JP7256769B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP7256769B2
JP7256769B2 JP2020041020A JP2020041020A JP7256769B2 JP 7256769 B2 JP7256769 B2 JP 7256769B2 JP 2020041020 A JP2020041020 A JP 2020041020A JP 2020041020 A JP2020041020 A JP 2020041020A JP 7256769 B2 JP7256769 B2 JP 7256769B2
Authority
JP
Japan
Prior art keywords
power
power transmission
transmission side
side coil
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020041020A
Other languages
English (en)
Other versions
JP2021145407A (ja
Inventor
一馬 鈴木
祐一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020041020A priority Critical patent/JP7256769B2/ja
Publication of JP2021145407A publication Critical patent/JP2021145407A/ja
Application granted granted Critical
Publication of JP7256769B2 publication Critical patent/JP7256769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、送電側端子から入力された電力を受電側端子へと伝送する電力変換装置に関する。
この種の電力変換装置としては、特許文献1に記載されているように、送電側コイル及び受電側コイルを有するトランスと、送電側コイルと送電側端子とを接続する送電側フルブリッジ回路と、受電側コイルと受電側端子とを接続する受電側フルブリッジ回路とを備えるものが知られている。電力変換装置の制御部は、送電側端子から入力される直流電圧を交流電圧に変換して送電側コイルに供給すべく送電側フルブリッジ回路のスイッチング制御を行い、受電側コイルから出力される交流電圧を直流電圧に変換して受電側端子に供給すべく受電側フルブリッジ回路のスイッチング制御を行う。これにより、送電側端子から入力された電力が受電側端子へと伝送される。
特許第5929703号公報
負荷変動や電圧変動等に起因して、トランス及びスイッチ等の電力変換装置の構成部品に過電流が流れることがある。この場合に備えて、電力変換装置を過電流から保護する制御が必要となる。ここで、送電側端子から受電側端子へと継続的に電力を伝送する上では、過電流保護制御が実行された後、電力変換装置の制御を過電流保護制御前の電力伝送制御へと迅速に復帰させる必要がある。
本発明は、過電流保護制御が実行された後、電力変換装置の制御を過電流保護制御前の電力伝送制御へと迅速に復帰させることができる電力変換装置を提供することを主たる目的とする。
本発明は、送電側端子及び受電側端子を備え、前記送電側端子から入力された電力を前記受電側端子へと伝送する電力変換装置において、
送電側コイル、及び前記送電側コイルと磁気結合する受電側コイルを有するトランスと、
前記送電側コイルと前記送電側端子とを接続する送電側回路と、
前記受電側コイルと前記受電側端子とを接続する受電側フルブリッジ回路と、
前記送電側端子から入力される直流電圧を交流電圧に変換して前記送電側コイルに供給すべく前記送電側回路のスイッチング制御を行い、前記受電側コイルから出力される交流電圧を直流電圧に変換して前記受電側端子に供給すべく前記受電側フルブリッジ回路のスイッチング制御を行う制御部と、を備え、
前記制御部は、
前記送電側コイル及び前記受電側コイルのうち少なくとも一方に流れる電流が閾値を超えた場合、前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を停止する停止制御を行い、
前記停止制御を行った後、前記送電側コイルの電圧極性を切り替えた後に前記受電側コイルの電圧極性を切り替えるように前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を再開し、
前記停止制御を行った後、前記送電側コイルの電圧極性の切り替えを開始してから前記受電側コイルの電圧極性の切り替えを開始するまでの還流期間において、前記受電側フルブリッジ回路を構成する上下アームのうち一方のアームのスイッチをオンして前記受電側コイルの両端を短絡する。
本発明では、送電側コイル及び受電側コイルのうち少なくとも一方に流れる電流が閾値を超えた場合に停止制御が行われる。これにより、送電側,受電側コイルに流れる電流を低下させ、電力変換装置を過電流から保護する。
停止制御が行われた後、送電側コイルの電圧極性を切り替えた後に受電側コイルの電圧極性を切り替えるように送電側回路及び受電側フルブリッジ回路のスイッチング制御が再開される。
ここで、停止制御が行われた後、送電側コイルの電圧極性の切り替えが開始されてから受電側コイルの電圧極性の切り替えが開始されるまでの還流期間において、受電側フルブリッジ回路を構成する上下アームのうち一方のアームのスイッチがオンされて受電側コイルの両端が短絡される。これにより、還流期間において受電側コイルの電圧を0近傍の電圧に維持でき、送電側回路及び受電側フルブリッジ回路のスイッチング制御が再開された後において、送電側,受電側コイルに流れる電流の時間平均値を迅速に0に近づけることができる。その結果、電力変換装置の制御を停止制御前の送電側回路及び受電側フルブリッジ回路のスイッチング制御へと迅速に復帰させることができる。
第1実施形態に係る電力変換装置を示す図。 制御部の機能ブロック図。 通常モードにおけるスイッチの操作態様等の推移を示すタイムチャート。 制御部が実行する処理のフローチャート。 制御部が実行する処理の一例を示すタイムチャート。 制御部が実行する処理の一例を示すタイムチャート。 本実施形態と比較例とに係るトランス電圧等の推移を示すタイムチャート。 本実施形態と比較例とに係る復帰時間の一例を示す図。 第2実施形態に係る制御部の機能ブロック図。 制御部が実行する処理のフローチャート。 第3実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 制御部が実行する処理の一例を示すタイムチャート。 第3実施形態の変形例に係る制御部が実行する処理の一例を示すタイムチャート。 第3実施形態の変形例に係る制御部が実行する処理の一例を示すタイムチャート。 第4実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第5実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 制御部が実行する処理の一例を示すタイムチャート。 第5実施形態の変形例に係る制御部が実行する処理の一例を示すタイムチャート。 第6実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第7実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第8実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第8実施形態の変形例に係る制御部が実行する処理の一例を示すタイムチャート。 第9実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第10実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第11実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第12実施形態に係る制御部が実行する処理の一例を示すタイムチャート。 第13実施形態に係る電力変換装置を示す図。 制御部の機能ブロック図。 制御部が実行する処理の一例を示すタイムチャート。 第14実施形態に係る制御部が実行する処理のフローチャート。
<第1実施形態>
