WO2022234784A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022234784A1
WO2022234784A1 PCT/JP2022/018728 JP2022018728W WO2022234784A1 WO 2022234784 A1 WO2022234784 A1 WO 2022234784A1 JP 2022018728 W JP2022018728 W JP 2022018728W WO 2022234784 A1 WO2022234784 A1 WO 2022234784A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
control
state
pair
voltage
Prior art date
Application number
PCT/JP2022/018728
Other languages
English (en)
French (fr)
Inventor
清 會澤
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN202280029841.8A priority Critical patent/CN117203886A/zh
Publication of WO2022234784A1 publication Critical patent/WO2022234784A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present disclosure relates to power converters.
  • Patent Document 1 discloses a power converter.
  • the power conversion device disclosed in Patent Document 1 is a current-input push-pull DCDC converter that includes a first switching element and a second switching element.
  • This power conversion device further includes a third switching element for switching the energization state between the DC power supply and the transformer, and a diode that electrically connects the choke coil and the negative electrode side when the energization between the DC power supply and the transformer is interrupted.
  • This power conversion device has a period in which the first switching element, the second switching element, and the third switching element are all ON, and one of the first switching element and the second switching element is ON, and the first switching element and The other of the second switching elements and the period during which the third switching element is OFF are controlled.
  • Patent Document 1 In the power conversion device (DCDC converter) disclosed in Patent Document 1, a secondary battery is connected to a pair of input terminals on one side, and a capacitive load is connected to a pair of output terminals on the other side.
  • DCDC converter power conversion device
  • the present disclosure provides a technique for easily suppressing ripples in the current flowing through the choke coil in a power conversion device equipped with the choke coil.
  • a power converter which is one of the present disclosure, A DC power supply, a capacitive load, a pair of first conductive paths through which a charging current for the capacitive load and a discharging current from the capacitive load flow, and a pair of second conductive paths through which power is supplied from the DC power supply.
  • a power conversion device used in a power supply system comprising two conductive paths and performing power conversion between the pair of second conductive paths and the pair of first conductive paths, a first coil section, a second coil section having a first winding and a second winding, and a center tap provided between the first winding and the second winding; a transformer in which the first coil portion and the second coil portion are magnetically coupled; a conversion circuit that performs a conversion operation between the first coil portion and the pair of first conductive paths; a switching circuit that performs a conversion operation between the pair of second conducting paths and the second coil section; with The switching circuit is a choke coil provided between one conductive path of the pair of second conductive paths and the center tap; a first switching element provided between the other conductive path of the pair of second conductive paths and a first end of the first winding opposite to the center tap; a second switching element provided between the other conductive path and a second end of the second winding opposite to the center tap; Provided between the one conductive path and the choke coil, allowing
  • a third switching element that blocks current from flowing through the conductive path to the choke coil; An electric current that allows current to flow in a first direction from the side of the other conductive path toward the side of the intermediate portion between the intermediate portion between the choke coil and the third switching element and the other conductive path.
  • the control unit performs periodic control that periodically repeats switching control that switches operations in the order of the third operation, the first operation, the third operation, and the second operation, and performs each of the first operations in the periodic control.
  • the third switching element is switched in the order of off state, on state, and off state, and in each of the second operations in the periodic control, the third switching element is switched in the order of off state, on state, and off state. At least a first control is performed to maintain the third switching element in an OFF state during each of the third operations.
  • the technology according to the present disclosure makes it easy to suppress ripples in the current flowing through the choke coil in a power conversion device equipped with the choke coil.
  • FIG. 1 is a block diagram schematically illustrating an in-vehicle power supply system including a power conversion device according to a first embodiment of the present disclosure.
  • FIG. 2 is a flow chart illustrating the flow of control performed by the power converter of FIG.
  • FIG. 3 is a timing chart showing the state of each switching element and the current flowing through the choke coil during the first control.
  • FIG. 4 is a timing chart showing the state of each switching element and the current flowing through the choke coil during the second control.
  • FIG. 5 is a timing chart showing the state of each switching element and the current flowing through the choke coil during the third control.
  • a DC power supply a capacity load, a pair of first conductive paths through which a charging current for the capacity load and a discharge current from the capacity load flow, and a path through which power is supplied from the DC power supply.
  • a power conversion device used in a power supply system comprising a pair of second conductive paths and performing power conversion between the pair of second conductive paths and the pair of first conductive paths, a first coil section, a second coil section having a first winding and a second winding, and a center tap provided between the first winding and the second winding; a transformer in which the first coil portion and the second coil portion are magnetically coupled; a conversion circuit that performs a conversion operation between the first coil portion and the pair of first conductive paths; a switching circuit that performs a conversion operation between the pair of second conducting paths and the second coil section; with The switching circuit is a choke coil provided between one conductive path of the pair of second conductive paths and the center tap; a first switching element provided between the other conductive path of the pair of second conductive
  • a third switching element that blocks current from flowing through the conductive path to the choke coil; An electric current that allows current to flow in a first direction from the side of the other conductive path toward the side of the intermediate portion between the intermediate portion between the choke coil and the third switching element and the other conductive path.
  • the control unit performs periodic control that periodically repeats switching control that switches operations in the order of the third operation, the first operation, the third operation, and the second operation, and performs each of the first operations in the periodic control.
  • the third switching element is switched in the order of off state, on state, and off state, and in each of the second operations in the periodic control, the third switching element is switched in the order of off state, on state, and off state.
  • a power converter that performs at least a first control to switch and maintain the third switching element in an off state during each of the third operations.
  • first control is performed to turn on and off the third switching element. is performed, the current flowing through the choke coil can be suppressed.
  • the current is suppressed by switching the third switching element in the order of OFF state, ON state, and OFF state, so that the current can be suppressed from fluctuating excessively.
  • the third switching element is maintained in the OFF state during the third operation, so the current flowing through the choke coil can be further suppressed.
  • the power conversion device of [2] has the following features in the power conversion device of [1] above. While performing the periodic control, the control unit switches the third switching element between an on state, an off state, and an on state in order during each of the third operations in the periodic control, and switches each of the third switching elements in the periodic control. At least a second control is performed to maintain the third switching element in the ON state during one operation and each of the second operations.
  • the power conversion device of [2] above can perform not only the first control but also the second control, and when performing each third operation in the second control, by turning on and off the third switching element , it is possible to suppress excessive current flow in the choke coil.
  • the power conversion device of [3] has the following features in the power conversion device of [2] above.
  • the control unit performs the first control when the voltage between the pair of first conductive paths is equal to or less than the threshold voltage, and the voltage between the pair of first conductive paths is equal to or less than the threshold voltage, and the threshold voltage is increased. When it switches to a value exceeding the value, the first control is switched to the second control.
  • the power conversion device of [3] above performs the first control in a state where the voltage between the pair of first conductive paths is less than the threshold voltage (state in which the degree of charge of the capacitive load is small), When the voltage across one conducting path switches from below the threshold voltage to above the threshold voltage (when the degree of charging of the capacitive load switches to a somewhat large state), the control can be switched to the second control.
  • This power conversion device can easily maintain stability while suppressing the current flowing through the choke coil in accordance with the voltage between the pair of first conducting paths.
  • the power converter of [4] has the following features in the power converter of any one of the above [1] to [3]. While performing the periodic control, the control unit controls the third switching element during each of the first operation, the second operation, and the third operation in the periodic control. At least the third control for maintaining the on state is performed.
  • the power conversion device of [4] above can perform not only the first control but also the third control as necessary to cancel current suppression by turning on and off the third switching element.
  • the power conversion device of [5] has the following features in the power conversion device of [3] above. While performing the periodic control, the control unit controls the third switching element during each of the first operation, the second operation, and the third operation in the periodic control. At least the third control for maintaining the on state is performed. The control unit performs the second control when the voltage between the pair of first conductive paths exceeds the threshold voltage and is equal to or lower than a second threshold voltage that is larger than the threshold voltage. is switched from the second threshold voltage or less to a value exceeding the second threshold voltage, the second control is switched to the third control.
  • the power converter of [5] above performs the first control when the degree of charging of the capacity load is small, performs the second control when the degree of charging of the capacity load is medium, and performs the second control when the degree of charging of the capacity load is large.
  • a third control can be performed in the state. In a state where the degree of charging of the capacitive load is small or medium, this power conversion device suppresses and stably maintains the current flowing through the choke coil according to the voltage between the pair of first conductive paths, and charges the capacitive load. When the degree is large, it is possible to cancel the current suppression by turning on and off the third switching element and shift to control (control by the switching circuit and the conversion circuit) that does not depend on the third switching element.
  • the power converter of [6] has the following features in the power converter of any one of the above [1] to [5].
  • the switching circuit has a chopper circuit including the third switching element, the conducting section, and the choke coil.
  • the control unit controls the chopper circuit so that the value of the current flowing through the one conduction path approaches a target current value during the first control.
  • the power conversion device of [6] above is capable of stabilizing the current flowing through the one conductive path at least during the first control, and stably maintaining the choke coil by suppressing excessive current flow. can be done.
  • the power supply system 100 is configured as an in-vehicle power supply system mounted on a vehicle.
  • the power supply system 100 includes a first power storage unit 91 , a second power storage unit 92 , a pair of first conducting paths 81 , a pair of second conducting paths 82 , and the power converter 1 .
  • the first power storage unit 91 is composed of a known battery such as a lithium ion battery.
  • the first power storage unit 91 functions as a main power storage device.
  • the first power storage unit 91 is not limited to a lithium ion battery, and may be another type of battery configured to be chargeable and dischargeable.
  • the terminal on the low potential side (negative electrode), which is the terminal with the lowest potential in first power storage unit 91, is electrically connected to the other conducting path 81B.
  • the pair of first conductive paths 81 are paths through which the charging current for the capacitive load 94 and the discharging current from the capacitive load 94 flow.
  • the pair of first conductive paths 81 includes one conductive path 81A and the other conductive path 81B.
  • the other conductive path 81B is electrically connected to the ground, for example.
  • One conductive path 81A is also simply referred to as conductive path 81A.
  • the other conductive path 81B is also simply referred to as conductive path 81B.
  • Conductive path 81B is, for example, a conductive path that is kept at a reference potential (eg, ground potential of 0V).
  • An in-vehicle load is electrically connected to the conductive paths 81A and 81B forming the pair of first conductive paths 81 on the high voltage side so that DC power is supplied via the conductive paths 81A and 81B. good too.
  • a capacitive load 94 is electrically connected to the pair of first conducting paths 81 .
  • the charging current supplied to the capacitive load 94 flows through the pair of first conducting paths 81 , and the charging current is supplied to the capacitive load 94 via the pair of first conducting paths 81 .
