解決するためのものであり、耐油性の悪化を抑制した上で、十分な耐候性を有しつつ、耐亀裂成長性を向上させることのできる空気ばね用ゴム組成物、及び耐油性の悪化を抑制した上で、十分な耐候性を有しつつ、耐亀裂成長性に優れた空気ばねを提供することにある。
本発明者は、上記目的を達成するために鋭意検討した結果、共役ジエン化合物−非共役オレフィン共重合体と、適正量のクロロプレンゴムと、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体とを混合することにより、耐油性の悪化を抑制した上で、十分な耐候性を有しつつ、耐亀裂成長性を向上させることのできる空気ばね用ゴム組成物が得られることを見出し、本発明を完成させるに至った。
即ち、本発明の空気ばね用ゴム組成物は、共役ジエン化合物−非共役オレフィン共重合体(A)と、クロロプレンゴム(B)と、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)とを含み、該クロロプレンゴム(B)が、ゴム成分100質量部中において60質量部〜80質量部の範囲であることを特徴とする。
本発明の空気ばね用ゴム組成物は、前記非共役ジエン化合物−非共役オレフィン共重合体(C)が、ゴム成分100質量部中において10質量部〜30質量部の範囲であることが好ましい。
本発明の空気ばね用ゴム組成物は、前記共役ジエン化合物−非共役オレフィン共重合体(A)の共役ジエン化合物由来部分のシス−1,4結合量が、50%以上であることが好ましい。
本発明の空気ばね用ゴム組成物は、前記共役ジエン化合物−非共役オレフィン共重合体(A)のポリスチレン換算重量平均分子量が、10,000〜10,000,000の範囲であることが好ましい。
本発明の空気ばね用ゴム組成物は、前記共役ジエン化合物−非共役オレフィン共重合体(A)の分子量分布(Mw/Mn)が、10以下であることが好ましい。
本発明の空気ばね用ゴム組成物は、前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンが、非環状オレフィン化合物であることが好ましい。
本発明の空気ばね用ゴム組成物は、前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンが、炭素数が2〜10であることが好ましい。
本発明の空気ばね用ゴム組成物は、前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンが、エチレン、プロピレン及び1−ブテンからなる群より選択される少なくとも一種であることが好ましく、エチレンであることがより好ましい。
本発明の空気ばねは、本発明の空気ばね用ゴム組成物を用いたことを特徴とする。
本発明によれば、耐油性の悪化を抑制した上で、十分な耐候性を有しつつ、耐亀裂成長性を向上させることのできる空気ばね用ゴム組成物、及び耐油性の悪化を抑制した上で、十分な耐候性を有しつつ、耐亀裂成長性に優れた空気ばねを提供することができる。
(空気ばね用ゴム組成物)
以下に、本発明を詳細に説明する。本発明の空気ばね用ゴム組成物は、共役ジエン化合物−非共役オレフィン共重合体(A)と、クロロプレンゴム(B)と、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)とを含み、該クロロプレンゴム(B)は、ゴム成分100質量部中において60〜80質量部の範囲であることを特徴とする。さらに、前記ゴム組成物は、必要に応じて、前記以外のゴム成分、カーボンブラック等の補強性充填剤、架橋剤、その他の成分を含んでなる。
<共役ジエン化合物−非共役オレフィン共重合体(A)>
本発明の空気ばね用ゴム組成物は、共役ジエン化合物−非共役オレフィン共重合体(A)を含む。なお、前記共役ジエン化合物−非共役オレフィン共重合体とは、共役ジエン化合物と非共役オレフィンとの共重合体であり、共重合体におけるモノマー単位成分として非共役オレフィンを含むものである。ゴム成分として該共役ジエン化合物−非共役オレフィン共重合体(A)を含むことで、共重合体(A)成分の共役ジエン部分が、共役ジエン系重合体であるクロロプレンゴム(B)との相溶性を向上させ、また、共重合体(A)成分の非共役オレフィン部分が、非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性を向上させることにより、耐亀裂成長性に優れたクロロプレンゴム(B)と、耐候性に優れた非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性を向上させることができる結果、ゴム組成物の耐候性及び耐亀裂成長性を高いレベルで両立できる。
本発明の空気ばね用ゴム組成物において、前記共役ジエン化合物−非共役オレフィン共重合体(A)は、ゴム成分100質量部中において10質量部〜30質量部の範囲であることが好ましく、15質量部〜25質量部の範囲であることがより好ましい。ゴム成分100質量部中において10質量部未満の場合、相溶化の効果を十分に得られないおそれがあり、30質量部を超えると、クロロプレンゴム(B)由来の耐亀裂成長性及び非共役ジエン化合物−非共役オレフィン共重合体(C)由来の耐候性の効果が十分に得られないおそれがある。
前記共役ジエン化合物−非共役オレフィン共重合体(A)は、共役ジエン化合物由来部分のシス−1,4結合量が50%以上であることが好ましく、75%以上であることがより好ましい。共役ジエン化合物由来部分のシス−1,4結合量が50%以上であれば、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性が有利に向上するため、高い耐候性を有することができ、また、共役ジエン化合物の単量体に由来する伸長結晶性を示すため、破断強度や耐疲労性等の機械的性質をさらに向上させることができる。
なお、前記共役ジエン化合物由来部分とは、前記共役ジエン化合物−非共役オレフィン共重合体(A)の中で、モノマーとして用いられた共役ジエン化合物に該当する部分のことをいう。また、前記シス−1,4結合量は、前記共役ジエン化合物由来部分中の量をいい、共役ジエン化合物−非共役オレフィン共重合体(A)全体に対する割合として算出されるものではない。
前記共役ジエン化合物−非共役オレフィン共重合体(A)は、共役ジエン化合物由来部分の割合が40mol%以上であることが好ましく、50mol%以上であることがより好ましく、60mol%以上であることが特に好ましい。共役ジエン化合物由来部分の割合が40mol%未満の場合、プラスチックに近いためエラストマーとしての特性が低く、十分な耐亀裂成長性が得られないことがあり、また、クロロプレンゴム(B)と、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性が低下して、所望の耐候性及び耐亀裂成長性を得ることができないおそれがある。