以下、本発明に係る電力変換装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の電力変換装置は、例えば、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)等の電動化車両に搭載されている。
図1に示すように、電源システムは、第1蓄電池10、第2蓄電池20及び電力変換装置40を備えている。各蓄電池10,20は、充放電可能な2次電池であり、例えば、リチウムイオン蓄電池又はニッケル水素蓄電池である。第1蓄電池10の定格電圧は例えば300Vであり、第2蓄電池20の定格電圧は例えば400Vである。
電力変換装置40は、第1フルブリッジ回路50を備えている。第1フルブリッジ回路50は、第1~第4スイッチQ1~Q4と、第1コンデンサ51とを備えている。本実施形態において、第1~第4スイッチQ1~Q4は、NチャネルMOSFETである。第1スイッチQ1及び第3スイッチQ3の高電位側端子であるドレインには、電力変換装置40の第1高電位側端子CH1が接続されている。第1スイッチQ1の低電位側端子であるソースには、第2スイッチQ2のドレインが接続され、第3スイッチQ3のソースには、第4スイッチQ4のドレインが接続されている。第2スイッチQ2及び第4スイッチQ4のソースには、電力変換装置40の第1低電位側端子CL1が接続されている。第1高電位側端子CH1には、第1コンデンサ51の第1端と、第1蓄電池10の正極端子とが接続され、第1低電位側端子CL1には、第1コンデンサ51の第2端と、第1蓄電池10の負極端子とが接続されている。
なお、第1高電位側端子CH1及び第1低電位側端子CL1には、第1蓄電池10に代えて、外部電源から入力される交流電力を直流電力に変換して出力するACDCコンバータの出力側が接続されていてもよい。
電力変換装置40は、第2フルブリッジ回路60を備えている。第2フルブリッジ回路60は、第5~第8スイッチQ5~Q8と、第2コンデンサ61とを備えている。本実施形態において、第5~第8スイッチQ5~Q8は、NチャネルMOSFETである。第5スイッチQ5及び第7スイッチQ7のドレインには、電力変換装置40の第2高電位側端子CH2が接続されている。第5スイッチQ5のソースには、第6スイッチQ6のドレインが接続され、第7スイッチQ7のソースには、第8スイッチQ8のドレインが接続されている。第6スイッチQ6及び第8スイッチQ8のソースには、電力変換装置40の第2低電位側端子CL2が接続されている。第2高電位側端子CH2には、第2コンデンサ61の第1端と、第2蓄電池20の正極端子とが接続され、第2低電位側端子CL2には、第2コンデンサ61の第2端と、第2蓄電池20の負極端子とが接続されている。
電力変換装置40は、第1コイル81及び第2コイル82を有するトランス80を備えている。第1コイル81の第1端には、第1スイッチQ1のソース及び第2スイッチQ2のドレインが接続され、第1コイル81の第2端には、第3スイッチQ3のソース及び第4スイッチQ4のドレインが接続されている。第2コイル82の第1端には、第5スイッチQ5のソース及び第6スイッチQ6のドレインが接続され、第2コイル82の第2端には、第7スイッチQ7のソース及び第8スイッチQ8のドレインが接続されている。
第1コイル81及び第2コイル82は、例えばトランス80が備えるコアを介して、互いに磁気結合する。第1コイル81の第2端に対する第1端の電位が高くなる場合、第2コイル82には、その第2端よりも第1端の電位が高くなるような誘起電圧が発生する。一方、第1コイル81の第1端に対する第2端の電位が高くなる場合、第2コイル82には、その第1端よりも第2端の電位が高くなるような誘起電圧が発生する。
電力変換装置40は、第1電圧センサ91及び第2電圧センサ92と、第1電流センサ94及び第2電流センサ95とを備えている。第1電圧センサ91は、第1コンデンサ51の端子電圧である第1電圧V1rを検出し、第2電圧センサ92は、第2コンデンサ61の端子電圧である第2電圧V2rを検出する。
第1電流センサ94は、第1高電位側端子CH1に流れる電流である第1電流I1rを検出し、第2電流センサ95は、第2高電位側端子CH2に流れる電流である第2電流I2rを検出する。本実施形態では、第1フルブリッジ回路50から第1蓄電池10の正極端子へと向かう方向に第1高電位側端子CH1に流れる第1電流I1rの符号を正と定義し、第2フルブリッジ回路60から第2蓄電池20へと向かう方向に第2高電位側端子CH2に流れる第2電流I2rの符号を正と定義する。
電力変換装置40は、第1トランス電流センサ97及び第2トランス電流センサ98を備えている。第1トランス電流センサ97は、第1コイル81に流れる電流である第1トランス電流IL1を検出し、第2トランス電流センサ98は、第2コイル82に流れる電流である第2トランス電流IL2を検出する。本実施形態では、第1コイル81の第1端から第2端へと向かう方向に第1コイル81に流れる第1トランス電流IL1の符号を正と定義し、第2コイル82の第1端から第2端へと向かう方向に第2コイル82に流れる第2トランス電流IL2の符号を正と定義する。
各センサ91,92,94,95,97,98の検出値は、電力変換装置40が備える制御部100に入力される。制御部100は、第1~第8スイッチQ1~Q8をオンオフする。以下、図2を用いて、この操作方法について説明する。図2は、制御部100が実行する処理のブロック図である。
制御部100は、指令電流算出部200と、電流制御部210とを備えている。指令電流算出部200は、入力された第2指令電力P2*を、第2電圧センサ92により検出された第2電圧V2rで除算することにより、第2蓄電池20に流す電流の指令値である第2指令電流I2*を算出する。第2指令電流I2*は、定電力制御(CP)により第2蓄電池20に電力を供給するために設定される。第2指令電流I2*の符号が正の場合、第2蓄電池20が充電される側に第2高電位側端子CH2に電流が流れる。なお、指令電流算出部200に入力される第2指令電力P2*が0の場合、第2指令電流I2*が0となる。
電流制御部210は、電流偏差算出部211、フィードバック制御部212及びリミッタ213を備えている。電流偏差算出部211は、指令電流算出部200から出力された第2指令電流I2*から、第2電流センサ95により検出された第2電流I2rを減算することにより、第2電流偏差ΔI2を算出する。
フィードバック制御部212は、算出された第2電流偏差ΔI2を0にフィードバック制御するための操作量として指令位相差φaを算出する。本実施形態では、このフィードバック制御として、比例積分制御が用いられている。指令位相差φaについては後述する。なお、フィードバック制御部212で用いられるフィードバック制御は、比例積分制御に限らず、例えば、比例積分微分制御であってもよい。
フィードバック制御部212により算出された指令位相差φaは、リミッタ213により上限値又は下限値が制限され、制御部100が備えるPWM生成部400に入力される。
第1蓄電池10から電力変換装置40を介して第2蓄電池20に電力が伝送される場合、第1高電位側端子CH1及び第1低電位側端子CL1が「送電側端子」に相当し、第2高電位側端子CH2及び第2低電位側端子CL2が「受電側端子」に相当し、第1フルブリッジ回路50が「送電側フルブリッジ回路」に相当し、第2フルブリッジ回路60が「受電側フルブリッジ回路」に相当する。また、第1コイル81が「送電側コイル」に相当し、第2コイル82が「受電側コイル」に相当する。
制御部100は、停止信号発生部300と、始動信号発生部305とを備えている。停止信号発生部300は、第1コンパレータ301、第2コンパレータ302及びOR回路304を備えている。第1コンパレータ301の非反転入力端子には、第1トランス電流センサ97により検出された第1トランス電流IL1の絶対値が入力される。第1コンパレータ301の反転入力端子には、第1電流制限値Ilim1が入力される。第1電流制限値Ilim1は、第1コイル81及び第1~第4スイッチQ1~Q4に過電流が流れたことを検出可能な値に設定され、例えば、第1コイル81及び第1~第4スイッチQ1~Q4の各定格電流の最小値に設定されている。
第2コンパレータ302の非反転入力端子には、第2トランス電流センサ98により検出された第2トランス電流IL2の絶対値が入力される。第2コンパレータ302の反転入力端子には、第2電流制限値Ilim2が入力される。第2電流制限値Ilim2は、第2コイル82及び第5~第8スイッチQ5~Q8に過電流が流れたことを検出可能な値に設定され、例えば、第2コイル82及び第5~第8スイッチQ5~Q8の各定格電流の最小値に設定されている。なお、第2電流制限値Ilim2は、第1電流制限値Ilim1と同じ値であってもよいし、異なる値であってもよい。