  • the capacitive load 94 When the capacitive load 94 is discharged, the discharge current from the capacitive load 94 flows into the pair of first conducting paths 81 .
  • Capacitive load 94 may be a capacitor or a capacitive device similar to a capacitor.
  • a relay, a fuse, or the like may be provided between capacity load 94 and first power storage unit 91 .
  • the power supply system 100 of FIG. 1 for example, when a predetermined condition is satisfied (for example, when the start switch of the vehicle is in an off state), power supply from the first power storage unit 91 to the capacity load 94 is interrupted, and the capacity load 94 The electric charge accumulated in is discharged through a discharge section (not shown). Therefore, for example, when a predetermined condition is satisfied (for example, when the start switch of the vehicle is in an off state), the charging voltage of the capacitive load 94 (the voltage between the conducting paths 81A and 81B) is kept near 0V. It has become.
  • a predetermined condition for example, when the start switch of the vehicle is in an off state
  • the charging voltage of the capacitive load 94 the voltage between the conducting paths 81A and 81B
  • the second power storage unit 92 corresponds to an example of a DC power supply.
  • the second power storage unit 92 is composed of a known battery such as a lead battery.
  • the second power storage unit 92 functions, for example, as a power storage device for auxiliary equipment.
  • the second power storage unit 92 is not limited to a lead battery, and may be another type of battery configured to be chargeable and dischargeable.
  • the terminal on the high potential side (positive electrode), which is the terminal with the highest potential in second power storage unit 92, is electrically connected to one conducting path 82A.
  • the terminal on the low potential side (negative electrode), which is the terminal with the lowest potential in second power storage unit 92, is electrically connected to another conducting path 82B.
  • the output voltage (for example, 12V) of the second power storage unit 92 is applied between the one conductive path 82A and the other conductive path 82B.
  • Conductive path 82B is electrically connected to the ground, for example.
  • the output voltage when second power storage unit 92 is fully charged is lower than the output voltage when first power storage unit 91 is fully charged.
  • One conductive path 82A and the other conductive path 82B constitute a pair of second conductive paths 82 and form a path to which power is supplied from the second power storage unit 92 (DC power supply).
  • One conductive path 82A is also simply referred to as conductive path 82A.
  • Other conductive paths 82B are also simply referred to as conductive paths 82B.
  • Conductive path 82B is, for example, a conductive path that is kept at a reference potential (eg, ground potential of 0V).
  • the power converter 1 mainly includes a voltage converter 6 , a controller 50 , and detectors 41 and 42 .
  • the power converter 1 is a bidirectional and insulated DCDC converter.
  • the power conversion device 1 is a device that performs power conversion between a pair of first conducting paths 81 and a pair of second conducting paths 82 .
  • the power conversion device 1 boosts the DC voltage applied between the conductive paths 82A and 82B, and performs a step-up operation so as to apply a DC voltage higher than the DC voltage between the conductive paths 82A and 82B between the conductive paths 81A and 81B.
  • the power converter 1 steps down the DC voltage applied between the conductive paths 81A and 81B, and applies a DC voltage between the conductive paths 82A and 82B that is lower than the DC voltage between the conductive paths 81A and 81B.
  • a step-down operation can be performed.
  • the voltage conversion unit 6 boosts the DC voltage applied between the conductive paths 82A and 82B according to a PWM (Pulse Width Modulation) signal given from the control unit 50 to apply the DC voltage between the conductive paths 81A and 81B. It has a function to perform a boosting operation so as to In this specification, pulse width modulation is also referred to as PWM. Further, the voltage converting section 6 performs a step-down operation so as to step down the DC voltage applied between the conductive paths 81A and 81B and apply the DC voltage between the conductive paths 82A and 82B under the control of the control section 50. have the function of The voltage conversion section 6 mainly has a conversion circuit 10 , a switching circuit 20 and a transformer 30 .
  • the transformer 30 has a first coil section 31 and a second coil section 32 .
  • the first coil section 31 is a coil whose number of turns is a first value N1.
  • the second coil portion 32 is a coil that is magnetically coupled with the first coil portion 31 .
  • the second coil section 32 is a center-tapped coil, and includes a first winding 32A, a second winding 32B, and a center tap 32C provided between the first winding 32A and the second winding 32B. , has The first winding 32A and the second winding 32B that constitute the second coil portion 32 are magnetically coupled to the first coil portion 31 .
  • the first winding 32A and the second winding 32B are coils having a second value N2 of turns.
  • the center tap 32C is an intermediate portion that has the same potential as one end of the first winding 32A and one end of the second winding 32B.
  • the conversion circuit 10 shown in FIG. 1 is a circuit that performs a conversion operation between the first coil section 31 and the pair of first conducting paths 81 .
  • the conversion circuit 10 is configured as a full bridge circuit and includes a plurality of switching elements 11, 12, 13 and 14.
  • the switching elements 11, 12, 13 and 14 are semiconductor switching elements.
  • Switching elements 11 and 12 are connected in series between conductive path 81A and conductive path 81B.
  • Switching elements 13 and 14 are connected in series between conductive path 81A and conductive path 81B.
  • One end of the coil forming the first coil portion 31 is electrically connected to the connecting portion between the switching elements 11 and 12, and the first coil portion 31 is formed at the connecting portion between the switching elements 13 and 14. The other end of the coil is electrically connected.
  • the conversion circuit 10 can perform a conversion operation of converting the DC voltage applied between the conductive path 81A and the conductive path 81B to generate an AC voltage in the first coil section 31 . Furthermore, the conversion circuit 10 can also convert the AC voltage generated in the first coil section 31 and apply a DC voltage between the conductive path 81A and the conductive path 81B.
  • the switching circuit 20 shown in FIG. 1 is a circuit that performs conversion operation between the pair of second conducting paths 82 and the second coil section 32 .
  • the switching circuit 20 has a first switching element Q1, a second switching element Q2, a third switching element Q3, a choke coil 25, a diode 26, a capacitor 27, and the like.
  • the first switching element Q1, the second switching element Q2, and the third switching element Q3 are semiconductor switching elements.
  • FIG. 1 illustrates MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) as switching elements 11, 12, 13, 14, Q1, Q2, and Q3.
  • the first switching element Q1 and the second switching element Q2 constitute a push-pull circuit 21.
  • the push-pull circuit 21 converts the voltage applied between the other end of the choke coil 25 (the end on the side of the center tap 32C) and the conductive path 82B to convert the voltage to the first winding 32A and the second winding 32B.
  • a first conversion operation may be performed that produces a voltage.
  • the push-pull circuit 21 converts the AC voltage generated in the first winding 32A and the second winding 32B to connect the end 25A (the end on the center tap 32C side) of the choke coil 25 and the conductive path 82B.
  • a second conversion operation may be performed to apply a voltage between .
  • the first switching element Q1 includes a conductive path 82B (another conductive path) of the pair of second conductive paths 82 and the other end of the first winding 32A (first end 61 opposite to the center tap 32C). provided between One end of the first switching element Q1 is electrically connected to the end (first end 61) of the first winding 32A. The other end of the first switching element Q1 is electrically connected to the conductive path 82B.
  • the first switching element Q1 When the first switching element Q1 is on, current is allowed to flow from the first winding 32A to the conductive path 82B, and when the first switching element Q1 is off, current is allowed to flow from the first winding 32A to the conductive path 82B. Current flow is interrupted.
  • the second switching element Q2 includes a conductive path 82B (another conductive path) of the pair of second conductive paths 82 and the other end of the second winding 32B (the second end 62 opposite to the center tap 32C). provided between One end of the second switching element Q2 is electrically connected to the end (second end 62) of the second winding 32B. The other end of the second switching element Q2 is electrically connected to the conductive path 82B.
  • the second switching element Q2 When the second switching element Q2 is on, current is allowed to flow from the second winding 32B to the conductive path 82B, and when the second switching element Q2 is off, current is allowed to flow from the second winding 32B to the conductive path 82B Current flow is interrupted.
  • the choke coil 25 is provided between the conductive path 82A (one conductive path) of the pair of second conductive paths 82 and the center tap 32C.
  • the choke coil 25 generates a DC voltage to be applied between the conducting paths 82A and 82B when the power converter 1 performs the step-down operation described above, that is, when the push-pull circuit 21 performs the second conversion operation described above.
  • Configure a smoothing circuit for One end of the first winding 32A and one end of the second winding 32B are electrically connected to the center tap 32C and electrically connected to the end 25A of the choke coil 25 .
  • the third switching element Q3 is provided between the conductive path 82A (one conductive path) and the choke coil 25, and is an element that switches the energization between the conductive path 82A and the choke coil 25 between an allowable state and an interrupted state. be.
  • the third switching element Q3 When the third switching element Q3 is in the ON state, current is allowed to flow from the conductive path 82A side to the choke coil 25 side via the conductive path 82A (one conductive path).
  • the third switching element Q3 is in the OFF state, current flow from the conductive path 82A side to the choke coil 25 side via the conductive path 82A (one conductive path) is cut off.
  • the conductive path 82A has one end electrically connected to the positive electrode of the second power storage unit 92, the other end electrically connected to the third switching element Q3, and the detection unit 42 interposed therebetween. It is a conductive path.
  • the diode 26 corresponds to an example of a conducting part. Diode 26 is provided between intermediate portion 68 between choke coil 25 and third switching element Q3 and conductive path 82B (another conductive path). In the example of FIG. 1, the anode of diode 26 is electrically connected to conductive path 82B, and the cathode of diode 26 is electrically connected to conductive path 82B.
  • the diode 26 allows current to flow in a first direction from the conductive path 82B (another conductive path) side to the intermediate portion 68 side, and restricts current to flow in a second direction opposite to the first direction. do.
  • the chopper circuit 22 is composed of the third switching element Q3, the diode 26, and the choke coil 25. This chopper circuit 22 is controlled by an on/off signal (for example, a PWM signal) given to the third switching element Q3.
  • an on/off signal for example, a PWM signal
  • the capacitor 27 has one end electrically connected to the conductive path 82A and the other end electrically connected to the conductive path 82B. Capacitor 27 may function as a smoothing capacitor.
  • the control unit 50 is configured, for example, as an information processing device having an arithmetic function and an information processing function.
  • the control unit 50 may be configured as a microcomputer, or may be configured as another information processing device.
  • the control unit 50 may be realized by a single information processing device, or may be realized by a plurality of information processing devices.
  • the control section 50 has a function of controlling the voltage conversion section 6 .
  • the control unit 50 controls the conversion circuit 10 by giving control signals to the switching elements 11 , 12 , 13 and 14 .
  • the control unit 50 controls the switching circuit 20 by giving control signals to the first switching element Q1, the second switching element Q2, and the third switching element Q3.