なお、前記共役ジエン化合物由来部分とは、前記共役ジエン化合物−非共役オレフィン共重合体(A)の中で、モノマーとして用いられた共役ジエン化合物に該当する部分のことをいう。
一方、非共役オレフィン由来部分の含有量としては、60mol%以下であることが好ましく、50mol%以下であることが好ましく、40mol%以下であることがより好ましい。
前記共役ジエン化合物−非共役オレフィン共重合体(A)において、そのポリスチレン換算重量平均分子量(Mw)は、特に限定されるものでもないが、高分子構造材料への適用の観点から、10,000〜10,000,000の範囲であることが好ましく、10,000〜1,000,000の範囲であることがより好ましく、50,000〜600,000の範囲であることが特に好ましい。また、前記共役ジエン化合物−非共役オレフィン共重合体(A)において、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、物性の均質性の観点から、10以下であることが好ましく、5以下であることがより好ましい。ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。
なお、前記共役ジエン化合物−非共役オレフィン共重合体(A)において、モノマーとして用いる共役ジエン化合物は、炭素数が4〜12であることが好ましい。前記共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
一方、前記共役ジエン化合物−非共役オレフィン共重合体(A)において、モノマーとして用いる非共役オレフィンは、共役ジエン化合物以外の非共役オレフィンであり、優れた耐熱性や、共重合体の主鎖中に占める二重結合の割合を減らし、結晶性を低下させることでエラストマーとしての設計自由度を高めることが可能となる。非共役オレフィンの種類としては、非環状オレフィンであることが好ましく、また、前記非共役オレフィンの炭素数は2〜10であることが好ましい。従って、前記非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1−ブテンが好ましく、エチレンが特に好ましい。α−オレフィンはオレフィンのα位に二重結合を有するため、共役ジエン化合物との共重合を効率よく行うことができる。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
なお、オレフィンとは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。
また、非共役オレフィンのモノマー単位からなるブロック部分を備える場合には、静的結晶性を示すため、破断強度等の機械的性質に優れるようになる。
−−共役ジエン化合物−非共役オレフィン共重合体(B)の製造方法−−
次に、前記共役ジエン化合物−非共役オレフィン共重合体(B)の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。
前記共役ジエン化合物−非共役オレフィン共重合体(B)は、下記に示す重合触媒または重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させる工程を含む。なお、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
上記製造方法によれば、上記重合触媒または重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、モノマーである共役ジエン化合物と非共役オレフィンを共重合させることができる。
<第一の重合触媒組成物>
上記重合触媒組成物としては、下記一般式(I):
Figure 0005898978
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
Figure 0005898978
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(III):
Figure 0005898978
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp’は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物(以下、第一重合触媒組成物ともいう)が挙げられ、該重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。なお、重合反応系において、第一重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7−X又はC11−Xで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCp’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCp’は、C5−Xで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCp’として、具体的には、以下のものが例示される。
Figure 0005898978
(式中、Rは水素原子、メチル基又はエチル基を示す。)
一般式(III)において、上記インデニル環を基本骨格とするCp’は、一般式(I)のCpと同様に定義され、好ましい例も同様である。
一般式(III)において、上記フルオレニル環を基本骨格とするCp’は、C139−X又はC1317−Xで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるR〜R)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも一つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、R〜Rのうち少なくとも一つが水素原子であり、R〜Rのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX’]を含む。シリル配位子[−SiX’]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。
一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−トリ−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。