第1コンパレータ301及び第2コンパレータ302の出力信号は、OR回路304に入力される。OR回路304は、第1コンパレータ301及び第2コンパレータ302の少なくとも一方の出力信号の論理がHの場合、停止信号Stopを出力する。一方、OR回路304は、第1コンパレータ301及び第2コンパレータ302の双方の出力信号の論理がLの場合、停止信号Stopを出力しない。OR回路304の停止信号Stopは、PWM生成部400及び始動信号発生部305に入力される。
始動信号発生部305は、クロック信号CLKに基づいて、停止信号Stopが入力されたタイミングから判定時間経過したタイミングで始動信号RestartをPWM生成部400に出力する。
PWM生成部400は、指令位相差φaに基づいて、各スイッチQ1~Q8の操作信号を生成して各スイッチQ1~Q8のゲートに対して出力する通常モードを実施する。以下、図3を用いて、通常モードにおける各スイッチQ1~Q8の操作態様について説明する。図3(a)は第1コイル81の電圧である第1トランス電圧Vt1の推移を示し、図3(b)は第2コイル82の電圧である第2トランス電圧Vt2の推移を示す。第1トランス電圧Vt1は、第1コイル81の第2端に対する第1端の電位が高い場合を正とし、第2トランス電圧Vt2は、第2コイル82の第2端に対する第1端の電位が高い場合を正とする。図3(c)~(j)は第1~第8スイッチQ1~Q8の操作状態の推移を示す。
第1スイッチQ1と第2スイッチQ2とは交互にオンされ、第3スイッチQ3と第4スイッチQ4とは交互にオンされる。また、第1スイッチQ1のオン期間と第4スイッチQ4のオン期間とは同期しており、第2スイッチQ2のオン期間と第3スイッチQ3のオン期間とは同期している。第1~第4スイッチQ1~Q4のオン期間,オン期間を第1規定期間D1とする。
第5スイッチQ5と第6スイッチQ6とは交互にオンされ、第7スイッチQ7と第8スイッチQ8とは交互にオンされる。また、第5スイッチQ5のオン期間と第8スイッチQ8のオン期間とは同期しており、第6スイッチQ6のオン期間と第7スイッチQ7のオン期間とは同期している。第5~第8スイッチQ5~Q8のオン期間,オン期間を第2規定期間D2とする。本実施形態では、第1規定期間D1と第2規定期間D2とが同じ期間に設定されている。このため、各スイッチQ1~Q8のスイッチング周期が同じ周期に設定されている。
指令位相差φaが正の場合、第1スイッチQ1のオンへの切り替えタイミングに対して、第5スイッチQ5のオンへの切り替えタイミングが指令位相差φaだけ遅れる。つまり、指令位相差φaが正の場合、第1トランス電圧Vt1の極性が負極性から正極性に切り替わるタイミングに対して、第2トランス電圧Vt2の極性が負極性から正極性に切り替わるタイミングが指令位相差φaだけ遅れる。
ちなみに、第2指令電力P2*が負の値にされることにより、第2蓄電池20から電力変換装置40を介して第1蓄電池10へと電力を伝送することも可能である。この場合、第2高電位側端子CH2及び第2低電位側端子CL2が「送電側端子」に相当し、第1高電位側端子CH1及び第1低電位側端子CL1が「受電側端子」に相当し、第2フルブリッジ回路60が「送電側フルブリッジ回路」に相当し、第1フルブリッジ回路50が「受電側フルブリッジ回路」に相当する。また、第2コイル82が「送電側コイル」に相当し、第1コイル81が「受電側コイル」に相当する。
また、第2指令電力P2*が負の値の場合、制御部100における指令位相差φaの算出処理は以下のようになる。
指令電流算出部200は、入力された第2指令電力P2*を、第1電圧センサ91により検出された第1電圧V1rで除算することにより、第1蓄電池10に流す電流の指令値である第1指令電流I1*を算出する。第1指令電流I1*は、定電力制御により第1蓄電池10に電力を供給するために設定される。
電流偏差算出部211は、指令電流算出部200から出力された第1指令電流I1*から、第1電流センサ94により検出された第1電流I1rを減算することにより、第1電流偏差ΔI1を算出する。フィードバック制御部212は、算出された第1電流偏差ΔI1を0にフィードバック制御するための操作量として指令位相差φaを算出する。
第2指令電力P2*が負の値の場合における第2フルブリッジ回路60は、第2指令電力P2*が正の値の場合における第1フルブリッジ回路50の役割を果たす。このため、第2指令電力P2*が負の値であって、かつ、指令位相差φaが正の場合、第5スイッチQ5のオンへの切り替えタイミングに対して、第1スイッチQ1のオンへの切り替えタイミングが指令位相差φaだけ遅れる。
本実施形態では、過電流保護制御が行われた場合であっても、電力変換装置40の電力伝送制御を通常モードへと迅速に復帰させることができる。
図4は、制御部100が行う処理のフローチャートである。
ステップS10では、通常モードの実行中において、第1トランス電流IL1の絶対値が第1電流制限値Ilim1を超えたとの第1条件、又は第2トランス電流IL2の絶対値が第2電流制限値Ilim2を超えたとの第2条件のいずれかが成立したか否かを判定する。
ステップS10において第1条件及び第2条件のいずれも成立していないと判定した場合には、ステップS11に進み、通常モードを継続する。
一方、ステップS10において第1条件及び第2条件の少なくとも一方が成立していると判定した場合には、ステップS12に進む。ステップS12では、停止信号発生部300が停止信号Stopを出力することにより、第1~第8スイッチQ1~Q8全てをオフする停止制御を行う。
その後、ステップS13において、第5,第7スイッチQ5,Q7をオンに切り替える。
その後、ステップS14において、ステップS10で肯定判定してから判定期間経過したか否かを判定する。
ステップS14において肯定判定した場合には、ステップS15に進み、始動信号発生部305から始動信号Restartを出力する。これにより、第1フルブリッジ回路50及び第2フルブリッジ回路60のスイッチング制御を再開する。
続いて、図5及び図6を用いて、図4に示した処理についてさらに詳しく説明する。
まず、図5を用いて説明する。図5(a),(b)は第1,第2トランス電圧Vt1,Vt2の推移を示し、図5(c)は第1トランス電流センサ97により検出された第1トランス電流IL1の推移を示し、図5(d)は第2トランス電流センサ98により検出された第2トランス電流IL2の推移を示し、図5(e)は停止信号発生部300から出力される停止信号Stopの推移を示す。図5(f)~(n)は第1~第8スイッチQ1~Q8の操作状態の推移を示す。
通常モードが実施される状況下、時刻t1において、第1トランス電流IL1の絶対値が第1電流制限値Ilim1を超え、また、第2トランス電流IL2の絶対値が第2電流制限値Ilim2を超えたとする。この場合、停止信号発生部300からPWM生成部400及び始動信号発生部305に停止信号Stopが出力される。その結果、PWM生成部400により、第1~第8スイッチQ1~Q8をオフにする停止制御が実施される。これにより、第1トランス電流IL1は、第1コイル81、第3スイッチQ3のボディダイオード、第1コンデンサ51及び第2スイッチQ2のボディダイオードを含む閉回路を流れつつ漸減して0になる。また、第2トランス電流IL2は、第2コイル82、第5スイッチQ5のボディダイオード、第2コンデンサ61及び第8スイッチQ8のボディダイオードを含む閉回路を流れつつ漸減して0になる。各トランス電流IL1,IL2が0になると、第1,第2トランス電圧Vt1,Vt2も0となる。これにより、電力変換装置40を過電流から保護する。
その後、停止信号Stopが出力されてから判定期間が経過する前の時刻t2において、第5スイッチQ5及び第7スイッチQ7がオンに切り替えられる。これにより、第2コイル82の両端が短絡される。
図5の時刻t2よりも後の制御について、図6を用いて説明する。図6(e)は始動信号発生部305から出力される始動信号Restartの推移を示す。図6(a)~(d),(f)~(n)は先の図5(a)~(d),(f)~(n)に対応している。
停止信号Stopが出力されてから判定期間が経過する時刻t3において、始動信号発生部305からPWM生成部400に始動信号Restartが出力される。その結果、第1フルブリッジ回路50及び第2フルブリッジ回路60のスイッチング制御が再開される。