  • the detection unit 41 functions as a voltage detection unit and inputs a value indicating the voltage between the pair of first conductive paths 81 to the control unit 50 .
  • the detection unit 41 may input the voltage value between the pair of first conductive paths 81 to the control unit 50, and divides the voltage between the pair of first conductive paths 81 by a predetermined voltage division ratio. It may be input to the control unit 50 .
  • the control unit 50 identifies the value of the voltage Vc between the pair of first conductive paths 81 based on the value given from the detection unit 41 .
  • the detection unit 42 functions as a current detection unit, detects the value of the current flowing through one of the pair of second conductive paths 82 (conductive path 82A in FIG. 1), and inputs the detected value to the control unit 50.
  • the detection unit 42 functions as a known current sensor and provides the control unit 50 with information specifying the value of the current flowing through the conducting path 82A.
  • Control unit 50 identifies current Iin flowing from conductive path 82A to choke coil 25 side based on the value provided from detection unit 42 .
  • Step-Down Operation of Power Converter The power converter 1 functions as a full-bridge isolated DCDC converter.
  • the conversion circuit 10 converts the DC voltage applied between the conduction paths 81A and 81B into an AC voltage to convert the first coil portion 31 produces an alternating voltage on the In this case, an AC voltage corresponding to the AC voltage generated by the first coil portion 31 is generated in the second coil portion 32 .
  • the switching circuit 20 functions as a rectifier circuit, and rectifies the AC voltage generated in the second coil section 32 into a DC voltage. A DC voltage is applied between the conductive paths 81A and 81B.
  • the control unit 50 can cause the voltage conversion unit 6 to perform a step-down operation by a known control method used in a full-bridge isolated DCDC converter.
  • the control unit 50 turns on the switching elements 11 and 14 and turns off the switching elements 12 and 13, and turns off the switching elements 11 and 14. , the switching elements 12 and 13 are alternately turned on.
  • the conversion circuit 10 converts the DC voltage applied between the conductive paths 81A and 81B into an AC voltage, thereby converting the first coil unit into an AC voltage. 31 to generate an alternating voltage.
  • an AC voltage corresponding to the turns ratio N is generated in the second coil portion 32 magnetically coupled to the first coil portion 31 .
  • the switching circuit 20 converts the AC voltage applied to the second coil section 32 into a DC voltage, rectifies the AC voltage generated in the second coil section 32, and converts it into a DC voltage, A DC voltage is applied across conductive paths 82A and 82B.
  • the choke coil 25 functions to smoothen the DC voltage applied to the conductive paths 82A and 82B during the step-down operation.
  • the switching circuit 20 functions as a circuit that performs a push-pull switching operation, and voltage is applied between the conductive paths 82A and 82B.
  • the applied DC voltage is converted into AC voltage to generate AC voltage in the second coil section 32 .
  • the transformer 30 when an alternating voltage is generated in the second coil section 32 in this manner, an alternating voltage corresponding to the turns ratio N is generated in the first coil section 31 .
  • the conversion circuit 10 When the power conversion device 1 performs the second voltage conversion operation (boost operation), the conversion circuit 10 functions as a rectifier circuit, rectifies the AC voltage generated in the first coil section 31, and converts it into a DC voltage. , a DC voltage is applied between the conductive paths 81A and 81B.
  • the control unit 50 outputs an ON signal and an OFF signal to the first switching element Q1, the second switching element Q2, and the third switching element Q3, and outputs the ON signal and the OFF signal to the first switching element Q1, the second switching element Q2, and the third switching element Q2.
  • Q3 can be switched between on and off states.
  • the control unit 50 causes the voltage conversion unit 6 to perform the boosting operation
  • the control unit 50 can perform the first operation, the second operation, and the third operation.
  • the first operation is an operation to turn ON only the first switching element Q1 out of the first switching element Q1 and the second switching element Q2.
  • the second operation is an operation to turn ON only the second switching element Q2 out of the first switching element Q1 and the second switching element Q2.
  • the third operation is to turn on both the first switching element Q1 and the second switching element Q2.
  • FIG. 2 is a flow chart illustrating the flow of control when the control unit 50 causes the voltage conversion unit 6 to perform the boosting operation.
  • Control unit 50 starts the operation of voltage conversion unit 6 when a predetermined start condition is satisfied.
  • a predetermined start condition is satisfied.
  • the predetermined start condition is not limited to this example.
  • “when the start condition is satisfied” may be when the vehicle is in the starting state, and "when the start condition is satisfied” when the control unit 50 is powered on.
  • control unit 50 determines that the predetermined start condition is satisfied in the determination processing of step S1, it determines YES in step S1, and confirms the value Iin of the current flowing through the conductive path 82A in step S2. do.
  • Control unit 50 specifies current value Iin based on the value input from detection unit 42 .
  • step S3 the control unit 50 determines whether the current value Iin does not match the target current value (requested current value) Ireq. )Ireq, NO is determined in step S3, and the process returns to step S2.
  • the control unit 50 determines in step S3 that the current value Iin does not match the target current value (required current value) Ireq, it determines YES in step S3 and supplies the current value to the third switching element Q3 in step S4.
  • the duty of the PWM signal (second duty Duty2) is adjusted.
  • step S4 the second duty Duty2 is increased or decreased so as to perform a feedback operation to bring the current value Iin closer to the target current value Ireq.
  • step S5 the control unit 50 determines whether the voltage Vc between the pair of first conducting paths 81 exceeds the second threshold voltage V2. The process is returned to step S2. In this way, after determining YES in step S1, the control unit 50 adjusts the second duty Duty2 so as to maintain the current value Iin at the target current value Ireq until the voltage Vc exceeds the second threshold voltage V2. feedback control.
  • control unit 50 keeps the input current Iin input to the chopper circuit 22 constant until the voltage Vc exceeds the second threshold voltage V2. (Second duty Duty2) is adjusted.
  • the control unit 50 sets the duty of the PWM signal given to the first switching element Q1 and the second switching element Q2 until the voltage Vc exceeds the second threshold voltage V2.
  • a predetermined minimum duty is set. Note that when the control unit 50 performs the boosting operation, the duty of the PWM signal given to the first switching element Q1 and the second switching element Q2 is adjusted to be greater than 0.5. is also a large value.
  • the control unit 50 When performing the boosting operation, the control unit 50 periodically repeats switching control to switch operations in the order of the third operation, the first operation, the third operation, and the second operation, as shown in FIGS.
  • one cycle T is the period from the rise of the ON signal applied to the first switching element Q1 to the end of the OFF signal immediately after the ON signal (rising of the next ON signal).
  • the duration of the first operation is indicated by T1
  • the duration of the second operation is indicated by T2
  • the duration of the third operation is indicated by T3.
  • the period of the ON signal applied to the first switching element Q1 is indicated by Ta1
  • the period of the OFF signal applied to the first switching element Q1 is indicated by Ta2.
  • the period of the ON signal applied to the second switching element Q2 is indicated by Tb1, and the period of the OFF signal applied to the second switching element Q2 is indicated by Tb2.
  • IL in FIGS. 3 to 5 is the current flowing through the choke coil 25.
  • the PWM signal given to both the first switching element Q1 and the second switching element Q2 has the same cycle T and duty (first duty Duty1).
  • the intermediate point of the period Ta1 of the ON signal of the first switching element Q1 (the point of time when half the time Ta1 has passed)
  • the intermediate point of the period Tb2 of the OFF signal of the second switching element Q2 (1/2 of the time Tb2) The timing is adjusted to coincide with the time point of 2).
  • the middle point of the period Ta2 of the OFF signal of the first switching element Q1 (the point of time when half the time Ta2 has elapsed) and the middle point of the period Tb1 of the ON signal of the second switching element Q2 (1 of the time Tb1)
  • the timing is adjusted to coincide with the point of time when /2 has elapsed).
  • the duty (second duty Duty2) of the PWM signal (second PWM signal) given to the third switching element Q3 is adjusted.
  • the period of the PWM signal given to the third switching element Q3 is T/2.
  • the midpoint of the ON signal of the PWM signal to be supplied to the third switching element Q3 (the point of time when half the period from the rise to the fall of the ON signal has passed since the rise of the ON signal) is the period Ta1, It is the middle point of the period Tb1.
  • the intermediate point of a certain ON signal is adjusted to the intermediate point of the period Ta1, the intermediate point of the next ON signal is the intermediate point of the period Tb1 that comes after the period Ta1. adjusted.
  • the control unit 50 performs the first step as shown in FIG. 1 control is performed, and the first control is switched to the second control when the voltage Vc (the voltage across the first conductive path 81) switches from below the first threshold voltage V1 to a value exceeding the first threshold voltage V1. Then, the control unit 50 performs the second control as shown in FIG. 4 while the voltage Vc exceeds the first threshold voltage V1 and is equal to or less than the second threshold voltage V2.
  • the first threshold voltage V1 is set to the ON time of the PWM signal (second PWM signal). and the length of the off time of the PWM signal (first PWM signal) applied to the first switching element Q1 and the second switching element Q2.
  • the third switching element Q3 is switched in order of OFF state, ON state, and OFF state during each first operation (period T1) in the periodic control, and each During the second operation (period T2), the third switching element Q3 is switched in the order of OFF state, ON state, and OFF state, and the third switching element Q3 is maintained in the OFF state during each third operation (period T3).
  • control unit 50 switches the third switching element Q3 in the order of ON state, OFF state, and ON state during each third operation (period T3) in the periodic control,
  • the third switching element Q3 is maintained in the ON state during each of the first operation (period T1) and the second operation (period T2) in the periodic control.
  • step S6 the voltage Vc flowing through the conducting path 82A Check the current value Iin.
  • the second threshold voltage V2 corresponds to the voltage Vc when the duty is switched to 1 (the OFF period is 0) when the ON period is gradually increased in the second control as shown in FIG.
  • the second threshold voltage V2 may be provided as a value in advance, and when the duty of the second PWM signal becomes 1, YES may be determined in step S5.
  • step S7 the control unit 50 determines whether the current value Iin does not match the target current value (requested current value) Ireq. )Ireq, NO is determined in step S7, and the process returns to step S6.
  • the control unit 50 determines in step S7 that the current value Iin does not match the target current value (required current value) Ireq, it determines YES in step S7, and determines YES in step S8. 2 Adjust the duty (first duty Duty1) of the PWM signal to be given to the switching element Q2.
  • step S8 Adjust the duty (first duty Duty1) of the PWM signal to be given to the switching element Q2.
  • step S8 the first duty Duty1 is increased or decreased so as to perform a feedback operation to bring the current value Iin closer to the target current value Ireq.
  • step S8 if there is a predetermined termination determination (if YES in step S9) or if there is a predetermined termination request (if YES in step S10), the control in FIG. 2 ends, and if not, the process returns to step S6.