一般式(III)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、モノマーとして存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
Figure 0005898978
(式中、X’’はハライドを示す。)
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
Figure 0005898978
(式中、X’’はハライドを示す。)
上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
Figure 0005898978
ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp’は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。
[A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は式(II)で表されるメタロセン錯体と一般式[A][B]で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
上記第一重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、1種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第一重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。
一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR’はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R’’はC1〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
更に、上記重合触媒組成物においては、一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。
<第二の重合触媒組成物>
また、上記重合触媒組成物としては、
(a)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(b)成分:非配位性アニオンとカチオンとからなるイオン性化合物(b−1)、アルミノキサン(b−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも1種のハロゲン化合物(b−3)よりなる群から選択される少なくとも1種とを含む重合触媒組成物(以下、第二重合触媒組成物ともいう)を好適に挙げることができ、
該第二重合触媒組成物が、イオン性化合物(b−1)及びハロゲン化合物(b−3)の少なくとも1種を含む場合、該重合触媒組成物は、更に、
(c)成分:下記一般式(X):
YR ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを特徴とする。
前記共重合体の製造方法に用いる第二重合触媒組成物は、上記(a)成分及び(b)成分を含むことを要し、ここで、該重合触媒組成物が、上記イオン性化合物(b−1)及び上記ハロゲン化合物(b−3)の少なくとも1種を含む場合には、更に、
(c)成分:下記一般式(X):
YR ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを要する。上記イオン性化合物(b−1)及び上記ハロゲン化合物(b−3)は、(a)成分へ供給するための炭素原子が存在しないため、該(a)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(b−2)を含む場合であっても、該重合触媒組成物は、上記(c)成分を含むことができる。また、上記第二重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。なお、重合反応系において、第二重合触媒組成物に含まれる(a)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
上記第二重合触媒組成物に用いる(a)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(a)成分は、1種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
1111 ・L11w ・・・ (XI)
1111 ・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表されることができる。
上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロキシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、1種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記第二重合触媒組成物に用いる(a)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
上記第二重合触媒組成物に用いる(b)成分は、イオン性化合物(b−1)、アルミノキサン(b−2)及びハロゲン化合物(b−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第二重合触媒組成物における(b)成分の合計の含有量は、(a)成分に対して0.1〜50倍モルであることが好ましい。
上記(b−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(a)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物におけるイオン性化合物の含有量は、(a)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
上記(b−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R’)O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、(a)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。
上記(b−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも1種からなり、例えば、上記(a)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第二重合触媒組成物におけるハロゲン化合物の合計の含有量は、(a)成分に対して1〜5倍モルであることが好ましい。