詳しくは、時刻t3において、第1,第4スイッチQ1,Q4がオンに切り替えられ、第1フルブリッジ回路50のスイッチング制御が再開される。第1,第4スイッチQ1,Q4がオンに切り替えることにより、第1トランス電圧Vt1の極性が正極性になる。
ここで、始動信号RestartがPWM生成部400に入力された直後の第1,第4スイッチQ1,Q4のオン期間t3~t5は、通常モードにおける第1規定期間D1よりも短い期間に設定されている。この設定は、第1フルブリッジ回路50の通常モードによるスイッチング制御が開始された後、第1コイル81に流れる第1トランス電流IL1の1スイッチング周期(2×D1)における平均値(直流電流)を0に近づけるためのものである。これにより、トランス80の磁気飽和の発生を抑制できる。特に本実施形態では、オン期間t3~t5は「0.5×D1」に設定されている。この設定により、第1トランス電流IL1の1スイッチング周期における平均値を0にする。
その後、時刻t5以降において、第1フルブリッジ回路50において通常モードのスイッチング制御が実施される。詳しくは、時刻t5以降において、第1規定期間D1毎に第1トランス電圧Vt1の極性が切り替えられるように第1フルブリッジ回路50のスイッチング制御が実施される。
一方、時刻t3から、図5の時刻t1の直前に算出された指令位相差φaだけ経過した時刻t4において、第7スイッチQ7がオフに切り替えられるとともに第8スイッチQ8がオンに切り替えられ、第2フルブリッジ回路60のスイッチング制御が再開される。
ここで、第5,第8スイッチQ5,Q8のオン期間t4~t6は、通常モードにおける第2規定期間D2よりも短い期間に設定されている。この設定は、第2フルブリッジ回路60の通常モードによるスイッチング制御が開始された後、第2コイル82に流れる第2トランス電流IL2の1スイッチング周期(2×D2)における平均値(直流電流)を0に近づけるためのものである。特に本実施形態では、オン期間t4~t6は「0.5×D2」に設定されている。この設定により、第2トランス電流IL2の1スイッチング周期における平均値を0にする。
その後、時刻t6以降において、第2フルブリッジ回路60において通常モードのスイッチング制御が実施される。詳しくは、時刻t6以降において、第2規定期間D2毎に第2トランス電圧Vt2の極性が切り替えられるように第2フルブリッジ回路60のスイッチング制御が実施される。
ここで、時刻t3~t4は、第1フルブリッジ回路50のスイッチング制御の再開タイミング以降の期間であって、第2フルブリッジ回路60の上アーム側の第5,第7スイッチQ5,Q7がオンされる還流期間である。還流期間には、第2コイル82の両端が短絡され、第2コイル82、第5スイッチQ5及び第7スイッチQ7を含む閉回路に第2トランス電流IL2が流れる。還流期間は、第2トランス電圧Vt2を0に維持するための期間である。還流期間が設けられることにより、時刻t3~t4において第1トランス電流IL1を正側に漸増させることができ、その後通常モードが再開される場合において、第1,第2トランス電流IL1,IL2の時間平均値を0に近づけることができる。
図7を用いて、本実施形態の効果を比較例と対比しつつ説明する。比較例は、先の図6に示した処理のうち、時刻t3から第1,第2フルブリッジ回路50,60の通常モードによるスイッチング制御が開始される構成のことである。図7(a)~(k)は、先の図6(a)~(c),(f)~(n)に対応している。また、図7において、本実施形態に対応する時刻t1は、先の図6の時刻t3に対応している。また、比較例に対応する時刻tAは、通常モードによるスイッチング制御の開始タイミングである。
還流期間が設けられない比較例の場合、第1トランス電圧Vt1と第2トランス電圧Vt2との大小関係に応じて、時刻tAからの第2トランス電圧Vt2がV1r又はV2rとなる。図7(b)に示す例では、時刻tAから第1指令位相差φa経過するまでの期間において、第2トランス電圧Vt2がV1rとなり、その後V2に上昇する。その結果、第1トランス電流IL1が0のままとなり、その後通常モードによるスイッチング制御が開始されると、第1トランス電流IL1が0から変化し始めることとなる。このため、第1,第2トランス電流IL1,IL2の時間平均値が0から大きく乖離してしまう。その結果、比較例では、過電流保護のための停止制御が実施されてから、通常モードにおいて定常状態に復帰するまでの時間が過度に長くなってしまう。ここで、定常状態とは、例えば、第1,第2トランス電流IL1,IL2の時間平均値が0近傍になる状態のことである。
これに対し、本実施形態では、第1フルブリッジ回路50の通常モードによるスイッチング制御が開始されると、第1トランス電流IL1が負の値から0に向かって上昇し始めることとなる。このため、その後の第1,第2トランス電流IL1,IL2の時間平均値を0近傍にすることができる。その結果、本実施形態によれば、図8に示すように、比較例に対して、定常状態までの復帰時間が95%低減される。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
停止制御の後、還流期間において、第5,第7スイッチQ5,Q7がオンされて第2コイル82の両端が短絡される。これにより、還流期間において第2トランス電圧Vt2を0に維持でき、通常モードが再開される場合において、1スイッチング周期における第1,第2トランス電流IL1,IL2の時間平均値を0に近づけることができる。その結果、電力変換装置40の制御を、停止制御前の通常モードへと迅速に復帰させることができる。
停止制御が行われた後、第1トランス電圧Vt1が正極性に切り替えられてから負極性に切り替えられるまでの期間が第1規定期間D1よりも短く設定される。また、停止制御が行われた後、第2トランス電圧Vt2が正極性に切り替えられてから負極性に切り替えられるまでの期間が第2規定期間D2よりも短く設定される。これにより、通常モードが再開される場合において、1スイッチング周期における第1,第2トランス電流IL1,IL2の時間平均値をより0に近づけることができ、停止制御前の通常モードへの復帰をより早めることができる。
停止制御が行われた後、第1トランス電圧Vt1が正極性に切り替えられてから第2トランス電圧Vt2が正極性に切り替えられるまでの時間間隔が、停止制御が行われる直前に算出された指令位相差φaに設定される。この設定によれば、停止制御前の指令位相差φaを引き継ぐことができる。このため、停止制御前の通常モードへの復帰をより早めることができる。
停止制御が行われた後、還流期間よりも前のタイミングから還流期間(図6の時刻t3~t4)の終了タイミングまでの期間において、第5,第7スイッチQ5,Q7がオンにされる。これにより、第2トランス電圧Vt2をより的確に0に維持でき、停止制御前の通常モードへの復帰をより早めることができる。
<第2実施形態>
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図9に示すように、始動信号発生部305の構成が変更されている。図9において、先の図2に示した構成と同一の構成又は対応する構成については、便宜上、同一の符号を付している。
始動信号発生部305は、停止信号Stopが入力された後、第1トランス電流IL1の絶対値が判定閾値ILset未満になったとの第3条件、又は第2トランス電流IL2の絶対値が判定閾値ILset未満になったとの第4条件のいずれかが成立したと判定した場合、始動信号Restartを出力する。ここで、判定閾値ILsetは、第1電流制限値Ilim1及び第2電流制限値Ilim2よりも小さい値に設定されていればよい。
図10は、制御部100が行う処理のフローチャートである。なお、図10において、先の図4に示した処理と同一の処理については、便宜上、同一の符号を付している。
ステップS13の完了後、ステップS16に進み、上記第3条件又は第4条件のいずれかが成立したか否かを判定する。ステップS16において肯定判定した場合には、ステップS15に進む。
以上説明した本実施形態によれば、第1実施形態と同様の効果を得ることができる。
<第3実施形態>
以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、還流期間が開始されるまでの第1トランス電圧Vt1の変動を抑制する。図11及び図12に、本実施形態の各スイッチQ1~Q8の操作状態等の推移を示す。なお、図11は先の図5に対応し、図11の時刻t1,t2は図5の時刻t1,t2に対応している。また、図12は先の図6に対応し、図12の時刻t3~t8は図6の時刻t3~t8に対応している。