  • the control unit 50 repeats the feedback control for adjusting the first duty Duty1 so as to bring the current value Iin closer to the target current value Ireq while performing the periodic control until there is a termination determination or a termination request.
  • step S5 the control unit 50 repeats the processes of steps S6, S7, and S8 until determining YES in step S9 or YES in step S10.
  • Control that repeats steps S6, S7, and S8 in this way is the third control.
  • the control is to maintain the third switching element Q3 in the ON state.
  • the control unit 50 performs the second control when the voltage Vc between the pair of first conductive paths 81 exceeds the first threshold voltage V1 and is equal to or less than the second threshold voltage V2,
  • the second control is switched to the third control when the voltage Vc between the pair of first conductive paths 81 switches from the second threshold voltage V2 or less to a value exceeding the second threshold voltage V2.
  • the second threshold voltage V2 is higher than the first threshold voltage V1.
  • Example of Effect The following description relates to the effect of the first embodiment.
  • the power converter 1 performs power conversion between the pair of second conductive paths 82 and the pair of first conductive paths 81 by periodic control (in the above-described example, when performing the boosting operation)
  • the first control is performed so as to turn on and off the third switching element Q3 as follows. Therefore, the power converter 1 can suppress the current flowing through the choke coil 25 .
  • the power converter 1 suppresses the current by switching the third switching element Q3 in the order of off, on, and off, so that the current fluctuates too much. can be suppressed.
  • the third switching element Q3 is kept off during the third operation, so the current flowing through the choke coil 25 is further suppressed.
  • the power conversion device 1 can perform not only the first control but also the second control, and when performing each third operation in the second control, the third switching element Q3 is turned on and off. Thus, it is possible to suppress excessive current flow in the choke coil 25 .
  • the power converter 1 performs the first control when the voltage Vc between the pair of first conducting paths 81 is equal to or lower than the threshold voltage V1 (when the capacity load 94 has a small degree of charge).
  • the first control can be switched to the second control.
  • This power conversion device 1 is easy to keep stable while suppressing the current flowing through the choke coil 25 according to the voltage between the pair of first conducting paths 81 .
  • the power conversion device 1 can perform not only the first control but also the third control as necessary to cancel current suppression by turning on/off the third switching element Q3.
  • the power converter 1 performs the first control when the degree of charge of the capacity load 94 is small, performs the second control when the degree of charge of the capacity load 94 is medium, and performs the second control when the degree of charge of the capacity load 94 is large.
  • a third control can be performed.
  • the power conversion device 1 suppresses the current flowing through the choke coil 25 in accordance with the voltage between the pair of first conductive paths 81 and maintains it stably.
  • the diode 26 was exemplified as an example of the conducting portion, but the present invention is not limited to this example.
  • a semiconductor switching element such as an FET is used instead of the diode 26, and a synchronous rectification type chopper circuit is configured by the third switching element Q3, the FET, and the choke coil 25 during the first operation or the third operation.
  • Reference Signs List 1 power conversion device 6: voltage conversion section 10: conversion circuit 20: switching circuit 21: push-pull circuit 22: chopper circuit 25: choke coil 26: diode (energization section) 27: capacitor 30: transformer 31: first coil section 32: second coil section 32A: first winding 32B: second winding 32C: center tap 41: detection section 42: detection section 50: control section 61: first End portion 62 : Second end portion 68 : Intermediate portion 81 : Pair of first conductive paths 82 : Pair of second conductive paths 82A : Conductive path (one conductive path) 82B: conductive path (other conductive path) 91: First power storage unit 92: Second power storage unit (DC power supply) 94: capacitive load 100: power supply system Q1: first switching element Q2: second switching element Q3: third switching element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電力変換装置(1)において、制御部(50)は、第3動作、第1動作、第3動作、第2動作の順に動作を切り替える切替制御を周期的に繰り返す周期制御を行い得る。制御部(50)は、上記周期制御における各々の第1動作時に第3スイッチング素子(Q3)を、オフ状態、オン状態、オフ状態の順に切り替え、第2動作時に第3スイッチング素子(Q3)を、オフ状態、オン状態、オフ状態の順に切り替え、各々の第3動作時に第3スイッチング素子(Q3)をオフ状態で維持する第1制御を少なくとも行う。

Description

電力変換装置
 本開示は、電力変換装置に関する。
 特許文献1には、電力変換装置が開示されている。特許文献1に開示される電力変換装置は、第1スイッチング素子と、第2スイッチング素子とを備える電流入力型プッシュプル方式のDCDCコンバータである。この電力変換装置は、直流電源とトランスとの通電状態を切り替える第3スイッチング素子と、直流電源とトランスとの通電が遮断されたときにチョークコイルと負極側とを電気的に接続するダイオードをさらに備える。この電力変換装置は、第1スイッチング素子、第2スイッチング素子及び第3スイッチング素子がいずれもONである期間と、第1スイッチング素子及び第2スイッチング素子の一方がONであり、第1スイッチング素子及び第2スイッチング素子の他方及び第3スイッチング素子がOFFである期間とを含む制御を行う。
特開2017-5773号公報
 特許文献1に開示される電力変換装置(DCDCコンバータ)は、一方側の一対の入力端に二次電池が接続され、他方側の一対の出力端に容量負荷が接続される。この種の電力変換装置は、二次電池の電力を電力変換装置(DCDCコンバータ)によって容量負荷に供給して容量負荷を充電するときに、容量負荷の電圧が小さい場合にはチョークコイルの電流が増加し続ける懸念がある。特許文献1は、この問題に対応するために、第3スイッチング素子及びダイオードを設け、チョークコイルの電流を減少させる期間を設けている。しかし、特許文献1の制御のみでは、チョークコイルを流れる電流のリプルの面で懸念がある。
 本開示は、チョークコイルを備えた電力変換装置においてチョークコイルを流れる電流のリプルを抑制しやすい技術を提供する。
 本開示の一つである電力変換装置は、