上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
上記第二重合触媒組成物に用いる(c)成分は、下記一般式(X):
YR ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物であり、下記一般式(Xa):
AlR ・・・ (Xa)
[式中、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
<重合触媒および第三の重合触媒組成物>
上記重合触媒としては、共役ジエン化合物と非共役オレフィンとの重合用であり、下記
式(A):
MXQY ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系複合触媒の好適例においては、下記式(XV):
Figure 0005898978
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及びAlにμ配位しており、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒が挙げられる。
また、上記第三の重合触媒組成物は、上記のメタロセン系複合触媒と、ホウ素アニオン
とを含むことを特徴とする。
<メタロセン系複合触媒>
以下に、上記メタロセン系複合触媒を詳細に説明する。上記メタロセン系複合触媒は、ランタノイド元素、スカンジウム又はイットリウムの希土類元素と周期律表第13族元素とを有し、下記式(A):
MXQY ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されることを特徴とする。上記メタロセン系重合触媒を用いることで、共役ジエン化合物と非共役オレフィンとの共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記式(XV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(XV)において、Cpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7−X又はC11−Xで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XV)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
上記式(XV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及Aにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(XV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XVI):
Figure 0005898978
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、H−NMRやX線構造解析により決定することが好ましい。
上記式(XVI)で表されるメタロセン錯体において、Cpは、無置換インデニル又は置換インデニルであり、上記式(XV)中のCpと同義である。また、上記式(XVI)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XV)中の金属Mと同義である。
上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR]を含む。シリルアミド配位子に含まれるR基(R〜R基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも一つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記式(XVI)で表されるメタロセン錯体は、モノマーとして存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRで表され、ここで、R及びRは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、Rは炭素数1〜20の1価の炭化水素基であり、但し、Rは上記R又はRと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
<第三の重合触媒組成物>
また、上記重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。上記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各モノマー成分の共重合体中での含有量を任意に制御することが可能となる。
上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。
なお、上記第三重合触媒組成物においては、上記メタロセン系複合触媒と上記ホウ素アニオンとを用いる必要があるが、上記式(XVI)で表されるメタロセン触媒と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。
上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、1種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
なお、共重合体の製造方法においては、上述の通り、上記重合触媒または重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、重合を行うことができる。ここで、共重合体の製造方法は、例えば、(1)モノマーとして共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反応系中に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成物としてもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよい。また、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を提供することも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.0001〜0.01倍モルの範囲が好ましい。
また、共重合体の製造方法においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