図11に示すように、停止信号Stopが出力されてから判定期間が経過する前の時刻t2において、第5,第7スイッチQ5,Q7に加え、第1,第3スイッチQ1,Q3もオンに切り替えられる。これにより、第1コイル81の両端が短絡される。図12に示すように、第1スイッチQ1は、その後時刻t5までオンされ、第3スイッチQ3は、その後時刻t3までオンされる。
第1,第3スイッチQ1,Q3がオンされることにより、第1コイル81の両端が短絡される。これにより、その後図12の時刻t3まで第1トランス電圧Vt1を0に的確に維持することができ、通常モードへの復帰をより早めることができる。
<第3実施形態の変形例>
この変形例について、図13及び図14を用いて説明する。なお、図13は先の図11に対応し、図13の時刻t1,t2は図11の時刻t1,t2に対応している。また、図14は先の図12に対応し、図14の時刻t3~t8は図12の時刻t3~t8に対応している。
図13に示すように、停止信号Stopが出力されてから判定期間が経過する前の時刻t2において、第1,第3スイッチQ1,Q3に代えて、第2,第4スイッチQ2,Q4がオンに切り替えられてもよい。この場合においても、第1コイル81の両端が短絡される。図14に示すように、第2スイッチQ2は、その後時刻t3までオンされ、第4スイッチQ4は、その後時刻t5までオンされる。
<第4実施形態>
以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。還流期間に切り替えるための第5,第7スイッチQ5,Q7のオンへの切り替えタイミングは、始動信号Restartの立ち上がりタイミングと同じタイミングであってもよい。詳しくは、図15に示すように、停止信号Stopが出力されてから判定期間が経過する時刻t3において、第5,第7スイッチQ5,Q7がオンに切り替えられてもよい。なお、図15は先の図6に対応し、図15の時刻t3~t8は図6の時刻t3~t8に対応している。
<第5実施形態>
以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第1実施形態の図5に示す処理では、停止信号Stopが出力されてから判定期間が経過する前の時刻t2において、第5,第7スイッチQ5,Q7の双方がオンに切り替えられたが、第5,第7スイッチQ5,Q7のいずれかがオンに切り替えられてもよい。
詳しくは、制御部100は、第2トランス電流IL2が負の値である、つまり第2コイル82をその第2端側から第1端側へと向かう向きの第2トランス電流IL2が流れていると判定した場合、第5,第7スイッチQ5,Q7のうち第7スイッチQ7をオンに切り替える。第7スイッチQ7は、図16に示すように、時刻t4までオンされる。図16は先の図6に対応し、図16の時刻t3~t8は図6の時刻t3~t8に対応している。
一方、制御部100は、第2トランス電流IL2が正の値である、つまり第2コイル82をその第1端側から第2端側へと向かう向きの第2トランス電流IL2が流れていると判定した場合、第5,第7スイッチQ5,Q7のうち第5スイッチQ5をオンに切り替える。第5スイッチQ5は、図17に示すように、時刻t6までオンされる。図17は先の図6に対応し、図17の時刻t3~t8は図6の時刻t3~t8に対応している。
<第5実施形態の変形例>
第7スイッチQ7について、図16に示す操作態様に代えて、図18に示すように、時刻t3においてオンに切り替えられてもよい。この場合、第7スイッチQ7は、停止信号Stopが出力されてから判定期間が経過する時刻t3までオフに維持される。なお、図18は、先の図16に対応し、図18の時刻t3~t8は図16の時刻t3~t8に対応している。
また、第5スイッチQ5についても、図17に示す操作態様に代えて、停止信号Stopが出力されてから判定期間が経過する時刻t3においてオンに切り替えられてもよい。
<第6実施形態>
以下、第6実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第1実施形態の図5に示す処理では、停止信号Stopが出力されてから判定期間が経過する前の時刻t2において、第2フルブリッジ回路60において、上アーム側の第5,第7スイッチQ5,Q7がオンに切り替えられたが、下アーム側の第6,第8スイッチQ6,Q8がオンに切り替えられてもよい。この場合、図19に示すように、第6スイッチQ6は時刻t4までオンされ、第8スイッチQ8は時刻t6までオンされる。なお、図19は、先の図6に対応し、図19の時刻t3~t8は図6の時刻t3~t8に対応している。
<第7実施形態>
以下、第7実施形態について、第6実施形態との相違点を中心に図面を参照しつつ説明する。還流期間に切り替えるための第6,第8スイッチQ6,Q8のオンへの切り替えタイミングは、始動信号Restartの立ち上がりタイミングと同じタイミングであってもよい。詳しくは、図20に示すように、停止信号Stopが出力されてから判定期間が経過する時刻t3において、第6,第8スイッチQ6,Q8がオンに切り替えられてもよい。なお、図20は先の図19に対応し、図20の時刻t3~t8は図19の時刻t3~t8に対応している。
<第8実施形態>
以下、第8実施形態について、第6実施形態との相違点を中心に図面を参照しつつ説明する。第6実施形態では、停止信号Stopが出力されてから判定期間が経過する前のタイミングにおいて、第6,第8スイッチQ6,Q8の双方がオンに切り替えられたが、第6,第8スイッチQ6,Q8のいずれかがオンに切り替えられてもよい。
詳しくは、制御部100は、第2トランス電流IL2が負の値であると判定した場合、第6,第8スイッチQ6,Q8のうち第6スイッチQ6をオンに切り替える。第6スイッチQ6は、図21に示すように、時刻t4までオンされる。なお、図21は、先の図19に対応し、図21の時刻t3~t8は図19の時刻t3~t8に対応している。
一方、制御部100は、第2トランス電流IL2が正の値であると判定した場合、第6,第8スイッチQ6,Q8のうち第8スイッチQ8をオンに切り替える。
<第8実施形態の変形例>
第6スイッチQ6について、図21に示す操作態様に代えて、図22に示すように、時刻t3においてオンに切り替えられてもよい。この場合、第6スイッチQ6は、停止信号Stopが出力されてから判定期間が経過する時刻t3までオフに維持される。なお、図22は、先の図19に対応し、図22の時刻t3~t8は図19の時刻t3~t8に対応している。
また、第8スイッチQ8についても、時刻t3においてオンに切り替えられてもよい。
<第9実施形態>
以下、第9実施形態について、第6実施形態との相違点を中心に図面を参照しつつ説明する。図23に示すように、時刻t3において、第1トランス電圧Vt1の極性が負極性に切り替えるように第1フルブリッジ回路50のスイッチング制御が再開され、時刻t4において、第2トランス電圧Vt2の極性が負極性に切り替えるように第2フルブリッジ回路60のスイッチング制御が再開されてもよい。なお、図23は、先の図19に対応し、図23の時刻t3~t8は図19の時刻t3~t8に対応している。
<第10実施形態>
以下、第10実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。図24に示すように、第1トランス電圧Vt1の極性が正極性になる期間と負極性になる期間との間に第1トランス電圧Vt1が0になる期間が設定されるように、第1フルブリッジ回路50のスイッチング制御が実施されてもよい。また、第2トランス電圧Vt2の極性が正極性になる期間と負極性になる期間との間に第2トランス電圧Vt2が0になる期間が設定されるように、第2フルブリッジ回路60のスイッチング制御が実施されてもよい。なお、図24は、先の図6に対応し、図24の時刻t3~t8は図6の時刻t3~t8に対応している。また、図24(c),(d)には、各トランス電圧Vt1,Vt2の0期間が各トランス電流IL1,IL2に及ぼす影響が小さいとして、便宜上、図6(c),(d)の各トランス電流IL1,IL2の推移を示している。
<第11実施形態>
以下、第11実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図25に示すように、停止信号Stopが出力されてから判定期間が経過する時刻t3以降において、第1,第2フルブリッジ回路50,60のスイッチング制御の再開態様が変更されている。なお、時刻t3以前のスイッチング態様は、図5に示した態様と同様である。
制御部100は、時刻t3において、第1トランス電圧Vt1を負極性に切り替え、その後時刻t5において、第2トランス電圧Vt2を負極性に切り替えるように第1,第2フルブリッジ回路50,60のスイッチング制御を行う。