 直流電源と、容量負荷と、前記容量負荷に対する充電電流及び前記容量負荷からの放電電流が流れる経路である一対の第1導電路と、前記直流電源から電力が供給される経路である一対の第2導電路と、を備えた電源システムに用いられ、前記一対の第2導電路と前記一対の第1導電路との間で電力変換を行う電力変換装置であって、
 第1コイル部と、第1巻線及び第2巻線を有する第2コイル部と、前記第1巻線と前記第2巻線との間に設けられるセンタータップと、を有し、前記第1コイル部と前記第2コイル部とが磁気的に結合するトランスと、
 前記第1コイル部と前記一対の第1導電路との間で変換動作を行う変換回路と、
 前記一対の第2導電路と前記第2コイル部との間で変換動作を行うスイッチング回路と、
 を備え、
 前記スイッチング回路は、
 前記一対の第2導電路のうちの一の導電路と前記センタータップとの間に設けられるチョークコイルと、
 前記一対の第2導電路のうちの他の導電路と前記第1巻線における前記センタータップとは反対側の第1端部との間に設けられる第1スイッチング素子と、
 前記他の導電路と前記第2巻線における前記センタータップとは反対側の第2端部との間に設けられる第2スイッチング素子と、
 前記一の導電路と前記チョークコイルとの間に設けられ、オン状態のときに前記一の導電路を介して前記チョークコイル側に電流が流れることを許容し、オフ状態のときに前記一の導電路を介して前記チョークコイル側に電流が流れることを遮断する第3スイッチング素子と、
 前記チョークコイルと前記第3スイッチング素子の間の中間部と前記他の導電路との間において、前記他の導電路側から前記中間部側に向かう第1方向に電流が流れることを許容し得る通電部と、
 前記第1スイッチング素子及び前記第2スイッチング素子のうちの前記第1スイッチング素子のみをオン状態とする第1動作と、前記第1スイッチング素子及び前記第2スイッチング素子のうちの前記第2スイッチング素子のみをオン状態とする第2動作と、前記第1スイッチング素子及び前記第2スイッチング素子の両方をオン状態とする第3動作と、を行う制御部と、
 を含み、
 前記制御部は、前記第3動作、前記第1動作、前記第3動作、前記第2動作の順に動作を切り替える切替制御を周期的に繰り返す周期制御を行いつつ、前記周期制御における各々の前記第1動作時に前記第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替え、前記周期制御における各々の前記第2動作時に前記第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替え、各々の前記第3動作時に前記第3スイッチング素子をオフ状態で維持する第1制御を少なくとも行う。
 本開示に係る技術は、チョークコイルを備えた電力変換装置においてチョークコイルを流れる電流のリプルを抑制しやすい。
図1は、本開示の第1実施形態の電力変換装置を含む車載用電源システムを概略的に例示するブロック図である。 図2は、図1の電力変換装置で行われる制御の流れを例示するフローチャートである。 図3は、第1制御中の各スイッチング素子の状態とチョークコイルを流れる電流を示すタイミングチャートである。 図4は、第2制御中の各スイッチング素子の状態とチョークコイルを流れる電流を示すタイミングチャートである。 図5は、第3制御中の各スイッチング素子の状態とチョークコイルを流れる電流を示すタイミングチャートである。
 以下では、本開示の実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔6〕の特徴は、矛盾しない範囲でどのように組み合わされてもよい。
 〔1〕直流電源と、容量負荷と、前記容量負荷に対する充電電流及び前記容量負荷からの放電電流が流れる経路である一対の第1導電路と、前記直流電源から電力が供給される経路である一対の第2導電路と、を備えた電源システムに用いられ、前記一対の第2導電路と前記一対の第1導電路との間で電力変換を行う電力変換装置であって、
 第1コイル部と、第1巻線及び第2巻線を有する第2コイル部と、前記第1巻線と前記第2巻線との間に設けられるセンタータップと、を有し、前記第1コイル部と前記第2コイル部とが磁気的に結合するトランスと、
 前記第1コイル部と前記一対の第1導電路との間で変換動作を行う変換回路と、
 前記一対の第2導電路と前記第2コイル部との間で変換動作を行うスイッチング回路と、
 を備え、
 前記スイッチング回路は、
 前記一対の第2導電路のうちの一の導電路と前記センタータップとの間に設けられるチョークコイルと、
 前記一対の第2導電路のうちの他の導電路と前記第1巻線における前記センタータップとは反対側の第1端部との間に設けられる第1スイッチング素子と、
 前記他の導電路と前記第2巻線における前記センタータップとは反対側の第2端部との間に設けられる第2スイッチング素子と、
 前記一の導電路と前記チョークコイルとの間に設けられ、オン状態のときに前記一の導電路を介して前記チョークコイル側に電流が流れることを許容し、オフ状態のときに前記一の導電路を介して前記チョークコイル側に電流が流れることを遮断する第3スイッチング素子と、
 前記チョークコイルと前記第3スイッチング素子の間の中間部と前記他の導電路との間において、前記他の導電路側から前記中間部側に向かう第1方向に電流が流れることを許容し得る通電部と、
 前記第1スイッチング素子及び前記第2スイッチング素子のうちの前記第1スイッチング素子のみをオン状態とする第1動作と、前記第1スイッチング素子及び前記第2スイッチング素子のうちの前記第2スイッチング素子のみをオン状態とする第2動作と、前記第1スイッチング素子及び前記第2スイッチング素子の両方をオン状態とする第3動作と、を行う制御部と、
 を含み、
 前記制御部は、前記第3動作、前記第1動作、前記第3動作、前記第2動作の順に動作を切り替える切替制御を周期的に繰り返す周期制御を行いつつ、前記周期制御における各々の前記第1動作時に前記第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替え、前記周期制御における各々の前記第2動作時に前記第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替え、各々の前記第3動作時に前記第3スイッチング素子をオフ状態で維持する第1制御を少なくとも行う
 電力変換装置。
 上記の〔1〕の電力変換装置は、周期制御によって一対の第2導電路と一対の第1導電路との間で電力変換を行う場合に、第3スイッチング素子をオンオフさせるように第1制御が行われるため、チョークコイルに流れる電流を抑えることができる。しかも、第1動作及び第2動作のいずれにおいても、第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替えて電流を抑えるため、電流が大きく変動しすぎることを抑制することができる。更に、第1制御では、第3動作時に第3スイッチング素子をオフ状態で維持するため、チョークコイルを流れる電流を一層抑えることができる。
 〔2〕の電力変換装置は、上記の〔1〕に記載の電力変換装置において、以下の特徴を有する。上記制御部は、上記周期制御を行いつつ、上記周期制御における各々の上記第3動作時に上記第3スイッチング素子を、オン状態、オフ状態、オン状態の順に切り替え、上記周期制御における各々の上記第1動作時及び各々の上記第2動作時に上記第3スイッチング素子をオン状態で維持する第2制御を少なくとも行う。
 上記の〔2〕の電力変換装置は、第1制御だけでなく、第2制御も行うことができ、第2制御において各第3動作を行う際には、第3スイッチング素子をオンオフさせることで、チョークコイルに電流が流れすぎることを抑えることができる。
 〔3〕の電力変換装置は、上記の〔2〕に記載の電力変換装置において、以下の特徴を有する。上記制御部は、上記一対の第1導電路間の電圧が閾値電圧以下である場合に上記第1制御を行い、上記一対の第1導電路間の電圧が上記閾値電圧以下から上記閾値電圧を超える値に切り替わった場合に、上記第1制御から上記第2制御に切り替える。
 上記の〔3〕の電力変換装置は、一対の第1導電路間の電圧が閾値電圧未満であるような状態(容量負荷の充電度合いが小さい状態)では、第1制御を行い、一対の第1導電路間の電圧が閾値電圧以下から閾値電圧を超える値に切り替わった場合(容量負荷の充電度合いがある程度大きい状態に切り替わった場合)には、第2制御に切り替えることができる。この電力変換装置は、一対の第1導電路間の電圧に合わせて、チョークコイルに流れる電流を抑えつつ安定的に保ちやすい。
 〔4〕の電力変換装置は、上記の〔1〕から〔3〕のいずれか一つに記載の電力変換装置において、以下の特徴を有する。上記制御部は、上記周期制御を行いつつ、上記周期制御における各々の上記第1動作時、各々の上記第2動作時、各々の上記第3動作時のいずれにおいても、上記第3スイッチング素子をオン状態で維持する第3制御を少なくとも行う。
 上記の〔4〕の電力変換装置は、第1制御だけでなく、必要に応じて第3制御を行い、第3スイッチング素子のオンオフによる電流抑制を解除することができる。
 〔5〕の電力変換装置は、上記の〔3〕に記載の電力変換装置において、以下の特徴を有する。上記制御部は、上記周期制御を行いつつ、上記周期制御における各々の上記第1動作時、各々の上記第2動作時、各々の上記第3動作時のいずれにおいても、上記第3スイッチング素子をオン状態で維持する第3制御を少なくとも行う。上記制御部は、上記一対の第1導電路間の電圧が上記閾値電圧を超える値であって且つ上記閾値電圧よりも大きい第2閾値電圧以下である場合に上記第2制御を行い、上記一対の第1導電路間の電圧が上記第2閾値電圧以下から上記第2閾値電圧を超える値に切り替わった場合に、上記第2制御から上記第3制御に切り替える。
 上記の〔5〕の電力変換装置は、容量負荷の充電度合いが小さい状態では第1制御を行い、容量負荷の充電度合いが中程度の状態では第2制御を行い、容量負荷の充電度合いが大きい状態では第3制御を行うことができる。この電力変換装置は、容量負荷の充電度合いが小さい状態又は中程度の状態では、一対の第1導電路間の電圧に合わせてチョークコイルに流れる電流を抑えつつ安定的に保ち、容量負荷の充電度合いが大きい場合には、第3スイッチング素子のオンオフによる電流抑制を解除して、第3スイッチング素子に依存しない制御(スイッチング回路及び変換回路による制御)に移行することができる。
 〔6〕の電力変換装置は、上記の〔1〕から〔5〕のいずれか一つに記載の電力変換装置において、以下の特徴を有する。上記スイッチング回路は、上記第3スイッチング素子と上記通電部と上記チョークコイルとを含んだチョッパ回路を有する。上記制御部は、上記第1制御の際に上記一の導電路を流れる電流の値を目標電流値に近づけるように上記チョッパ回路を制御する。
 上記の〔6〕の電力変換装置は、少なくとも第1制御の際に、一の導電路を流れる電流を安定させることができ、チョークコイルに電流が流れすぎることを抑えて安定的に維持することができる。
 <第1実施形態>
 1.電源システムの概要
 電源システム100は、車両に搭載される車載用の電源システムとして構成されている。電源システム100は、第1蓄電部91、第2蓄電部92、一対の第1導電路81、一対の第2導電路82、電力変換装置1を備える。
 第1蓄電部91は、例えばリチウムイオン電池などの公知のバッテリによって構成されている。第1蓄電部91は、主蓄電装置として機能する。第1蓄電部91は、リチウムイオン電池に限定されず、充放電可能に構成された他種のバッテリなどであってもよい。第1蓄電部91において最も電位が大きい端子である高電位側の端子(正極)は、一方の導電路81Aに電気的に接続される。第1蓄電部91において最も電位が小さい端子である低電位側の端子(負極)は、他方の導電路81Bに電気的に接続される。
 一対の第1導電路81は、容量負荷94に対する充電電流及び容量負荷94からの放電電流が流れる経路である。一対の第1導電路81は、一方の導電路81Aと他方の導電路81Bとを備える。他方の導電路81Bは、例えばグラウンドに電気的に接続されている。一方の導電路81Aは、単に導電路81Aとも称される。他方の導電路81Bは、単に導電路81Bとも称される。導電路81Bは、例えば、基準電位(例えば0Vのグラウンド電位)に保たれる導電路である。
 高圧側の一対の第1導電路81を構成する導電路81A,81Bには、これら導電路81A,81Bを介して直流電力が供給されるように車載用の負荷が電気的に接続されていてもよい。図1の例では、一対の第1導電路81に対して容量負荷94が電気的に接続されている。容量負荷94の充電時には、容量負荷94に供給する充電電流が一対の第1導電路81に流れ、一対の第1導電路81を介して容量負荷94に充電電流が供給される。容量負荷94の放電時には、容量負荷94からの放電電流が一対の第1導電路81に流れ込む。容量負荷94は、コンデンサであってもよく、コンデンサに類する容量性の装置であってもよい。容量負荷94と第1蓄電部91との間には、リレーやヒューズなどが設けられていてもよい。