共重合体の製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合されるモノマーの種類、触媒の種類、重合温度等の条件によって適宜選択することができる。
前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、該非共役オレフィンの圧力は、0.1MPa〜10MPaであることが好ましい。該非共役オレフィンの圧力が0.1MPa以上であれば、反応混合物中に非共役オレフィンを効率的に導入することができる。また、非共役オレフィンの圧力を高くし過ぎても、非共役オレフィンを効率的に導入する効果が頭打ちとなるため、非共役オレフィンの圧力を10MPa以下とするのが好ましい。
前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、重合開始時における該共役ジエン化合物の濃度(mol/l)と該非共役オレフィンの濃度(mol/l)とは、下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度≧1.0
の関係を満たすことが好ましく、更に好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度≧1.3
の関係を満たし、一層好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度≧1.7
の関係を満たす。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とすることで、反応混合物中に非共役オレフィンを効率的に導入することができる。
また、上記第一重合触媒組成物又は第二重合触媒組成物を使用しなくても、即ち、通常の配位イオン重合触媒を使用する場合であっても、重合反応系中への単量体の仕込み方を調整することで、前記共重合体を製造することができる。即ち、前記共重合体の第二の製造方法は、非共役オレフィンの存在下において、共役ジエン化合物の投入を制御することで、共重合体の連鎖構造を制御することを特徴とし、これによって、共重合体中の単量体単位の配列を制御することができる。なお、本発明において、重合反応系とは、共役ジエン化合物と非共役オレフィンとの重合が行われる場所を意味し、具体例としては、反応容器等が挙げられる。
ここで、共役ジエン化合物の投入方法は、連続投入、分割投入のいずれであってもよく、更には、連続投入及び分割投入を組み合わせてもよい。また、連続投入とは、例えば、一定の添加速度で一定の時間添加することをいう。
具体的には、共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に共役ジエン化合物を分割又は連続投入することで、該重合反応系内の単量体の濃度比を制御することが可能となり、その結果、得られる共重合体中の連鎖構造(即ち、単量体単位の配列)を特徴づけることが可能となる。また、共役ジエン化合物の投入の際に、非共役オレフィンが重合反応系中に存在することで、共役ジエン化合物単独重合体の生成を抑制することができる。なお、共役ジエン化合物の投入は、非共役オレフィンの重合を開始した後に行ってもよい。
例えば、上記第二製造方法によって前記共重合体を製造する場合には、あらかじめ非共役オレフィンの重合を開始した重合反応系に、非共役オレフィンの存在下で共役ジエン化合物を連続投入することが有効となる。特に、上記第二製造方法によってマルチブロック共重合体を製造する場合には、「非共役オレフィンを重合反応系中で重合させ、次に、非共役オレフィンの存在下で共役ジエン化合物を該重合反応系中に連続投入する」という操作を2回以上繰り返すことが有効となる。
上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は特に限定されず、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は、上記第一製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。
なお、上記第二製造方法においては、共役ジエン化合物の投入を制御する必要があるが、具体的には、共役ジエン化合物の投入量や共役ジエン化合物の投入回数を制御することが好ましい。また、共役ジエン化合物の投入の制御方法は、例えば、コンピュータ等のプログラムで制御する方法や、タイマー等を用いてアナログで制御する方法が挙げられるが、これらに限定されるものではない。また、上述のように、共役ジエン化合物の投入方法は、特に限定されず、連続投入、分割投入等が挙げられる。ここで、共役ジエン化合物を分割投入する場合、該共役ジエン化合物の投入回数は、特に限定されないが、1〜5回の範囲が好ましい。共役ジエン化合物の投入回数が大きくなり過ぎると、ブロック共重合体とランダム共重合体との区別が困難になる場合がある。
また、上記第二製造方法においては、共役ジエン化合物の投入時に、非共役オレフィンが重合反応系に存在していることが必要であるため、非共役オレフィンを重合反応系へ連続的に供給することが好ましい。また、非共役オレフィンの供給方法は、特に限定されるものではない。
<クロロプレンゴム(B)>
本発明の空気ばね用ゴム組成物は、クロロプレンゴム(B)を含む。なお、クロロプレンゴムとは、クロロプレン単量体の単独重合体(クロロプレン重合体)、または、クロロプレン単量体とそれと共重合可能な他の単量体1種以上との混合物を重合させて得られた共重合体を指す。
本発明の空気ばね用ゴム組成物において、前記クロロプレンゴム(B)は、ゴム成分100質量部中において60質量部〜80質量部の範囲であることが必要であり、65質量部〜75質量部の範囲であることがより好ましい。前記クロロプレンゴム(B)の含有量が、ゴム成分100質量部中において60質量部未満であると、耐油性が低下するおそれがあり、ゴム成分100質量部中において80質量部を超えると、耐候性及び加工性が低下するおそれがある。
<非共役ジエン化合物−非共役オレフィン共重合体(C)>
本発明の空気ばね用ゴム組成物は、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)を含む。前記非共役ジエン化合物−非共役オレフィン共重合体(C)に含有されるエチレン−プロピレン−ジエンゴムによって、優れた耐候性を実現できる。
なお、前記非共役ジエン化合物−非共役オレフィン共重合体(C)とは、非共役ジエン化合物と非共役オレフィンとの共重合体であり、共重合体におけるモノマー単位成分として非共役オレフィンを含むものをいう。さらに、非共役ジエン化合物−非共役オレフィン共重合体(C)のジエン含有量は10%以下である。