ここでは、時刻t3から、第1トランス電圧Vt1を正極性に切り替える時刻t6までの期間が、第1規定期間D1よりも長い期間「D1+Dt1」に設定されている。Dt1は、時刻t3~t4に示す付加期間である。制御部100は、時刻t6から、第1フルブリッジ回路50の通常モードによるスイッチング制御を行う。
制御部100は、時刻t3から、停止制御の直前に算出した指令位相差φaに付加期間Dt1を加算した期間だけ経過した時刻t5から、第2フルブリッジ回路60の通常モードによるスイッチング制御を行う。
以上説明した本実施形態によれば、第1実施形態に準じた効果を得ることができる。
<第11実施形態の変形例>
図25の時刻t3において、第1トランス電圧Vt1が正極性に切り替えられ、その後時刻t5において、第2トランス電圧Vt2が正極性に切り替えられてもよい。
<第12実施形態>
以下、第12実施形態について、第11実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図26に示すように、停止信号Stopが出力されてから判定期間が経過する時刻t3以降において、第1,第2フルブリッジ回路50,60のスイッチング制御の再開態様が変更されている。なお、時刻t3以前のスイッチング態様は、図5に示した態様と同様である。
制御部100は、時刻t3から、第1フルブリッジ回路50の通常モードによるスイッチング制御を行う。
時刻t3から、停止制御の直前に算出した指令位相差φaだけ経過したタイミングを時刻t5とする。制御部100は、時刻t3と時刻t5との間の時刻t4において、第2トランス電圧Vt2を正極性に切り替え、その後時刻t5において、第2トランス電圧Vt2を負極性に切り替えるように第2フルブリッジ回路60のスイッチング制御を行う。ここでは、時刻t4~t5の期間Dt2が第2規定期間D2よりも短い期間に設定されている。制御部100は、時刻t5から、第2フルブリッジ回路60の通常モードによるスイッチング制御を行う。
以上説明した本実施形態によれば、第11実施形態と同様な効果を得ることができる。
<第12実施形態の変形例>
図26の時刻t3において、第1トランス電圧Vt1が正極性に切り替えられ、その後時刻t4において、第2トランス電圧Vt2が負極性に切り替えられてもよい。
<第13実施形態>
以下、第13実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図27に示すように、電力変換装置40は、第3フルブリッジ回路70を備えている。なお、図27において、先の図1に示した構成と同一の構成については、便宜上、同一の符号を付している。
第3フルブリッジ回路70は、第9~第12スイッチQ9~Q12と、第3コンデンサ71とを備えている。本実施形態において、第9~第12スイッチQ9~Q12は、NチャネルMOSFETである。第9スイッチQ9及び第11スイッチQ11のドレインには、電力変換装置40の第3高電位側端子CH3が接続されている。第9スイッチQ9のソースには、第10スイッチQ10のドレインが接続され、第11スイッチQ11のソースには、第12スイッチQ12のドレインが接続されている。第10スイッチQ10及び第12スイッチQ12のソースには、電力変換装置40の第3低電位側端子CL3が接続されている。第3高電位側端子CH3には、第3コンデンサ71の第1端と、抵抗性負荷30の第1端とが接続され、第3低電位側端子CL3には、第3コンデンサ71の第2端と、抵抗性負荷30の第2端とが接続されている。
抵抗性負荷30は、第3高電位側端子CH3と第3低電位側端子CL3とを電気的に接続する抵抗体を有している。抵抗性負荷30は、例えば、その抵抗体への通電による発熱を利用するヒータである。なお、抵抗性負荷30は、ヒータに限らない。また、第3高電位側端子CH3と第3低電位側端子CL3に接続される機器は、抵抗性負荷に限らず、例えば蓄電池であってもよい。
トランス80は、第3コイル83を有している。第3コイル83の第1端には、第9スイッチQ9のソース及び第10スイッチQ10のドレインが接続され、第3コイル83の第2端には、第11スイッチQ11のソース及び第12スイッチQ12のドレインが接続されている。
第1コイル81、第2コイル82及び第3コイル83は、例えばトランス80が備えるコアを介して、互いに磁気結合する。第1コイル81の第2端に対する第1端の電位が高くなる場合、第2コイル82及び第3コイル83それぞれには、その第2端よりも第1端の電位が高くなるような誘起電圧が発生する。一方、第1コイル81の第1端に対する第2端の電位が高くなる場合、第2コイル82及び第3コイル83それぞれには、その第1端よりも第2端の電位が高くなるような誘起電圧が発生する。
電力変換装置40は、第3電圧センサ93、第3電流センサ96及び第3トランス電流センサ99を備えている。第3電圧センサ93は、第3コンデンサ71の端子電圧である第3電圧V3rを検出する。第3電流センサ96は、第3高電位側端子CH3を流れる電流である第3電流I3rを検出する。本実施形態では、第3フルブリッジ回路70から抵抗性負荷30へと向かう方向に第3高電位側端子CH3に流れる第3電流I3rの符号を正と定義する。
第3トランス電流センサ99は、第3コイル83に流れる電流である第3トランス電流IL3を検出する。本実施形態では、第3コイル83の第1端から第2端へと向かう方向に第3コイル83に流れる第3トランス電流IL3の符号を正と定義する。第3電圧センサ93、第3電流センサ96及び第3トランス電流センサ99の検出値は、制御部100に入力される。
制御部100は、第1~第12スイッチQ1~Q12をオンオフする。以下、図28を用いて、この操作方法について説明する。図28は、制御部100が実行する処理のブロック図である。なお、図28において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
本実施形態では、指令電流算出部200を第1指令電流算出部200と称し、電流制御部210を第1電流制御部210と称すこととする。また、指令位相差φaを第1指令位相差φaと称すこととする。
制御部100は、第2指令電流算出部220と、第2電流制御部230とを備えている。第2指令電流算出部220は、入力された第3指令電力P3*を、第3電圧センサ93により検出された第3電圧V3rで除算することにより、抵抗性負荷30に流す電流の指令値である第3指令電流I3*を算出する。
第2電流制御部230は、電流偏差算出部231、フィードバック制御部232及びリミッタ233を備えている。電流偏差算出部231は、第2指令電流算出部220から出力された第3指令電流I3*から、第3電流センサ96により検出された第3電流I3rを減算することにより、第3電流偏差ΔI3を算出する。
フィードバック制御部232は、算出された第3電流偏差ΔI3を0にフィードバック制御するための操作量として第2指令位相差φbを算出する。本実施形態では、このフィードバック制御として、比例積分制御が用いられている。第2指令位相差φbについては後述する。なお、フィードバック制御部232で用いられるフィードバック制御は、比例積分制御に限らず、例えば、比例積分微分制御であってもよい。
フィードバック制御部232により算出された第2指令位相差φbは、リミッタ233により上限値又は下限値が制限され、PWM生成部400に入力される。
第1蓄電池10から電力変換装置40を介して抵抗性負荷30に電力が伝送される場合、第3高電位側端子CH3及び第3低電位側端子CL3が「受電側端子」に相当し、第3フルブリッジ回路70が「受電側フルブリッジ回路」に相当し、第3コイル83が「受電側コイル」に相当する。
停止信号発生部300は、第3コンパレータ303を備えている。第3コンパレータ303の非反転入力端子には、第3トランス電流センサ99により検出された第3トランス電流IL3の絶対値が入力される。第3コンパレータ303の反転入力端子には、第3電流制限値Ilim3が入力される。第3電流制限値Ilim3は、第3コイル83及び第9~第12スイッチQ9~Q12に過電流が流れたことを検出可能な値に設定され、例えば、第3コイル83及び第9~第12スイッチQ9~Q12の各定格電流の最小値に設定されている。
第3コンパレータ303の出力信号は、OR回路304に入力される。OR回路304は、第1~第3コンパレータ301~303の少なくとも一方の出力信号の論理がHの場合、停止信号Stopを出力する。一方、OR回路304は、第1~第3コンパレータ301~303全ての出力信号の論理がLの場合、停止信号Stopを出力しない。OR回路304の停止信号Stopは、PWM生成部400及び始動信号発生部305に入力される。