 図1の電源システム100では、例えば、所定条件成立時(例えば、車両の始動スイッチがオフ状態であるとき)に、第1蓄電部91から容量負荷94への電力供給が遮断され、容量負荷94に蓄積された電荷が図示されていない放電部を介して放電されるようになっている。従って、例えば、所定条件成立時(例えば、車両の始動スイッチがオフ状態であるとき)には、容量負荷94の充電電圧(導電路81A,81B間の電圧)は、0V付近に保たれるようになっている。一方、リレーのオン動作などにより導電路81A,81Bと第1蓄電部91とが導通した状態では、導電路81A,81B間に第1蓄電部91の出力電圧が印加される。
 第2蓄電部92は、直流電源の一例に相当する。第2蓄電部92は、例えば鉛バッテリなどの公知のバッテリによって構成されている。第2蓄電部92は、例えば補機用の蓄電装置として機能する。第2蓄電部92は、鉛バッテリに限定されず、充放電可能に構成された他種のバッテリなどであってもよい。第2蓄電部92において最も電位が大きい端子である高電位側の端子(正極)は、一の導電路82Aに電気的に接続される。第2蓄電部92において最も電位が小さい端子である低電位側の端子(負極)は、他の導電路82Bに電気的に接続される。
 一の導電路82Aと他の導電路82Bとの間には、第2蓄電部92の出力電圧(例えば、12V)が印加される。導電路82Bは、例えばグラウンドに電気的に接続されている。第2蓄電部92の満充電時の出力電圧は、第1蓄電部91の満充電時の出力電圧よりも小さい。一の導電路82Aと他の導電路82Bは、一対の第2導電路82を構成し、第2蓄電部92(直流電源)から電力が供給される経路をなす。一の導電路82Aは、単に導電路82Aとも称される。他の導電路82Bは、単に導電路82Bとも称される。導電路82Bは、例えば、基準電位(例えば0Vのグラウンド電位)に保たれる導電路である。
 2.電力変換装置の構成
 電力変換装置1は、主に、電圧変換部6と、制御部50と、検出部41,42とを備える。電力変換装置1は、双方向型且つ絶縁型のDCDCコンバータである。電力変換装置1は、一対の第1導電路81と一対の第2導電路82との間で電力変換を行う装置である。電力変換装置1は、導電路82A,82B間に印加された直流電圧を昇圧し、導電路82A,82B間の直流電圧よりも高い直流電圧を導電路81A,81B間に印加するように昇圧動作を少なくとも行い得る。更に、電力変換装置1は、導電路81A,81B間に印加された直流電圧を降圧し、導電路81A,81B間の直流電圧よりも低い直流電圧を導電路82A,82B間に印加するように降圧動作を行い得る。
 電圧変換部6は、制御部50から与えられるPWM(Pulse Width Modulation)信号に応じて、導電路82A,82B間に印加された直流電圧を昇圧して導電路81A,81B間に直流電圧を印加するように昇圧動作を行う機能を有する。なお、本明細書では、パルス幅変調(Pulse Width Modulation)をPWMとも称する。更に、電圧変換部6は、制御部50の制御に応じて、導電路81A,81B間に印加された直流電圧を降圧して導電路82A,82B間に直流電圧を印加するように降圧動作を行う機能を有する。電圧変換部6は、主に、変換回路10と、スイッチング回路20と、トランス30と、を有する。
 図1に示されるように、トランス30は、第1コイル部31と第2コイル部32とを有する。第1コイル部31は、巻数が第1の値N1であるコイルである。第2コイル部32は、第1コイル部31と磁気結合されるコイルである。第2コイル部32は、センタータップ方式のコイルであり、第1巻線32Aと、第2巻線32Bと、第1巻線32Aと第2巻線32Bとの間に設けられるセンタータップ32Cと、を有する。第2コイル部32を構成する第1巻線32A及び第2巻線32Bは、第1コイル部31と磁気結合される。第1巻線32A及び第2巻線32Bは、巻数が第2の値N2であるコイルである。センタータップ32Cは、第1巻線32Aの一端及び第2巻線32Bの一端と同電位となる中間部である。トランス30における巻数比Nは、N1/N2=Nである。
 図1に示される変換回路10は、第1コイル部31と一対の第1導電路81との間で変換動作を行う回路である。図1の例では、変換回路10は、フルブリッジ回路として構成され、複数のスイッチング素子11,12,13,14を備える。スイッチング素子11,12,13,14は、半導体スイッチング素子である。スイッチング素子11,12は、導電路81Aと導電路81Bとの間に直列に接続される。スイッチング素子13,14は、導電路81Aと導電路81Bとの間に直列に接続される。スイッチング素子11,12の間の接続部には第1コイル部31を構成するコイルの一端が電気的に接続され、スイッチング素子13,14の間の接続部には第1コイル部31を構成するコイルの他端が電気的に接続される。変換回路10は、導電路81Aと導電路81Bとの間に印加された直流電圧を変換して第1コイル部31に交流電圧を生じさせる変換動作を行い得る。更に、変換回路10は、第1コイル部31に生じた交流電圧を変換し、導電路81Aと導電路81Bとの間に直流電圧を印加する変換動作も行い得る。
 図1に示されるスイッチング回路20は、一対の第2導電路82と第2コイル部32との間で変換動作を行う回路である。図1の例では、スイッチング回路20は、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3、チョークコイル25、ダイオード26、コンデンサ27、などを有する。第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3は、半導体スイッチング素子である。図1には、スイッチング素子11,12,13,14,Q1,Q2,Q3としてMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)が例示される。
 スイッチング回路20において、第1スイッチング素子Q1及び第2スイッチング素子Q2は、プッシュプル回路21を構成する。プッシュプル回路21は、チョークコイル25の他端(センタータップ32C側の端部)と導電路82Bとの間に印加された電圧を変換して第1巻線32A及び第2巻線32Bに交流電圧を生じさせる第1変換動作を行い得る。更に、プッシュプル回路21は、第1巻線32A及び第2巻線32Bに生じた交流電圧を変換して、チョークコイル25の端部25A(センタータップ32C側の端部)と導電路82Bとの間に電圧を印加する第2変換動作を行い得る。
 第1スイッチング素子Q1は、一対の第2導電路82のうちの導電路82B(他の導電路)と第1巻線32Aの他端(センタータップ32Cとは反対側の第1端部61)との間に設けられる。第1スイッチング素子Q1の一端は、第1巻線32Aの端部(第1端部61)に電気的に接続される。第1スイッチング素子Q1の他端は、導電路82Bに電気的に接続される。第1スイッチング素子Q1がオン状態のときには、第1巻線32Aから導電路82Bに電流が流れることが許容され、第1スイッチング素子Q1がオフ状態のときには、第1巻線32Aから導電路82Bに電流が流れることが遮断される。
 第2スイッチング素子Q2は、一対の第2導電路82のうちの導電路82B(他の導電路)と第2巻線32Bの他端(センタータップ32Cとは反対側の第2端部62)との間に設けられる。第2スイッチング素子Q2の一端は、第2巻線32Bの端部(第2端部62)に電気的に接続される。第2スイッチング素子Q2の他端は、導電路82Bに電気的に接続される。第2スイッチング素子Q2がオン状態のときには、第2巻線32Bから導電路82Bに電流が流れることが許容され、第2スイッチング素子Q2がオフ状態のときには、第2巻線32Bから導電路82Bに電流が流れることが遮断される。
 図1の例では、チョークコイル25は、一対の第2導電路82のうちの導電路82A(一の導電路)とセンタータップ32Cとの間に設けられる。チョークコイル25は、電力変換装置1が上述の降圧動作を行う場合、即ち、プッシュプル回路21が上述の第2変換動作を行う場合には、導電路82A,82B間に印加する直流電圧を生成するための平滑回路を構成する。第1巻線32Aの一端及び第2巻線32Bの一端は、センタータップ32Cに電気的に接続され、チョークコイル25の端部25Aに電気的に接続される。
 第3スイッチング素子Q3は、導電路82A(一の導電路)とチョークコイル25との間に設けられ、導電路82Aとチョークコイル25との間の通電を許容状態と遮断状態とに切り替える素子である。第3スイッチング素子Q3がオン状態のときには、導電路82A(一の導電路)を介して導電路82A側からチョークコイル25側に電流が流れることが許容される。第3スイッチング素子Q3がオフ状態のときには、導電路82A(一の導電路)を介して導電路82A側からチョークコイル25側に電流が流れることが遮断される。図1の例では、導電路82Aは、一端が第2蓄電部92の正極に電気的に接続され、他端が第3スイッチング素子Q3に電気的に接続され、中間に検出部42が介在する導電路である。
 ダイオード26は、通電部の一例に相当する。ダイオード26は、チョークコイル25と第3スイッチング素子Q3の間の中間部68と導電路82B(他の導電路)との間に設けられる。図1の例では、ダイオード26のアノードが導電路82Bに電気的に接続され、ダイオード26のカソードが導電路82Bに電気的に接続されている。ダイオード26は、導電路82B(他の導電路)側から中間部68側に向かう第1方向に電流が流れることを許容し、第1方向とは逆の第2方向に電流が流れることを規制する。
 図1の例では、第3スイッチング素子Q3、ダイオード26、チョークコイル25によってチョッパ回路22が構成される。このチョッパ回路22は、第3スイッチング素子Q3に与えられるオンオフ信号(例えばPWM信号)によって制御される。
 コンデンサ27は、一端が導電路82Aに電気的に接続され、他端が導電路82Bに電気的に接続されている。コンデンサ27は、平滑コンデンサとして機能し得る。
 制御部50は、例えば、演算機能や情報処理機能を有する情報処理装置として構成される。制御部50は、マイクロコンピュータとして構成されていてもよく、その他の情報処理装置として構成されていてもよい。制御部50は、単一の情報処理装置によって実現されてもよく、複数の情報処理装置によって実現されてもよい。制御部50は、電圧変換部6を制御する機能を有する。制御部50は、スイッチング素子11,12,13,14に制御信号を与えることで、変換回路10を制御する。制御部50は、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3に制御信号を与えることでスイッチング回路20を制御する。
 検出部41は、電圧検出部として機能し、一対の第1導電路81間の電圧を示す値を、制御部50に入力する。検出部41は、一対の第1導電路81間の電圧値を制御部50に入力してもよく、一対の第1導電路81間の電圧を予め定められた分圧比で分圧した値を制御部50に入力してもよい。制御部50は、検出部41から与えられる値によって一対の第1導電路81間の電圧Vcの値を特定する。
 検出部42は、電流検出部として機能し、一対の第2導電路82の一方(図1では、導電路82A)を流れる電流の値を検出し、検出値を制御部50に入力する。図1の例では、検出部42は、公知の電流センサとして機能し、導電路82Aを流れる電流の値を特定する情報を制御部50に与える。制御部50は、検出部42から与えられる値によって導電路82Aからチョークコイル25側に流れ込む電流Iinを特定する。
 3.電力変換装置の降圧動作
 電力変換装置1は、フルブリッジ方式の絶縁型DCDCコンバータとして機能する。変換回路10は、電力変換装置1が第1の電圧変換動作(降圧動作)を行う場合には、導電路81A,81B間に印加された直流電圧を交流電圧に変換して第1コイル部31に交流電圧を生じさせる。この場合に、第1コイル部31の発生する交流電圧に応じた交流電圧が第2コイル部32に生じる。スイッチング回路20は、電力変換装置1が上記第1の電圧変換動作(降圧動作)を行う場合には、整流回路として機能し、第2コイル部32に生じた交流電圧を整流して直流電圧に変換し、導電路81A,81B間に直流電圧を印加する。
 制御部50は、フルブリッジ方式の絶縁型DCDCコンバータにおいて用いられる公知の制御方法によって電圧変換部6に降圧動作を行わせることができる。制御部50は、電圧変換部6に上記降圧動作を行わせる場合、スイッチング素子11,14をオン状態とし、スイッチング素子12,13をオフ状態とする動作と、スイッチング素子11,14をオフ状態とし、スイッチング素子12,13をオン状態とする動作を交互に行う。このように制御部50がスイッチング素子11,12,13,14を制御することにより、変換回路10は、導電路81A,81B間に印加された直流電圧を交流電圧に変換して第1コイル部31に交流電圧を発生させる。これに応じて、第1コイル部31と磁気結合した第2コイル部32において、巻数比Nに応じた交流電圧が生じる。スイッチング回路20は、上記降圧動作の際には第2コイル部32に印加された交流電圧を直流電圧に変換し、第2コイル部32に生じた交流電圧を整流して直流電圧に変換し、導電路82A,82B間に直流電圧を印加する。チョークコイル25は、上記降圧動作の際に導電路82A,82Bに印加される直流電圧をより平滑にするように機能する。
 4.電力変換装置の昇圧動作
 電力変換装置1が第2の電圧変換動作(昇圧動作)を行う場合、スイッチング回路20がプッシュプル方式のスイッチング動作を行う回路として機能し、導電路82A,82B間に印加された直流電圧を交流電圧に変換して第2コイル部32に交流電圧を生じさせる。トランス30では、このように第2コイル部32において交流電圧が発生した場合、巻数比Nに応じた交流電圧が第1コイル部31に生じる。電力変換装置1が上記第2の電圧変換動作(昇圧動作)を行う場合、変換回路10は、整流回路として機能し、第1コイル部31に生じた交流電圧を整流して直流電圧に変換し、導電路81A,81B間に直流電圧を印加する。
 制御部50は、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3に対してオン信号及びオフ信号を出力し、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3をオン状態とオフ状態とに切り替え得る。制御部50は、電圧変換部6に昇圧動作を行わせる場合、第1動作、第2動作、第3動作を行い得る。第1動作は、第1スイッチング素子Q1及び第2スイッチング素子Q2のうちの第1スイッチング素子Q1のみをオン状態とする動作である。第2動作は、第1スイッチング素子Q1及び第2スイッチング素子Q2のうちの第2スイッチング素子Q2のみをオン状態とする動作である。第3動作は、第1スイッチング素子Q1及び第2スイッチング素子Q2の両方をオン状態とする動作である。
 図2は、制御部50が電圧変換部6に昇圧動作を行わせる場合の制御の流れを例示するフローチャートである。制御部50は、予め定められた開始条件が成立した場合に、電圧変換部6の動作を開始する。図2の例では、例えば、「制御部50に対して外部から起動要求があること」が「開始条件が成立した場合」である。なお、予め定められた開始条件は、この例に限定されない。例えば、車両が始動状態にあることが「開始条件が成立した場合」であってもよく、制御部50に電源が投入されていることが「開始条件が成立した場合」であってもよい。
 制御部50は、ステップS1の判断処理において、予め定められた開始条件が成立したと判断した場合に、ステップS1においてYESと判断し、ステップS2において、導電路82Aを流れる電流の値Iinを確認する。制御部50は、検出部42から入力される値に基づいて電流値Iinを特定する。
 制御部50は、ステップS2の後、ステップS3において、電流値Iinが目標電流値(要求電流値)Ireqと一致していないか否かを判断し、電流値Iinが目標電流値(要求電流値)Ireqと等しければ、ステップS3においてNOと判断し、処理をステップS2に戻す。制御部50は、ステップS3において、電流値Iinが目標電流値(要求電流値)Ireqと一致していないと判断した場合、ステップS3においてYESと判断し、ステップS4において第3スイッチング素子Q3に与えるPWM信号のデューティ(第2デューティDuty2)を調整する。ステップS4では、電流値Iinを目標電流値Ireqに近づけるフィードバック動作を行うように第2デューティDuty2を増減する。制御部50は、ステップS4の後、ステップS5において、一対の第1導電路81間の電圧Vcが第2閾値電圧V2を超えているか判断し、電圧Vcが第2閾値電圧V2以下であれば処理をステップS2に戻す。このように、制御部50は、ステップS1でYESと判断した後、電圧Vcが第2閾値電圧V2を超えるまでは、電流値Iinを目標電流値Ireqで維持するように第2デューティDuty2を調整するフィードバック制御を行う。
 このように、制御部50は、電圧Vcが第2閾値電圧V2を超えるまでは、チョッパ回路22に入力される入力電流Iinを一定に保つように、第3スイッチング素子Q3に与えるPWM信号のデューティ(第2デューティDuty2)を調整する。なお、制御部50は、ステップS1でYESと判断した後、電圧Vcが第2閾値電圧V2を超えるまでは、第1スイッチング素子Q1及び第2スイッチング素子Q2に与えるPWM信号のデューティをいずれも、予め定められた最小デューティとする。なお、制御部50は、昇圧動作を行う場合、第1スイッチング素子Q1及び第2スイッチング素子Q2に与えるPWM信号のデューティを0.5よりも大きく調整するため、上記最小デューティは、0.5よりも大きい値である。
 制御部50は、上記昇圧動作を行う場合、図3~図5のように、第3動作、第1動作、第3動作、第2動作の順に動作を切り替える切替制御を周期的に繰り返す。図3~図5の例では、第1スイッチング素子Q1に与えるオン信号の立ち上がりから、当該オン信号の直後のオフ信号の終了時点(次のオン信号の立ち上がり)の期間が1周期Tである。図3~図5では、第1動作の期間がT1で示され、第2動作の期間がT2で示され、第3動作の期間がT3で示される。図5では、第1スイッチング素子Q1に与えるオン信号の期間はTa1で示され、第1スイッチング素子Q1に与えるオフ信号の期間はTa2で示される。第2スイッチング素子Q2に与えるオン信号の期間はTb1で示され、第2スイッチング素子Q2に与えるオフ信号の期間はTb2で示される。図3~図5においてILは、チョークコイル25を流れる電流である。
 図3~図5のように、昇圧動作を行う場合、第1スイッチング素子Q1及び第2スイッチング素子Q2のいずれに与えるPWM信号も周期Tとデューティ(第1デューティDuty1)が同一である。但し、第1スイッチング素子Q1のオン信号の期間Ta1の中間時点(時間Ta1の1/2の時間の経過時点)と第2スイッチング素子Q2のオフ信号の期間Tb2の中間時点(時間Tb2の1/2の時間の経過時点)とが一致するようにタイミングが調整される。同様に、第1スイッチング素子Q1のオフ信号の期間Ta2の中間時点(時間Ta2の1/2の時間の経過時点)と第2スイッチング素子Q2のオン信号の期間Tb1の中間時点(時間Tb1の1/2の時間の経過時点)とが一致するようにタイミングが調整される。
 ステップS2~S5の処理が繰り返される間は、図3,図4のように、第3スイッチング素子Q3に与えるPWM信号(第2PWM信号)のデューティ(第2デューティDuty2)が調整される。第3スイッチング素子Q3に与えるPWM信号の周期は、T/2である。第3スイッチング素子Q3に与えるPWM信号のオン信号の中間時点(当該オン信号の立ち上がりから立下りまでの期間の1/2の期間が、当該オン信号の立ち上がりから経過した時点)は、期間Ta1、期間Tb1の中間時点である。第3スイッチング素子Q3に与えるPWM信号は、あるオン信号の中間時点が期間Ta1の中間時点に調整された場合、次のオン信号の中間時点は上記期間Ta1の後に到来する期間Tb1の中間時点に調整される。
 図2におけるステップS2~S5の処理が繰り返される場合、電圧Vc(第1導電路81間の電圧)が第1閾値電圧V1以下である場合には、制御部50は、図3のように第1制御を行い、電圧Vc(第1導電路81間の電圧)が第1閾値電圧V1以下から第1閾値電圧V1を超える値に切り替わった場合に、第1制御から第2制御に切り替える。そして、制御部50は、電圧Vcが第1閾値電圧V1を超え且つ第2閾値電圧V2以下である間は、図4のように第2制御を行う。第1閾値電圧V1は、第1制御において第3スイッチング素子Q3に与えるPWM信号(第2PWM信号)のオン時間を徐々に増大させていった場合に、そのPWM信号(第2PWM信号)のオン時間の長さと、第1スイッチング素子Q1及び第2スイッチング素子Q2に与えるPWM信号(第1PWM信号)のオフ時間の長さとが一致するときの電圧Vcの値である。
 図3に示される第1制御では、上記周期制御における各々の第1動作時(期間T1)に第3スイッチング素子Q3を、オフ状態、オン状態、オフ状態の順に切り替え、上記周期制御における各々の第2動作時(期間T2)に第3スイッチング素子Q3を、オフ状態、オン状態、オフ状態の順に切り替え、各々の第3動作時(期間T3)に第3スイッチング素子Q3をオフ状態で維持する。
 図4に示される第2制御では、制御部50は、上記周期制御における各々の第3動作時(期間T3)に上記第3スイッチング素子Q3を、オン状態、オフ状態、オン状態の順に切り替え、上記周期制御における各々の第1動作時(期間T1)及び第2動作時(期間T2)に第3スイッチング素子Q3をオン状態で維持する。
 図2のように、制御部50は、ステップS5において、一対の第1導電路81間の電圧Vcが第2閾値電圧V2を超えていると判断した場合、ステップS6において、導電路82Aを流れる電流の値Iinを確認する。第2閾値電圧V2は、図4のような第2制御においてオン期間を徐々に増大させた場合にデューティが1(オフ期間が0)に切り替わった時点での電圧Vcに相当する。第2閾値電圧V2は、予め値として備えていてもよく、第2PWM信号のデューティが1になった場合に、ステップS5においてYESと判断してもよい。
 制御部50は、ステップS6の後、ステップS7において、電流値Iinが目標電流値(要求電流値)Ireqと一致していないか否かを判断し、電流値Iinが目標電流値(要求電流値)Ireqと等しければ、ステップS7においてNOと判断し、処理をステップS6に戻す。制御部50は、ステップS7において、電流値Iinが目標電流値(要求電流値)Ireqと一致していないと判断した場合、ステップS7においてYESと判断し、ステップS8において第1スイッチング素子Q1及び第2スイッチング素子Q2に与えるPWM信号のデューティ(第1デューティDuty1)を調整する。ステップS8では、電流値Iinを目標電流値Ireqに近づけるフィードバック動作を行うように第1デューティDuty1を増減する。制御部50は、ステップS8の後、予め定められた終了判定があった場合(ステップS9でYESの場合)、又は予め定められた終了要求があった場合(ステップS10でYESの場合)に、図2の制御を終了し、そうでない場合には、処理をステップS6に戻す。つまり、制御部50は、終了判定又は終了要求があるまでは、上記周期制御を行いつつ電流値Iinを目標電流値Ireqに近づけるように第1デューティDuty1を調整するフィードバック制御を繰り返す。
 制御部50は、ステップS5でYESと判断した後、ステップS9でYES又はステップS10でYESと判断するまでは、ステップS6、S7、S8の処理を繰り返す。このようにステップS6、S7、S8を繰り返す制御が第3制御である。第3制御は、図5のように、上記周期制御を行いつつ、上記周期制御における各々の第1動作時(期間T1)、各々の第2動作時(期間T2)、各々の第3動作時(期間T3)のいずれにおいても、第3スイッチング素子Q3をオン状態で維持する制御である。
 図2の例では、制御部50は、一対の第1導電路81間の電圧Vcが第1閾値電圧V1を超える値であって第2閾値電圧V2以下である場合に第2制御を行い、一対の第1導電路81間の電圧Vcが第2閾値電圧V2以下から上記第2閾値電圧V2を超える値に切り替わった場合に、第2制御から第3制御に切り替える。第2閾値電圧V2は、第1閾値電圧V1よりも大きい値である。
 5.効果の例
 次の説明は、第1実施形態の効果に関する。
 電力変換装置1は、周期制御によって一対の第2導電路82と一対の第1導電路81との間で電力変換を行う場合(上述の例では、上記昇圧動作を行う場合)に、図3のように第3スイッチング素子Q3をオンオフさせるように第1制御が行われる。従って、電力変換装置1は、チョークコイル25に流れる電流を抑えることができる。しかも、電力変換装置1は、第1動作及び第2動作のいずれにおいても、第3スイッチング素子Q3を、オフ状態、オン状態、オフ状態の順に切り替えて電流を抑えるため、電流が大きく変動しすぎることを抑制することができる。更に、第1制御では、第3動作時に第3スイッチング素子Q3がオフ状態で維持されるため、チョークコイル25を流れる電流が一層抑えられる。
 図4のように、電力変換装置1は、第1制御だけでなく、第2制御も行うことができ、第2制御において各第3動作を行う際には、第3スイッチング素子Q3をオンオフさせることで、チョークコイル25に電流が流れすぎることを抑えることができる。
 電力変換装置1は、一対の第1導電路81間の電圧Vcが閾値電圧V1以下であるような状態(容量負荷94の充電度合いが小さい状態)では、第1制御を行う。そして、電力変換装置1は、一対の第1導電路81間の電圧Vcが閾値電圧V1以下から閾値電圧V1を超える値に切り替わった場合(容量負荷94の充電度合いがある程度大きい状態に切り替わった場合)には、第1制御から第2制御に切り替えることができる。この電力変換装置1は、一対の第1導電路81間の電圧に合わせて、チョークコイル25に流れる電流を抑えつつ安定的に保ちやすい。
 図5のように、電力変換装置1は、第1制御だけでなく、必要に応じて第3制御を行い、第3スイッチング素子Q3のオンオフによる電流抑制を解除することができる。
 電力変換装置1は、容量負荷94の充電度合いが小さい状態では第1制御を行い、容量負荷94の充電度合いが中程度の状態では第2制御を行い、容量負荷94の充電度合いが大きい状態では第3制御を行うことができる。この電力変換装置1は、容量負荷94の充電度合いが小さい状態又は中程度の状態では、一対の第1導電路81間の電圧に合わせてチョークコイル25に流れる電流を抑えつつ安定的に保ち、容量負荷94の充電度合いが大きい場合には、第3スイッチング素子Q3のオンオフによる電流抑制を解除して、第3スイッチング素子Q3に依存しない制御(スイッチング回路20及び変換回路10による制御)に移行することができる。
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
 第1実施形態の説明では、通電部の一例としてダイオード26が例示されたが、この例に限定されない。例えば、ダイオード26の代わりにFETなどの半導体スイッチング素子が用いられ、第1動作時又は第3動作時に、第3スイッチング素子Q3と上記FETとチョークコイル25とによって同期整流方式のチョッパ回路が構成されてもよい。
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
1     :電力変換装置
6     :電圧変換部
10    :変換回路
20    :スイッチング回路
21    :プッシュプル回路
22    :チョッパ回路
25    :チョークコイル
26    :ダイオード(通電部)
27    :コンデンサ
30    :トランス
31    :第1コイル部
32    :第2コイル部
32A   :第1巻線
32B   :第2巻線
32C   :センタータップ
41    :検出部
42    :検出部
50    :制御部
61    :第1端部
62    :第2端部
68    :中間部
81    :一対の第1導電路
82    :一対の第2導電路
82A   :導電路(一の導電路)
82B   :導電路(他の導電路)
91    :第1蓄電部
92    :第2蓄電部(直流電源)
94    :容量負荷
100   :電源システム
Q1    :第1スイッチング素子
Q2    :第2スイッチング素子
Q3    :第3スイッチング素子

Claims (6)

  1.  直流電源と、容量負荷と、前記容量負荷に対する充電電流及び前記容量負荷からの放電電流が流れる経路である一対の第1導電路と、前記直流電源から電力が供給される経路である一対の第2導電路と、を備えた電源システムに用いられ、前記一対の第2導電路と前記一対の第1導電路との間で電力変換を行う電力変換装置であって、
     第1コイル部と、第1巻線及び第2巻線を有する第2コイル部と、前記第1巻線と前記第2巻線との間に設けられるセンタータップと、を有し、前記第1コイル部と前記第2コイル部とが磁気的に結合するトランスと、
     前記第1コイル部と前記一対の第1導電路との間で変換動作を行う変換回路と、
     前記一対の第2導電路と前記第2コイル部との間で変換動作を行うスイッチング回路と、
     を備え、
     前記スイッチング回路は、
     前記一対の第2導電路のうちの一の導電路と前記センタータップとの間に設けられるチョークコイルと、
     前記一対の第2導電路のうちの他の導電路と前記第1巻線における前記センタータップとは反対側の第1端部との間に設けられる第1スイッチング素子と、
     前記他の導電路と前記第2巻線における前記センタータップとは反対側の第2端部との間に設けられる第2スイッチング素子と、
     前記一の導電路と前記チョークコイルとの間に設けられ、オン状態のときに前記一の導電路を介して前記チョークコイル側に電流が流れることを許容し、オフ状態のときに前記一の導電路を介して前記チョークコイル側に電流が流れることを遮断する第3スイッチング素子と、
     前記チョークコイルと前記第3スイッチング素子の間の中間部と前記他の導電路との間において、前記他の導電路側から前記中間部側に向かう第1方向に電流が流れることを許容し得る通電部と、
     前記第1スイッチング素子及び前記第2スイッチング素子のうちの前記第1スイッチング素子のみをオン状態とする第1動作と、前記第1スイッチング素子及び前記第2スイッチング素子のうちの前記第2スイッチング素子のみをオン状態とする第2動作と、前記第1スイッチング素子及び前記第2スイッチング素子の両方をオン状態とする第3動作と、を行う制御部と、
     を含み、
     前記制御部は、前記第3動作、前記第1動作、前記第3動作、前記第2動作の順に動作を切り替える切替制御を周期的に繰り返す周期制御を行いつつ、前記周期制御における各々の前記第1動作時に前記第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替え、前記周期制御における各々の前記第2動作時に前記第3スイッチング素子を、オフ状態、オン状態、オフ状態の順に切り替え、各々の前記第3動作時に前記第3スイッチング素子をオフ状態で維持する第1制御を少なくとも行う
     電力変換装置。
  2.  前記制御部は、前記周期制御を行いつつ、前記周期制御における各々の前記第3動作時に前記第3スイッチング素子を、オン状態、オフ状態、オン状態の順に切り替え、前記周期制御における各々の前記第1動作時及び各々の前記第2動作時に前記第3スイッチング素子をオン状態で維持する第2制御を少なくとも行う
     請求項1に記載の電力変換装置。
  3.  前記制御部は、前記一対の第1導電路間の電圧が閾値電圧以下である場合に前記第1制御を行い、前記一対の第1導電路間の電圧が前記閾値電圧以下から前記閾値電圧を超える値に切り替わった場合に、前記第1制御から前記第2制御に切り替える
     請求項2に記載の電力変換装置。
  4.  前記制御部は、前記周期制御を行いつつ、前記周期制御における各々の前記第1動作時、各々の前記第2動作時、各々の前記第3動作時のいずれにおいても、前記第3スイッチング素子をオン状態で維持する第3制御を少なくとも行う
     請求項1から請求項3のいずれか一項に記載の電力変換装置。
  5.  前記制御部は、前記周期制御を行いつつ、前記周期制御における各々の前記第1動作時、各々の前記第2動作時、各々の前記第3動作時のいずれにおいても、前記第3スイッチング素子をオン状態で維持する第3制御を少なくとも行い、
     前記制御部は、前記一対の第1導電路間の電圧が前記閾値電圧を超え且つ前記閾値電圧よりも大きい第2閾値電圧以下である場合に前記第2制御を行い、前記一対の第1導電路間の電圧が前記第2閾値電圧以下から前記第2閾値電圧を超える値に切り替わった場合に、前記第2制御から前記第3制御に切り替える
     請求項3に記載の電力変換装置。
  6.  前記スイッチング回路は、前記第3スイッチング素子と前記通電部と前記チョークコイルとを含んだチョッパ回路を有し、
     前記制御部は、前記第1制御の際に前記一の導電路を流れる電流の値を目標電流値に近づけるように前記チョッパ回路を制御する
     請求項1から請求項5のいずれか一項に記載の電力変換装置。
PCT/JP2022/018728 2021-05-06 2022-04-25 電力変換装置 WO2022234784A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029841.8A CN117203886A (zh) 2021-05-06 2022-04-25 电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078397A JP2022172549A (ja) 2021-05-06 2021-05-06 電力変換装置
JP2021-078397 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234784A1 true WO2022234784A1 (ja) 2022-11-10

Family

ID=83932161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018728 WO2022234784A1 (ja) 2021-05-06 2022-04-25 電力変換装置

Country Status (3)

Country Link
JP (1) JP2022172549A (ja)
CN (1) CN117203886A (ja)
WO (1) WO2022234784A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233698A (ja) * 1996-02-22 1997-09-05 Nec Corp 進行波管電源装置
JP2008206291A (ja) * 2007-02-20 2008-09-04 Densei Lambda Kk 補助電源回路
JP2017005773A (ja) * 2015-06-04 2017-01-05 株式会社デンソー 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233698A (ja) * 1996-02-22 1997-09-05 Nec Corp 進行波管電源装置
JP2008206291A (ja) * 2007-02-20 2008-09-04 Densei Lambda Kk 補助電源回路
JP2017005773A (ja) * 2015-06-04 2017-01-05 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
CN117203886A (zh) 2023-12-08
JP2022172549A (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
US10236776B2 (en) Inter-supply bidirectional DC-DC converter of a non-insulation type
JP6209744B2 (ja) Dc/dcコンバータ
US9793791B2 (en) Power conversion apparatus and method for starting up the same
US10541549B2 (en) Power supply apparatus
US8526204B2 (en) Power converter with electrical switching element
JP5786325B2 (ja) 電力変換回路システム
US9868358B2 (en) Power conversion system suppressing reduction in conversion efficiency
CN109075707B (zh) 电压变换装置
US20120092909A1 (en) Power conversion apparatus
US20130082628A1 (en) Dc-dc converter
JPH08168182A (ja) 電圧変動の大きい電池を用いた電源装置
JP2014171313A (ja) Dc/dcコンバータ
US11716025B2 (en) In-vehicle power supply device
CN112400273B (zh) 开关电源
WO2022234784A1 (ja) 電力変換装置
JP7276064B2 (ja) Dcdcコンバータ
CN114499194A (zh) 电源控制装置
JP5954256B2 (ja) 制御方法
WO2019142704A1 (ja) 車載用のdcdcコンバータ
KR20170046982A (ko) 멀티 토플러지를 이용한 dc/dc 컨버터
JP7495311B2 (ja) 電力変換装置、電力変換装置の制御方法、及び電力システム
WO2021005894A1 (ja) Dcdcコンバータおよび電源装置
US9602008B1 (en) Power conversion apparatus and method for controlling power conversion apparatus
US8830700B2 (en) DC-DC converter and method for controlling DC-DC converter
CN218514276U (zh) 自举电容稳压辅助电路及具有自举电容稳压辅助电路的电源转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280029841.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18558437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798890

Country of ref document: EP

Kind code of ref document: A1