本発明の空気ばね用ゴム組成物において、前記非共役ジエン化合物−非共役オレフィン共重合体(C)は、ゴム成分100質量部中において10質量部〜30質量部の範囲であることが好ましく、15質量部〜25質量部の範囲であることがより好ましい。前記非共役ジエン化合物−非共役オレフィン共重合体(C)の含有量が、ゴム成分100質量部中において10質量部未満であると、十分な耐候性を得られないおそれがあり、ゴム成分100質量部中において30質量部を超えると、十分な耐亀裂成長性を得られないおそれがある。
ここで、前記非共役ジエン化合物−非共役オレフィン共重合体(C)に含有されるエチレン−プロピレン−ジエンゴムについては、エチレンとプロピレンとの共重合体であるエチレンプロピレンゴム(EPM)に、少量の第3成分を導入し、主鎖中に二重結合をもたせたものである。第3成分の種類や量の違いにより様々な合成ゴムがあり、代表的な第3成分としては、エチリデンノルボルネン(ENB)、1,4−ヘキサジエン(1,4−HD)、ジシクロペンタジエン(DCP)等が挙げられる。前記エチレン−プロピレン−ジエンゴムの特性については、上記耐候性の他、耐老化性、耐寒性、耐溶剤性等に優れている。
また、前記非共役ジエン化合物−非共役オレフィン共重合体(C)におけるエチレン−プロピレン−ジエンゴムの含有量は、10質量%以上であることが好ましい。10質量%未満の場合、エチレン−プロピレン−ジエンゴムの含有量が少なすぎるため、十分な耐候性を確保できないおそれがあるからである。
なお、前記非共役ジエン化合物−非共役オレフィン共重合体(C)のその他の条件(共役ジエン化合物、エチレン−プロピレン−ジエンゴム以外の非共役オレフィン共重合体、製造方法など)については、前記共役ジエン化合物−非共役オレフィン共重合体(A)と同様である。
<その他のゴム成分>
前記ゴム成分としては、例えば、前記共役ジエン化合物−非共役オレフィン共重合体(A)、前記クロロプレンゴム(B)、前記非共役ジエン化合物−非共役オレフィン共重合体(C)に加えて、その他のゴム成分を含むことができ、例えば、天然ゴム(NR)、スチレン−ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン−プロピレンゴム(EPR)、フッ素ゴム、シリコーンゴム、ウレタンゴム等が挙げられる。その他のゴム成分については、1種単独で使用してもよいし、2種以上を併用してもよい。
<補強性充填材>
本発明の空気ばね用ゴム組成物には、必要に応じて補強性充填剤を配合することができる。前記補強性充填剤の種類としては、所望の補強効果を得ることができるものであれば特に限定はされないが、例えば、カーボンブラック、無機充填剤、などを挙げることができる。
前記補強性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、5〜200質量部であることが好ましい。 前記補強性充填剤の含有量が、5質量部未満であると、補強性充填剤を含むことによる補強効果が得られないおそれがあり、200質量部を超えると前記ゴム成分に補強性充填剤が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させるおそれがある。
前記補強性充填材としてカーボンブラックを用いた場合、その具体的な種類については、特に制限はなく、目的に応じて適宜選択することができ、例えば、SAF、ISAF、HAF、FEF、GPF等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記カーボンブラックの窒素吸着比表面積(NSA、JIS K 6217−2:2001に準拠する)としては、特に制限はなく、目的に応じて適宜選択することができるが、20m/g〜100m/gが好ましく、35m/g〜80m/gがより好ましい。前記カーボンブラックの窒素吸着比表面積(NSA)が20m/g未満であると、得られるゴム組成物の耐久性が低く、十分な耐亀裂成長性が得られないことがあり、100m/gを超えると、低ロス性が低下し、また、作業性が悪化することがある。
前記ゴム成分100質量部に対するカーボンブラックの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量部〜70質量部が好ましく、20質量部〜60質量部がより好ましい。前記カーボンブラックの含有量が、10質量部未満であると、補強性が不十分で耐破壊性が悪化することがあり、70質量部を超えると、加工性および低ロス性が悪化することがある。一方、前記カーボンブラックの含有量が、前記より好ましい範囲内であると、各性能のバランスの点で有利である。
前記補強性充填材として無機充填剤を用いた場合、その具体的な種類については、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。なお、無機充填剤を用いる場合には、適宜シランカップリング剤を使用することもできる。
<架橋剤>
本発明の空気ばね用ゴム組成物には、必要に応じて架橋剤を配合することができる。前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄などが挙げられるが、これらの中でも空気ばね用ゴム組成物に用いる場合には硫黄系架橋剤がより好ましい。
前記架橋剤の含有量についても、特に制限はなく、目的に応じて適宜選択することができる。例えば、ゴム成分100質量部に対し、0.1〜20質量部含有することが好ましい。前記架橋剤の含有量が0.1質量部未満であると、架橋がほとんど進行しないおそれがあり、20質量部を超えると、一部の架橋剤により混練り中に架橋が進む傾向にあり、加硫物の物性が損なわれるおそれがあるからである。
<その他の成分>
本発明の空気ばね用ゴム組成物には、さらに加硫促進剤を併用することも可能であり、該加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
また、必要に応じて、補強剤、軟化剤、充填剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
(空気ばね)
本発明の空気ばねは、前記空気ばね用ゴム組成物を構成部材のいずれかに用いたことを特徴とする。本発明の一実施態様における空気ばねは、上面板と下面板との間に空気を封入したゴム製のダイヤフラムやベローズを配置したもので、更に下面板の下面側にゴム質弾性体と金属等の剛質板とを交互に積層した防振体を連結して枕ばね装置が構成される。前記空気ばねは、上記ダイヤフラム又はベローズが変形することにより、振動や上下左右の力を吸収する機構があり、このとき通常は上下面板からダイヤフラムやベローズを保護するために上下面板の内面に保護ゴムを被覆形成し、ダイヤフラムやベローズを形成するゴムが直接金属製の上下面板に接触せず、上記保護ゴムと接触した状態で変形するようになっている。本発明の空気ばねは、例えば、ダイヤフラムまたはベローズ、ゴム質弾性体、保護ゴムに本発明の空気ばね用ゴム組成物を用いることができる。また、保護ゴムとダイヤフラムまたはベローズなど、ゴム材料同士が接触して摩擦を生じる部材において好適に用いることができ、十分な耐候性及び優れた耐亀裂成長性を発揮することができる。この場合、互いに接触するゴム材料の一方を本発明のゴム組成物で形成すれば、良好な効果が得られるが、互いに接触するゴム材料の双方を本発明のゴム組成物で構成することもでき、例えば、空気ばねの保護ゴムと、ダイヤフラムまたはベローズとの双方を本発明のゴム組成物で形成してもよい。