PWM生成部400は、第1指令位相差φa及び第2指令位相差φbに基づいて、各スイッチQ1~Q12の操作信号を生成して各スイッチQ1~Q12のゲートに対して出力する通常モードを実施する。通常モードにおける第9~第12スイッチQ9~Q12の操作態様は、第5~第8スイッチQ5~Q8の操作態様と同様である。第9~第12スイッチQ9~Q12のオン期間,オン期間を第3規定期間D3とする。本実施形態では、第3規定期間D3、第1規定期間D1及び第2規定期間D2が同じ期間に設定されている。
第2指令位相差φbが正の場合、第1スイッチQ1のオンへの切り替えタイミングに対して、第9スイッチQ9のオンへの切り替えタイミングが第2指令位相差φbだけ遅れる。
図29を用いて、停止信号Stopが出力されてから判定期間が経過する時刻t3以降の制御について説明する。図29(c)は第3トランス電圧Vt3の推移を示す。第3トランス電圧Vt3は、第3コイル83の第2端に対する第1端の電位が高い場合を正とする。図29(n)~(q)は第9~第12スイッチQ9~Q12の操作状態の推移を示す。図29(a),(b),(d)~(m)は、先の図6(a),(b),(e),(f)~(n)に対応している。また、図29の時刻t3~t8は図6の時刻t3~t8に対応している。
時刻tAは、停止制御が行われた後、第3トランス電圧Vt3が正極性に切り替えられるタイミングであり、時刻tBは、第3トランス電圧Vt3が負極性に切り替えられるタイミングである。また、時刻tBから、第3フルブリッジ回路70の通常モードによるスイッチング制御が開始される。
以上説明した本実施形態によれば、第1実施形態と同様の効果を得ることができる。
ちなみに、受電側フルブリッジ回路としては、2つに限らず、3つ以上であってもよい。
<第14実施形態>
以下、第14実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図30に示すように、制御部100が実行する処理態様が変更されている。なお、図30において、先の図4に示した処理と同一の処理については、便宜上、同一の符号を付している。
ステップS10において肯定判定した場合には、ステップS17に進み、停止制御と、停止制御を行った後の第1,第2フルブリッジ回路50,60のスイッチング制御の再開とが所定期間において複数回繰り返されたか否かを判定する。
ステップS187において否定判定した場合には、ステップS12に進む。一方、ステップS17において肯定判定した場合には、ステップS18に進み、第1~第8スイッチQ1~Q8全てをオフにする。
停止制御とスイッチング制御の再開とが繰り返される状況は、電力変換装置40に何らかの異常が発生した状況であると考えられる。このような状況において第1~第8スイッチQ1~Q8全てをオフにして電力変換装置40を停止させることにより、電源システムの安全性を高めることができる。
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施してもよい。
・停止信号Stopが出力されてから判定期間が経過する場合において用いられる指令位相差φaは、停止制御の直前に算出されたものに限らない。
・第1規定期間D1と第2規定期間D2とが異なっていてもよい。
・フルブリッジ回路を構成するスイッチとしては、NチャネルMOSFETに限らない。例えば、スイッチがIGBTの場合、各スイッチにフリーホイールダイオードが逆並列接続されていればよい。なお、この場合、スイッチの高電位側端子がコレクタであり、低電位側端子がエミッタである。
・交流電圧を第1コイル81に供給可能な回路であれば、フルブリッジ回路に限らず、他の回路であってもよい。
・電力変換装置は、車両に搭載されるものに限らず、例えば飛行装置に搭載されるものであってもよい。また、電力変換装置としては、車両や飛行装置等の移動体に搭載されるものに限らない。
・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
40…電力変換装置、50…第1フルブリッジ回路、60…第2フルブリッジ回路、80…トランス、100…制御部。

Claims (9)

  1. 送電側端子(CH1,CL1)及び受電側端子(CH2,CL2,CH3,CL3)を備え、前記送電側端子から入力された電力を前記受電側端子へと伝送する電力変換装置(40)において、
    送電側コイル(81)、及び前記送電側コイルと磁気結合する受電側コイル(82,83)を有するトランス(80)と、
    前記送電側コイルと前記送電側端子とを接続する送電側回路(50)と、
    前記受電側コイルと前記受電側端子とを接続する受電側フルブリッジ回路(60,70)と、
    前記送電側端子から入力される直流電圧を交流電圧に変換して前記送電側コイルに供給すべく前記送電側回路のスイッチング制御を行い、前記受電側コイルから出力される交流電圧を直流電圧に変換して前記受電側端子に供給すべく前記受電側フルブリッジ回路のスイッチング制御を行う制御部(100)と、を備え、
    前記制御部は、
    前記送電側コイル及び前記受電側コイルのうち少なくとも一方に流れる電流が閾値(Ilim1~Ilim3)を超えた場合、前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を停止する停止制御を行い、
    前記停止制御を行った後、前記送電側コイルの電圧極性を切り替えた後に前記受電側コイルの電圧極性を切り替えるように前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を再開し、
    前記停止制御を行った後、前記送電側コイルの電圧極性の切り替えを開始してから前記受電側コイルの電圧極性の切り替えを開始するまでの還流期間において、前記受電側フルブリッジ回路を構成する上下アームのうち一方のアームのスイッチをオンして前記受電側コイルの両端を短絡する電力変換装置。
  2. 前記制御部は、
    第1規定期間(D1)毎に前記送電側コイルの電圧極性を交互に切り替えるように前記送電側回路のスイッチング制御を行い、第2規定期間(D2,D3)毎に前記受電側コイルの電圧極性を交互に切り替えるように前記受電側フルブリッジ回路のスイッチング制御を行い、
    前記停止制御を行った後の第1タイミング(t3)において前記送電側コイルの電圧極性を第1極性に切り替え、前記第1タイミングよりも後の第2タイミング(t4)において前記受電側コイルの電圧極性を第1極性に切り替えるように前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を再開し、
    前記第1タイミングから前記送電側コイルの電圧極性を第2極性に切り替える第3タイミング(t5)までの期間を前記第1規定期間よりも短く設定し、前記第3タイミング以降において前記第1規定期間毎に前記送電側コイルの電圧極性を交互に切り替えるように前記送電側回路のスイッチング制御を行い、
    前記第2タイミングから前記受電側コイルの電圧極性を第2極性に切り替える第4タイミング(t6)までの期間を前記第2規定期間よりも短く設定し、前記第4タイミング以降において前記第2規定期間毎に前記受電側コイルの電圧極性を交互に切り替えるように前記受電側フルブリッジ回路のスイッチング制御を行う請求項1に記載の電力変換装置。
  3. 前記制御部は、
    前記送電側端子から前記受電側端子への伝送電力を指令電力に制御するための操作量として、前記送電側コイルの電圧と前記受電側コイルの電圧との指令位相差(φa,φb)を算出し、前記送電側コイルの電圧と前記受電側コイルの電圧との位相差を前記指令位相差に制御すべく前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を行い、
    前記停止制御を行った後における前記第1タイミングと前記第2タイミングとの時間間隔を、前記停止制御を行う直前に算出した前記指令位相差に設定する請求項2に記載の電力変換装置。
  4. 前記制御部は、
    第1規定期間(D1)毎に前記送電側コイルの電圧極性を交互に切り替えるように前記送電側回路のスイッチング制御を行い、第2規定期間(D2)毎に前記受電側コイルの電圧極性を交互に切り替えるように前記受電側フルブリッジ回路のスイッチング制御を行い、
    前記停止制御を行った後の第1タイミング(t3)において前記送電側コイルの電圧極性を第1極性に切り替え、前記第1タイミングよりも後の第2タイミング(t5)において前記受電側コイルの電圧極性を第1極性に切り替えるように前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を再開し、
    前記第1タイミングから前記送電側コイルの電圧極性を第2極性に切り替える第3タイミング(t6)までの期間を前記第1規定期間よりも長く設定し、前記第3タイミング以降において前記第1規定期間毎に前記送電側コイルの電圧極性を交互に切り替えるように前記送電側回路のスイッチング制御を行い、
    前記第2タイミング以降において前記第2規定期間毎に前記受電側コイルの電圧極性を交互に切り替えるように前記受電側フルブリッジ回路のスイッチング制御を行う請求項1に記載の電力変換装置。
  5. 前記制御部は、
    第1規定期間(D1)毎に前記送電側コイルの電圧極性を交互に切り替えるように前記送電側回路のスイッチング制御を行い、第2規定期間(D2)毎に前記受電側コイルの電圧極性を交互に切り替えるように前記受電側フルブリッジ回路のスイッチング制御を行い、
    前記停止制御を行った後の第1タイミング(t3)において前記送電側コイルの電圧極性を第1極性に切り替え、前記第1タイミングよりも後の第2タイミング(t4)において前記受電側コイルの電圧極性を第2極性に切り替えるように前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を再開し、
    前記第1タイミング以降において前記第1規定期間毎に前記送電側コイルの電圧極性を交互に切り替えるように前記送電側回路のスイッチング制御を行い、
    前記第2タイミングから前記受電側コイルの電圧極性を第1極性に切り替える第3タイミング(t5)までの期間を前記第2規定期間よりも短く設定し、前記第3タイミング以降において前記第2規定期間毎に前記受電側コイルの電圧極性を交互に切り替えるように前記受電側フルブリッジ回路のスイッチング制御を行う請求項1に記載の電力変換装置。
  6. 前記制御部は、前記停止制御を行った後、前記還流期間よりも前のタイミングから前記還流期間の終了タイミングまでの期間において、前記受電側フルブリッジ回路を構成する上下アームのうち一方のアームのスイッチをオンして前記受電側コイルの両端を短絡する請求項1~5のいずれか1項に記載の電力変換装置。
  7. 前記送電側回路は、フルブリッジ回路であり、
    前記制御部は、前記停止制御を行った後、前記還流期間よりも前のタイミングから前記還流期間の開始タイミングまでの期間において、前記送電側回路を構成する上下アームのうち一方のアームのスイッチをオンして前記送電側コイルの両端を短絡する請求項1~6のいずれか1項に記載の電力変換装置。
  8. 前記制御部は、前記停止制御により前記送電側コイル及び前記受電側コイルに流れる電流が低下し始めた後、前記送電側コイル及び前記受電側コイルに流れる電流が判定閾値(ILset)を下回った場合、又は前記停止制御が開始されてから判定期間経過した場合、前記送電側回路のスイッチング制御を再開する請求項1~7のいずれか1項に記載の電力変換装置。
  9. 前記制御部は、前記停止制御と、該停止制御を行った後の前記送電側回路のスイッチング制御の再開とが所定期間において繰り返される場合、前記送電側回路及び前記受電側フルブリッジ回路のスイッチング制御を停止する請求項1~8のいずれか1項に記載の電力変換装置。
JP2020041020A 2020-03-10 2020-03-10 電力変換装置 Active JP7256769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020041020A JP7256769B2 (ja) 2020-03-10 2020-03-10 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020041020A JP7256769B2 (ja) 2020-03-10 2020-03-10 電力変換装置

Publications (2)

Publication Number Publication Date
JP2021145407A JP2021145407A (ja) 2021-09-24
JP7256769B2 true JP7256769B2 (ja) 2023-04-12

Family

ID=77767402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041020A Active JP7256769B2 (ja) 2020-03-10 2020-03-10 電力変換装置

Country Status (1)

Country Link
JP (1) JP7256769B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130997A (ja) 2016-01-18 2017-07-27 国立大学法人東京工業大学 絶縁型の双方向dc/dcコンバータおよびその制御方法
JP2019115130A (ja) 2017-12-22 2019-07-11 三菱電機株式会社 直流変換器
JP2019118234A (ja) 2017-12-27 2019-07-18 国立大学法人東京工業大学 絶縁型の双方向dc/dcコンバータおよびその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130997A (ja) 2016-01-18 2017-07-27 国立大学法人東京工業大学 絶縁型の双方向dc/dcコンバータおよびその制御方法
JP2019115130A (ja) 2017-12-22 2019-07-11 三菱電機株式会社 直流変換器
JP2019118234A (ja) 2017-12-27 2019-07-18 国立大学法人東京工業大学 絶縁型の双方向dc/dcコンバータおよびその制御方法

Also Published As

Publication number Publication date
JP2021145407A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
JP5928913B2 (ja) 共振形dc−dcコンバータの制御装置
JP6589737B2 (ja) 電力変換装置
JP6924103B2 (ja) 電力変換装置
JP6135663B2 (ja) 電力変換装置及び電力変換方法
US9537414B2 (en) Power conversion apparatus that switches electrode connection when a short-circuit is detected
US8830701B2 (en) DC-DC converter
WO2020044946A1 (ja) スイッチの駆動装置
US8817490B2 (en) DC-DC converter
JP7256769B2 (ja) 電力変換装置
WO2016017170A1 (ja) Dc-dcコンバータ
JPWO2020144796A1 (ja) 電力変換装置
JP7275065B2 (ja) 電力変換装置
JP2009142061A (ja) Dc−dcコンバータ装置
JP5797142B2 (ja) 直流電源装置およびその制御方法
JP7132901B2 (ja) 電力変換装置
JP6565788B2 (ja) 電力変換システム
US8830700B2 (en) DC-DC converter and method for controlling DC-DC converter
JP6352864B2 (ja) 電力変換装置
JP7250097B1 (ja) 電力変換装置
WO2022234784A1 (ja) 電力変換装置
JP2014230340A (ja) 制御方法
JP2019037100A (ja) 電力変換器の制御装置
WO2023047987A1 (ja) 車両用電源装置
JP6384422B2 (ja) 電力変換装置の制御装置
JP6568019B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R150 Certificate of patent or registration of utility model

Ref document number: 7256769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150