以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<ブタジエン−エチレン共重合体(EBR)の調製>
十分に乾燥した4Lステンレス反応器に、1,3−ブタジエン230g(4.26mo
l)を含むトルエン溶液2,000gを添加した後、エチレンを1.72MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhCGdN(SiHMe]145μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]145μmol、及びジイソブチルアルミニウムハイドライド2.9mmolを仕込み、トルエン100mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で142μmolとなる量をモノマー溶液へ添加し、60℃で60分間重合を行った。重合後、2,2’メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液5mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体を得た。得られた共重合体EBRの収量は248gであった。
(実施例1〜4及び比較例1〜4)
実施例1〜4及び比較例1〜4のゴム組成物のサンプルとして、表1に示す配合処方で、共役ジエン化合物−非共役オレフィン共重合体(A)と、クロロプレンゴム(B)と、非共役ジエン化合物−非共役オレフィン共重合体(C)とを含むゴム組成物を調製した。
その後、各ゴム組成物試料を用い、160℃で20分間加硫した後、下記に示す方法によりそれぞれ評価を行った。結果を表1に示す。
<耐オゾン性>
各実施例及び比較例で得られた加硫ゴム組成物試料について、JIS K6259に従い、JIS1号試験片を30%の動的伸張を与えながら、40℃、オゾン濃度50pphm条件で暴露し、オゾン亀裂発生までの時間を測定した。表1においては、比較例1を100としたときの指数で表示し、数値が大きいほど耐オゾン性が良好であることを示す。
<耐亀裂成長性>
各実施例及び比較例で得られた加硫ゴム組成物試料について、JIS3号試験片中心部に0.5mmの亀裂を入れ、室温で0〜100%の一定ひずみで繰返し疲労を与え、サンプルが切断するまでの回数を測定した。表1においては、比較例1を100としたときの指数で表示し、数値が大きいほど耐亀裂成長性が良好であることを示す。
<耐油性>
各実施例及び比較例で得られた加硫ゴム組成物試料について、JIS K6258に従い、JISNo.1オイルに、70℃で72時間浸漬し、体積変化率を測定した。表1においては、比較例1を100としたときの指数で表示し、数値が小さいほど耐油性が良好であることを示す。
Figure 0005898978
*1 昭和電工(株)製、ショウプレンW
*2 JSR(株)製、EP33
*3 旭カーボン(株)製、旭#65
*4 ナフテン系オイル
*5 大内新興化学(株)製、ノクラック6C
*6 三新化学工業(株)製、サンセラーDM
*7 三新化学工業(株)製、サンセラーTS
*8 三新化学工業(株)製、サンセラー22C
表1の結果から、共役ジエン化合物−非共役オレフィン共重合体(A)と、ゴム成分100質量部中において60質量部〜80質量部のクロロプレンゴム(B)と、非共役ジエン化合物−非共役オレフィン共重合体(C)とを含むゴム組成物は、耐油性の悪化を抑制した上で、十分な耐候性を有しつつ、耐亀裂成長性に優れることがわかった。

Claims (10)

  1. 共役ジエン化合物−非共役オレフィン共重合体(A)と、
    クロロプレンゴム(B)と、
    エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)と
    を含む空気ばね用ゴム組成物であって、
    該共役ジエン化合物−非共役オレフィン共重合体(A)は、ゴム成分100質量部中において10質量部〜30質量部の範囲であり、
    該クロロプレンゴム(B)は、ゴム成分100質量部中において60質量部〜80質量部の範囲であることを特徴とする空気ばね用ゴム組成物。
  2. 前記非共役ジエン化合物−非共役オレフィン共重合体(C)は、ゴム成分100質量部中において10質量部〜30質量部の範囲であることを特徴とする請求項1に記載の空気ばね用ゴム組成物。
  3. 前記共役ジエン化合物−非共役オレフィン共重合体(A)は、共役ジエン化合物由来部分のシス−1,4結合量が50%以上である請求項1に記載の空気ばね用ゴム組成物。
  4. 前記共役ジエン化合物−非共役オレフィン共重合体(A)は、ポリスチレン換算重量平均分子量が10,000〜10,000,000の範囲である請求項1に記載の空気ばね用ゴム組成物。
  5. 前記共役ジエン化合物−非共役オレフィン共重合体(A)は、分子量分布(Mw/Mn)が10以下である請求項1に記載の空気ばね用ゴム組成物。
  6. 前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンは、非環状オレフィン化合物である請求項1に記載の空気ばね用ゴム組成物。
  7. 前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンは、炭素数が2〜10である請求項1に記載の空気ばね用ゴム組成物。
  8. 前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンは、エチレン、プロピレン及び1−ブテンからなる群より選択される少なくとも一種である請求項6または7に記載の空気ばね用ゴム組成物。
  9. 前記共役ジエン化合物−非共役オレフィン共重合体(A)の非共役オレフィンは、エチレンである請求項8に記載の空気ばね用ゴム組成物。
  10. 請求項1に記載の空気ばね用ゴム組成物を用いた構成部材を具えることを特徴とする空気ばね。

JP2012017153A 2012-01-30 2012-01-30 空気ばね用ゴム組成物及びそれを用いた空気ばね Expired - Fee Related JP5898978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017153A JP5898978B2 (ja) 2012-01-30 2012-01-30 空気ばね用ゴム組成物及びそれを用いた空気ばね

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017153A JP5898978B2 (ja) 2012-01-30 2012-01-30 空気ばね用ゴム組成物及びそれを用いた空気ばね

Publications (2)

Publication Number Publication Date
JP2013155296A JP2013155296A (ja) 2013-08-15
JP5898978B2 true JP5898978B2 (ja) 2016-04-06

Family

ID=49050815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017153A Expired - Fee Related JP5898978B2 (ja) 2012-01-30 2012-01-30 空気ばね用ゴム組成物及びそれを用いた空気ばね

Country Status (1)

Country Link
JP (1) JP5898978B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707579B (zh) * 2013-12-18 2015-10-28 北京天元奥特橡塑有限公司 具有阻燃、耐臭氧特性汽车用橡胶空气弹簧囊体及制备方法
JP7132783B2 (ja) * 2018-07-25 2022-09-07 デンカ株式会社 ゴム組成物、加硫ゴム及びその成形品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352739A (en) * 1992-11-06 1994-10-04 Exxon Chemical Patents Inc. Compatibilization of elastomer blends
EP0713509A1 (en) * 1993-07-07 1996-05-29 Exxon Chemical Patents Inc. Compatibilization of polar and nonpolar elastomer blends using functionalized ethylene/propylene copolymers or ethylene/propylene/diene terpolymers
JPH10237131A (ja) * 1997-02-28 1998-09-08 Ube Ind Ltd エチレン・ブタジエン共重合体
CN102549024B (zh) * 2009-08-07 2015-04-08 株式会社普利司通 生产共聚物的方法

Also Published As

Publication number Publication date
JP2013155296A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5918131B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5918134B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ
JP5771683B2 (ja) ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5918132B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012014457A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012014459A1 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012105258A1 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム組成物、及びタイヤ
WO2012105271A1 (ja) 共重合体、ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5932224B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5769577B2 (ja) クローラ用ゴム組成物及びそれを用いたゴムクローラ
WO2013132849A1 (ja) ゴム組成物、及び、前記ゴム組成物を有するタイヤ
JP5893938B2 (ja) 防振ゴム組成物及び防振ゴム
JP5965414B2 (ja) 防振ゴム組成物、架橋防振ゴム組成物及び防振ゴム
JP5917810B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5898978B2 (ja) 空気ばね用ゴム組成物及びそれを用いた空気ばね
JP2013151583A (ja) ゴム組成物、ビードフィラー、チェーファー及びタイヤ
JP5612511B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5707294B2 (ja) コンベアベルト用ゴム組成物及びそれを用いたコンベアベルト
JP5612512B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5869847B2 (ja) 制震部材用ゴム組成物及びそれを用いた制震部材
JP5917814B2 (ja) ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2012180419A (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5656687B2 (ja) ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5917808B2 (ja) 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2013155239A (ja) ゴム組成物、ビードフィラー及びタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5898978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees