JP7255099B2 - モータ - Google Patents

モータ Download PDF

Info

Publication number
JP7255099B2
JP7255099B2 JP2018130041A JP2018130041A JP7255099B2 JP 7255099 B2 JP7255099 B2 JP 7255099B2 JP 2018130041 A JP2018130041 A JP 2018130041A JP 2018130041 A JP2018130041 A JP 2018130041A JP 7255099 B2 JP7255099 B2 JP 7255099B2
Authority
JP
Japan
Prior art keywords
torque
rotation
rotational
motor
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018130041A
Other languages
English (en)
Other versions
JP2020010512A (ja
Inventor
亨 大岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018130041A priority Critical patent/JP7255099B2/ja
Publication of JP2020010512A publication Critical patent/JP2020010512A/ja
Application granted granted Critical
Publication of JP7255099B2 publication Critical patent/JP7255099B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • F16D7/02Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
    • F16D7/021Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with radially applied torque-limiting friction surfaces

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、トルクリミッタ機能を有するモータに関する。
従来、トルクを伝達する装置において、通常使用範囲に対し過大なトルクが入力されたとき摺動部が摺動することでトルクリミッタの機能を有する装置が知られている。例えば特許文献1に開示された技術では、トレランスリングがトルクリミッタとして機能する。
特許2017-155816号公報
電動パワーステアリング装置に用いられる操舵アシストモータにおいて、トルクが出力される回転伝達部には、車両の走行中に車輪が縁石に乗り上げた場合等に過大なトルクが負荷から逆入力される可能性がある。そのため、過大なトルクが入力されたときに摺動部が摺動するトルクリミッタの機能を回転伝達部に設けることで、モータの破損を防止することが望まれる。
一方、操舵アシストモータの制御では、車輪が縁石に乗り上げた場合等でもアシスト機能を維持するように、回転角が正しくフィードバックされることが求められる。したがって、トルクリミッタにより摺動部が摺動した場合にも回転角検出機能が損なわれないようにすることが必要である。
本発明は上述の課題に鑑みて成されたものであり、その目的は、過大トルクが入力され摺動部が摺動した場合にも回転角検出機能が確保されるモータを提供することにある。
本発明は、ロータに固定されたシャフトの回転により、負荷(95)にトルクを出力するモータであって、当該モータの駆動を制御するモータ制御装置(60)が一体に構成されている。本発明のモータは、筒状のステータ(21)と、ロータ(31)と、回転伝達部(85)と、シャフト(35)と、センサマグネット(45)と、摺動部(870)とを備える。ロータは、ステータの内側に回転可能に設けられ、励磁磁極(33)が固定されている。回転伝達部は、外部の負荷(95)にトルクを出力し、且つ負荷からトルクが逆入力される可能性がある。シャフトは、回転伝達部とロータとを連結する。センサマグネットは、シャフトの回転伝達部とは反対側の端部に固定され、ロータの励磁磁極の回転位置に応じた磁束を発生する。摺動部は、回転伝達部における負荷側とシャフトとの間で摺動し、負荷から逆入力されるトルクの伝達を制限する。
回転伝達部は、シャフトのトルク出力側の端部に固定された内輪(860)、内輪と径方向に対向する外輪(850)、及び、外輪と内輪との間に設けられ径方向の弾性力によりトルクを伝達可能なばね部材(870)を含む。ばね部材は、負荷から逆入力されるトルクの絶対値が所定の限界値を超えたとき「摺動部」として機能する。
この構成では、ロータ、シャフト及び、シャフトの端部に固定されたセンサマグネットは一体であり、シャフト端部のセンサマグネットの励磁磁極に対する回動トルクの絶対値(|Ts|)は実質的に無限大となる。また、この構成では、摺動部をジョイント等の回転伝達部に内蔵可能であるため、摺動部有無のバリエーション対応が容易である。
シャフト、ロータ、シャフトを軸支するベアリング(41、43)、シャフトの端部に固定されたセンサマグネット(45)、及び、シャフトの外周に当接するオイルシールを、シャフトの回転又は負荷へのトルク伝達に関わる保護対象部材と定義する。
モータ制御装置は、回転ストレス判定部(65)を備える。回転ストレス判定部は、保護対象部材が負荷から逆入力されるトルクによって受ける回転ストレスに関し、モータの回転角速度(ω)又は回転角加速度(α)である回転評価量の絶対値が、通常の駆動制御によって実現される上限値を超える値に設定されるストレス閾値を超えたことに基づいて、回転ストレスが過大状態である回転ストレス異常を判定する。
ストレス閾値は、短期閾値、及び、短期閾値より小さい値に設定される一つ以上の常用閾値を含む少なくとも二水準の値が設定される。回転ストレス判定部は、回転評価量の絶対値が短期閾値を1回超えたとき、短期ストレス異常であると判定する。また、回転ストレス判定部は、回転評価量の絶対値が常用閾値を超えたとき、回転評価量の絶対値に基づく換算値を算出し、当該換算値の積算値が判定閾値を超えたとき、積算ストレス異常であると判定する。
本発明では、トルクリミッタ機能を有する摺動部の固定強度がシャフトの端部に固定されたセンサマグネットの固定強度よりも小さい。したがって、絶対値の大きい加速度が印加され摺動部が摺動した場合でも、シャフト端部のセンサマグネットと励磁磁極との間の固定余裕度の方が大きいため、シャフト端部のセンサマグネットは確実に固定される。つまり、シャフト端部のセンサマグネットが位置ずれしないため、回転角検出機能が確保され、逆回転やトルク過不足等の駆動機能の失陥を防止することができる。
ここで、トルクと角加速度との間には、「トルク=力×距離=質量×距離×角加速度=イナーシャ(慣性モーメント)×角加速度」の関係がある。摺動部(リミッタ)のイナーシャをIL、シャフト端部のセンサマグネットのイナーシャをIsとすると、角加速度αが印加されたとき摺動部にかかるトルクTL(α)、及び、シャフト端部のセンサマグネットにかかるトルクTs(α)は、下式で表される。
TL(α)=IL×α、 Ts(α)=Is×α
よって、センサマグネットと励磁磁極との固定強度が大きく、IL<Isの関係が成り立つとすると、|TL|<|Ts|となる。なお、摺動部の摺動トルク(TL)は、モータの定格駆動トルク(Tm)よりも大きく設定される(Tm<TL)ことが好ましい。
参考態様のモータは、筒状のステータ(21)と、ロータ(31)と、回転伝達部(85)と、シャフト(35)と、センサマグネット(33)と、摺動部(37)とを備える。ロータ、回転伝達部及びシャフトは、第1の態様と同様である。センサマグネットは、ロータに固定された励磁磁極そのものであり、それ自身の回転位置に応じた磁束を発生する。摺動部は、シャフトの外周面とロータのロータコア(32)の内周面との間に配置され、シャフトとロータコアとの間で摺動し、負荷から逆入力されるトルクの伝達を制限する。この構成では、励磁磁極と同一であるセンサマグネットの固定力は主磁気回路の破壊強度と見做すことができる。また、この構成では、ロータ磁気回路を形成する励磁磁極がセンサマグネットの機能を兼ね、励磁磁極の磁束を用いて回転位置が検出されるため、別部材としてのシャフト端部のセンサマグネットは不要となる。
第1実施形態のモータの概略断面図。 各実施形態のモータが適用されるEPS(電動パワーステアリングシステム)の一例であるラックパラレル式EPSの全体構成図。 EPSの別の例であるデュアルピニオン式EPSの全体構成図。 EPSの別の例であるコラム式EPSの全体構成図。 第1実施形態のモータに用いられるジョイントの断面図。 図5のジョイントのばね部材の(a)側面図、(b)軸方向断面図。 |Ts|と|Ts(α0)|との関係を示す図。 モータ制御装置の構成図。 モータ制御装置による判定処理例のフローチャート。 ストレス閾値と|α(Ts)|、|α(TL)|との関係を示す図。 第2実施形態のモータの概略断面図。 |Ts1|と|Ts1(α0)|との関係を示す図。 比較例のジョイントの断面図。
以下、モータの複数の実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。また、第1、第2実施形態を包括して「本実施形態」という。本実施形態のモータは、車両の電動パワーステアリングシステム(以下「EPS」)において運転者の操舵トルクをアシストする操舵アシストモータである。また、本実施形態のモータは、回転機構部と制御部とが一体に構成された、いわゆる機電一体式の三相ブラシレスモータである。以下、モータの符号について、各実施形態に共通する構成を示す場合、「10」を付す。第1実施形態、第2実施形態に特有の構成を示す場合、それぞれ「101」、「102」を付す。
(第1実施形態)
第1実施形態のモータについて図1~図10を参照して説明する。図1に第1実施形態のモータ101の内部構成を示す。図1において下側に記載された出力軸側をフロント、上側に記載された制御部側をリアと称する。モータ101の回転機構部20は、フロントフレーム11、リアフレーム13、及び、モータケース16で形成された筐体内部に組み立てられている。各部材は、シャフト35を中心軸とする回転体状に設けられている。
フロントフレーム11の中心には、フロントベアリング収容部12が形成されている。フロントベアリング収容部12には、フロントベアリング41が収容されている。モータケース16は、筒部17及び底部18を有する有底筒状を呈している。筒部17の開口端はフロントフレーム11に当接している。底部18は、リアフレーム13のフロント側底面14に当接し、中心にリアベアリング収容部19が形成されている。リアベアリング収容部19には、リアベアリング43及びワッシャ44が収容されている。リアフレーム13のリア側端面15には制御部50のヒートシンク51が当接する。
ステータ21は、筒状に形成され、ステータコア22、各相の巻線23及びリード線24を含む。ステータコア22は、モータケース16の筒部17の内壁に沿って設けられ、巻線23が巻回される。各相の巻線23の端部は、リード線24を介してパワー基板53に接続される。
ロータ31は、ロータコア32及び複数の励磁磁極33を含み、ステータ21の内側に回転可能に設けられる。励磁磁極33は、永久磁石のN極とS極とが周方向に交互に配置されたものであり、ステータコア22の内面に対向するようにロータ31に固定される。巻線23に三相交流が通電されステータ21に回転磁界が形成されることにより、ロータ31が回転し、モータ10はトルクを発生する。
シャフト35は、ロータコア32の中心に形成されたシャフト孔34に挿入され、軸方向の中間部がロータコア32に固定される。ロータコア32に対しフロント側で、シャフト35は、フロントベアリング41により回転可能に軸支される。また、ロータコア32に対しリア側で、シャフト35は、リアベアリング43により回転可能に軸支される。ワッシャ44は、リアベアリング43を介して、シャフト35及びロータコア32をフロント側に押し付ける。
シャフト35の一端であるフロント側の端部には、「回転伝達部」としてのジョイント85が設けられる。すなわちシャフト35は、「回転伝達部」としてのジョイント85とロータ31とを連結する。ジョイント85は、シャフト35の一端に嵌合固定された内輪860、内輪860と径方向に対向する外輪850、及び、外輪850と内輪860との間に設けられ径方向の弾性力によりトルクを伝達可能なばね部材870を含む。ジョイント85の外輪850は、負荷側の連結軸88と係合し、シャフト35の回転を連結軸88に伝達する。ジョイント85の詳細な構成については図5、図6を参照して後述する。
シャフト35の他端であるリア側の端部には、ロータ31の励磁磁極33の回転位置に応じた磁束を発生するセンサマグネット45が固定されている。制御部50の制御基板54の中心には、磁気抵抗素子等の角度センサ55がセンサマグネット45と対向するように設けられる。
制御部50は、カバー58の内部の空間に収容され、ヒートシンク51、複数の半導体モジュール52、パワー基板53、制御基板54等を含む。インバータ等を構成する複数の半導体モジュール52は、ヒートシンク51の側面に沿って設けられる。各種電子部品が実装されたパワー基板53及び制御基板54は、ヒートシンク51の軸方向両端面に沿って設けられる。制御基板54には、モータ10の駆動を制御するモータ制御装置60が実装されている。
EPSにおけるモータ10の力行動作時、制御部50は、要求されるアシストトルクをモータ10が出力するようにステータ21の巻線23への通電を制御し回転磁界を発生させる。この回転磁界と励磁磁極33の磁束との相互作用により、ロータ31及びシャフト35が回転する。そして、回転伝達部であるジョイント85は、「外部の負荷」としてのラック軸にトルクを出力する。
続いて、本実施形態のモータ10が適用される各種EPSの全体構成について、図2~図4を参照する。図2にはラックパラレル式EPS901、図3にはデュアルピニオン式EPS902、図4にはコラム式EPS903を示す。各図のEPSに共通して、運転者による操舵トルクは、ステアリングホイール91からコラム軸92に伝達され、ピニオンギア94にて回転運動がラック軸95の直線運動に変換される。そして、ラック軸95の直線運動変位に応じた角度について一対の車輪99が操舵される。コラム軸92の途中には、操舵トルクTsを検出するトルクセンサ75が設けられている。モータ10は、操舵トルクTsに基づいて、運転者の操舵をアシストするアシストトルクを出力する。
図2のラックパラレル式EPS901では、モータ10は、ラック軸95に設けられたハウジング96に取り付けられ、回転軸であるシャフト35がラック軸95に平行に配置される。シャフト35の回転は、ギア等を介して減速しつつラック軸95に伝達される。
図3のデュアルピニオン式EPS902では、コラム軸92の回転を直線運動に変換するピニオンギア94に加えて、モータ10の回転を直線運動に変換するEPS用ピニオンギア97がラック軸95に設けられる。モータ10のシャフト35の回転は、EPS用ピニオンギア97によって減速しつつ変換され、ラック軸95の直線運動をアシストする。
図4のコラム式EPS903では、モータ10は、コラム軸92の近傍に配置される。モータ10のシャフト35の回転は、コラム軸92とピニオンギア94との間の出力軸93に減速しつつ伝達される。操舵トルクにアシストトルクが加えられた出力軸93のトルクがピニオンギア94で変換され、ラック軸95を直線運動させる。
ところでEPSでは、例えば車両の走行中に車輪が縁石に乗り上げたとき、外力によって車輪が急激に転舵され、ラック軸95等の負荷から回転伝達部であるジョイント85にトルクが逆入力される可能性がある。そのとき、モータ10の回転角速度やトルクが、通常の駆動制御によって実現される上限値を超える場合がある。そのため、過大なトルクが入力されたときに摺動部が摺動するトルクリミッタの機能を回転伝達部に設けることで、モータ10の破損を防止することが望まれる。
一方、操舵アシストモータの制御では、車輪が縁石に乗り上げた場合等でもアシスト機能を維持するように、回転角が正しくフィードバックされることが求められる。したがって、トルクリミッタにより摺動部が摺動した場合にも回転角検出機能が損なわれないようにすることが必要である。そこで、本実施形態のモータ10では、センサマグネット45の励磁磁極33に対する回動トルクと、摺動部の摺動トルクとの関係に注目する。
続いて、第1実施形態のモータ101におけるジョイント85の詳細な構成について、比較例と対比しつつ説明する。図13に示す比較例のモータ109では、ジョイント89は、中心軸に沿って嵌合孔892が形成された本体891、及び複数の爪部893を有する。シャフト35は、フロントベアリング41に嵌合する大径部351の先端に、大径部351より小径の小径部352が形成されており、小径部352が本体891の嵌合孔892に圧入等により嵌合して固定される。
複数の爪部893は、周方向の数箇所で本体891のフロント側端面から軸方向に突出し、図1に示す負荷側の連結部88と係合可能である。比較例のジョイント89は、外部の負荷から逆入力されるトルクがそのままシャフト35に伝達される。すなわち、トルクリミッタ機能が無いため、過大なトルクが入力されたときにモータ109が破損するおそれがある。
比較例に対し第1実施形態のモータ101におけるジョイント85は、図5、図6に示すように、外輪850、内輪860、及び、「摺動部」として機能するばね部材870を含む。「摺動部」は、回転伝達部における負荷側と励磁磁極との間で摺動し、負荷から逆入力されるトルクの伝達を制限する部分であり、これによりトルクリミッタ機能が実現される。
外輪850は、円筒状の基部851、円盤部852及び複数の爪部853を有する。円盤部852は、基部851のフロント側で径内方向に突出する。複数の爪部853は、周方向の数箇所で基部851のフロント側端面から軸方向に突出し、図1に示す負荷側の連結部88と係合可能である。
内輪860は、筒部861及びフランジ部862を有する。シャフト35は、フロントベアリング41に嵌合する大径部351の先端に、大径部351より小径の小径部352が形成されている。筒部861は、シャフト35の小径部352に嵌合固定される。フランジ部862は、筒部861のリア側で径外方向に突出する。
ばね部材870は、外輪850の基部851の内周面と、内輪860の筒部861の外周面との間に嵌挿される。ばね部材870の軸方向の両端は、外輪850の円盤部852及び内輪860のフランジ部862によりガイドされ、位置ずれが防止される。ばね部材870は、連結部871、切欠部872及び凸部873を有する。連結部871は、帯状の板が略円筒形に丸められて形成されており、周方向の両端間が切欠部872となっている。連結部871の外周には、連結部871の内壁から径外方向に押し出されるように形成された複数の凸部873が放射状に配置されている。凸部873は、径方向の弾性力を有している。ばね部材870は、硬度及び引張強度の高い材料で形成されることが望ましい。例えばSUS304等のステンレス材、SK85等の高炭素系の鉄材、リン青銅やベリリウム銅等の銅材があげられる。
本明細書では、回転角速度、回転角加速度及びトルクの符号は、ステアリングホイールの中立位置に対する回転方向又はトルクの印加方向に応じて、例えば右回転方向が正、左回転向が負というように正負が定義されるものとする。そのため、例えばトルクの大きさについては、原則として「トルクの絶対値」として記載する。
負荷から逆入力されるトルクの絶対値が所定の限界値以下のとき、ばね部材870は、凸部873の弾性力により、外輪850と内輪860との間でトルクを伝達可能である。すなわち、外輪850と内輪860とは一体に回転する。一方、負荷から逆入力されるトルクの絶対値が所定の限界値を超えたとき、「回転伝達部における負荷側」に相当する外輪850と、励磁磁極33に連結された内輪860とが凸部873の弾性力に抗して摺動し相対回転する。なお、摺動部の摺動トルクTLは、モータ10の定格駆動トルクTmよりも大きく設定される(Tm<TL)ことが好ましい。
ここで、「摺動部」としてのばね部材870が摺動開始する絶対値最小の回転角加速度を「α0」と表す。また、回転角加速度α0が印加されたとき、センサマグネット45に印加されるトルクの絶対値を|Ts(α0)|と表し、センサマグネット45の励磁磁極33に対する回動トルクの絶対値を|Ts|と表す。第1実施形態ではロータ31、シャフト35及びセンサマグネット45は一体であり、センサマグネット45の励磁磁極33に対する回動トルクの絶対値|Ts|は実質的に無限大となる。したがって、図7に示すように、|Ts(α0)|と|Ts|との間に、
|Ts(α0)|<|Ts|
の関係が常に成立する。なお、右回転方向のトルクを正、左回転方向のトルクを負とした場合、本実施形態では正負の値が実質的に等しい前提で論述しているが、左右の方向で差があっても良い。その場合は、絶対値でなく、正負の回動トルクが独立して定義されればよい。以下の絶対値形式の各式に関しても同様とする。
つまり第1実施形態では、トルクリミッタ機能を有する摺動部であるばね部材870の固定強度がセンサマグネット45の固定強度よりも小さい。したがって、絶対値の大きい加速度が印加さればね部材870が摺動した場合でも、センサマグネット45と励磁磁極33との間の固定余裕度の方が大きいため、センサマグネット45は確実に固定される。つまり、センサマグネット45の回転位置がずれないため、回転角検出機能が確保され、逆回転やトルク過不足等の駆動機能の失陥を防止することができる。また、第1実施形態の構成では、摺動部であるばね部材870をジョイント85に内蔵可能であるため、摺動部有無のバリエーション対応が容易である。
次に、モータ制御装置60の構成及び作用について図8~図10を参照して説明する。この説明は第2実施形態にも共通するため、モータの符号を「10」と記す。図8に示すように、モータ制御装置60は、駆動制御部61、微分器63、二階微分器64、回転ストレス判定部65、記憶装置66等を備え、インバータ62への駆動指令を通じてモータ10の駆動を制御する。
駆動制御部61は、トルクセンサから操舵トルクTsを取得する。また、モータ10からモータ電流Im及びロータの回転角θがフィードバックされる。なお、図8の回転角θは、機械的な1回転を基準とした角度を想定している。複数の極対を有する交流モータの場合、駆動制御部61は、回転角θを電気角に換算してベクトル制御の座標変換演算等に用いる。
駆動制御部61は、取得した操舵トルクTs及びフィードバック電流の情報に基づき、インバータ62に指令する駆動信号を演算する。電流フィードバック制御によるモータ駆動制御は周知技術であるため、詳細な説明を省略する。インバータ62は、駆動制御部61から指令された駆動信号に基づき動作することで、駆動電圧Vdをモータ10に印加する。
上述の通り、EPSでは、例えば車両の走行中に車輪が縁石に乗り上げたとき、外力によって車輪が急激に転舵され、ラック軸95等の負荷からモータ10にトルクが逆入力される可能性がある。そのとき、モータ10の回転角速度やトルクが、通常の駆動制御によって実現される上限値を超える場合がある。そのため、EPSのモータ10において、特にシャフトの回転又は負荷へのトルク伝達に関わる部材は、通常の駆動制御によって実現される回転範囲内での耐久強度が要求されることはもちろん、更に負荷から逆入力されるトルクを考慮した強度設計が必要となる。
以下、逆入力トルクに対する耐久強度の設計対象となる、シャフトの回転又は負荷へのトルク伝達に関わるモータ10の構成部材を総括して「保護対象部材」という。例えば、シャフト35の回転に伴って回転ストレスを受ける部材として、シャフト35及びロータコア32の他、フロントベアリング41、リアベアリング43、センサマグネット45や図示しないオイルシール等の部材が「保護対象部材」に該当する。負荷へのトルク伝達に関わるジョイント85等の回転伝達部を構成する部材も、シャフト35の回転に伴って回転ストレスを受けるため、「保護対象部材」に該当する。また、負荷からの逆入力トルクによって保護対象部材が受ける機械的なストレスを「回転ストレス」という。回転ストレスの蓄積により、保護対象部材の摩耗や劣化等が生じる。
車両の耐用年数である数年間にわたって発生する回転ストレスを正確に予測することは困難であり、十分な安全率を見込んで保護対象部材の強度を設計しようとすると、製品の体格や重量が増大し、コストアップを招くこととなる。そこで、本実施形態のモータ制御装置60は、保護対象部材が受ける回転ストレスを適切に評価し、回転ストレスが過大である場合に異常と判定する回転ストレス判定部65を備える。また、回転ストレス判定部65へ入力される情報として回転角速度ωを算出する微分器63、及び、回転角加速度αを算出する二階微分器64を備える。
微分器63は、回転角θを時間で微分し、モータ10の回転角速度ωを算出する。回転角速度ω[rad/s]は、適宜、回転数[rpm]等の単位に換算される。ただし、本明細書では、直接的に[rad/s]単位で表される量に限らず、回転数[rpm]等を含めて、「回転角速度」の用語、及び、記号ωを用いることとする。その理由は、「回転数」の用語が単位時間当たりに回転した回数を示すのか、或いは、時間と関係なく単に回転した回数を示すのかが区別しにくいためである。そこで本明細書では、単位時間当たりに回転した回数を、単位に関係なく「回転角速度ω」と記す。
二階微分器64は、回転角θを時間で二階微分し、モータ10の回転角加速度αを算出する。回転角速度ωと同様に、本明細書では、直接的に[rad/s2]単位で表される量に限らず、換算され得る各単位の量を含めて、「回転角加速度」の用語、及び記号αを用いる。「トルク=力×距離=質量×距離×角加速度=イナーシャ(慣性モーメント)×角加速度」」の関係にあることから、イナーシャが一定の条件のもと、トルクを回転角加速度の相関量として扱うことができる。
以下、回転ストレス判定部65に入力される回転角速度ω及び回転角加速度αの情報をまとめて「回転評価量」という。モータ10に過大な角速度ωの回転が加わると、ロータに遠心力が作用し、ロータの半径方向に回転ストレスが印加される。そこで本実施形態の回転ストレス判定部65は、回転評価量として、モータ10に実際に加わる回転角速度ω及び回転角加速度αの情報に基づいて回転ストレスを評価する。なお、本実施形態の回転ストレス判定部65による判定では、基本的に回転評価量の絶対値を用いる。つまり、回転方向によって判定レベルを変えることはない。
回転ストレス判定部65は、微分器63及び二階微分器64から取得した回転評価量の絶対値|ω|、|α|をストレス閾値と比較する。このストレス閾値は、通常の駆動制御によって実現される上限値を超える値に設定されている。そして、回転ストレス判定部65は、回転評価量の絶対値がストレス閾値を超えたことに基づいて、回転ストレス異常を判定する。回転ストレス判定部65が実施する具体的な判定処理例については後述する。
回転ストレス判定部65が判定した回転ストレス異常の情報は、例えば、車内LANであるCANバス70を経由して車両制御装置71に通知される。車両制御装置71は、具体的には車両ECUとして構成され、車両の各部から通知される情報に基づき、車両の動作を統括的に制御する。図8に示す構成では、回転ストレス判定部65が回転ストレス異常を判定すると、その情報が車両制御装置71に通知される。通知を受けた車両制御装置71は、操作パネルへの表示、警告音の発生等により警報を出力し、運転者に異常を知らせる。
このように本実施形態のモータ制御装置60は、回転ストレス判定部65により回転ストレス異常であると判定されたとき、その異常判定情報を外部に通知することで、モータ機能の失陥前に運転者に通知し、早期の対処を促すことができる。また、異常の情報を、車内LANを経由して通信するため、失陥前に運転者への通知が容易となる。
また、モータ制御装置60は、回転評価量の絶対値|ω|、|α|がストレス閾値を超えたとき、その値を記憶する不揮発性ROM等の記憶装置66を内部に備える。例えば、車両の定期点検等のメンテナンス時に記憶装置66のデータが読み出されることで、回転ストレスの診断が可能となる。図8に示すように、記憶装置66は、ストレス閾値を超えた回転評価量の絶対値の最大値|ω|max、|α|maxのみを記憶してもよい。これにより、記憶装置66の記憶機能を最小限にすることができる。
次に、回転ストレス判定部65による判定処理例について、図9のフローチャートを参照する。フローチャートの説明で記号Sは「ステップ」を表す。この判定処理例では、ストレス閾値として、短期閾値ωth1、αth1、及び、常用閾値ωth2、αth2の二水準の値が設定される。常用閾値ωth2、αth2は、短期閾値ωth1、αth1より小さい値に設定される。なお他の処理例では、常用閾値が短期閾値より小さい複数の段階に設定され、短期閾値と合わせて三水準以上のストレス閾値が設定されてもよい。
回転ストレス判定部65は、回転評価量の絶対値|ω|、|α|が短期閾値ωth1、αth1を1回超えたとき、短期ストレス異常であると判定する。また、回転ストレス判定部65は、回転評価量の絶対値|ω|、|α|が常用閾値ωth2、αth2を超えたとき、回転評価量の絶対値|ω|、|α|に基づく換算値を算出し、当該換算値の積算値が判定閾値を超えたとき、積算ストレス異常であると判定する。
ところで、車両の仕向地、環境温度、使用期間等に応じて、回転ストレスの発生頻度や保護対象部材が受ける影響の程度が異なることが考えられる。そこで、ストレス閾値は、それらの要因によって設定が調整され、回転ストレス判定部65に記憶されてもよい。例えば仕向地別の設定については、車両の製造時に仕向地毎にデフォルト値を変更すればよい。環境温度については、回転ストレス判定部65が温度センサから取得した環境温度に基づいてマップを参照し、随時、記憶値を変更してもよい。使用期間については、タイマの情報を基に回転ストレス判定部65が随時、記憶値を変更してもよく、或いは、定期点検毎に回転ストレス判定部65の記憶値を更新してもよい。
以下の説明では、「回転角速度の絶対値|ω|」又は「回転角加速度の絶対値|α|」を適宜省略し、「回転角速度|ω|」又は「回転角加速度|α|」と記す。回転ストレス判定部65は、S11で、微分器63及び二階微分器64からモータ10の回転角速度ω及び回転角加速度αを取得する。続くS12で、回転ストレス判定部65は、回転角速度|ω|が短期閾値ωth1を1回超えたか、又は、回転角加速度|α|が短期閾値αth1を1回超えたか判断する。S12でYESと判断された場合、S18に移行し、NOの場合、S13に移行する。
回転ストレス判定部65は、S13で、回転角速度|ω|が常用閾値ωth2を超えたか、又は、回転角加速度|α|が常用閾値αth2を超えたか判断する。S13でYESと判断された場合、S14に移行し、NOの場合、S11の前に戻る。S14では、常用閾値ωth2を超えた回転角速度|ω|、又は、常用閾値αth2を超えた回転角加速度|α|が記憶される。なお、回転評価量として回転角速度|ω|及び回転角加速度|α|のいずれを用いるかは、保護対象部材として想定される部品の劣化特性等に基づいて、適宜選択すればよい。
回転ストレス判定部65は、S15で、その回転角速度|ω|又は回転角加速度|α|に基づく換算値を算出し、S16で換算値の積算値Xを算出する。そして、回転ストレス判定部65は、S17で、積算値Xが判定閾値X0を超えたか判断する。S17でYESと判断された場合、S18に移行し、NOの場合、S11の前に戻る。
回転ストレス判定部65は、S12でYESと判定された場合、短期ストレス異常であると判定し、S17でYESと判定された場合、積算ストレス異常であると判定する。図8に示すように車内LANに通信可能な構成では、回転ストレス判定部65は、異常情報を車両制御装置71に通知する。通知を受けた車両制御装置71は、警報を出力し、運転者に異常を知らせる。
S15の換算値は、回転角速度|ω|又は回転角加速度|α|による回転ストレスが、例えば短期閾値ωth1、αth1又は破壊強度相当値ω0、α0での回転ストレスの何回分に相当するかという観点から算出される。回転角加速度αを例として、換算値の算出及び積算例を説明する。(例1)回転角加速度|α|が常用閾値αth2を超える毎に、換算値Xとして「1」が積算される。つまり、回転角加速度|α|が常用閾値αth2を超えた回数に基づいて、ストレス異常が判定される。(例2)回転角加速度|α|が常用閾値αth2を超えた超過量が換算値Xとして積算される。
さらに図10を参照し、「摺動部の摺動トルクTL」及び「センサマグネットの励磁磁極に対する回動トルクTs」に対応する回転評価量の絶対値と、短期閾値及び常用閾値との関係について、回転評価量を回転角加速度αとして説明する。図10において、「摺動部の摺動トルクTL」に対応する回転角加速度αの絶対値を|α(TL)|と表し、「センサマグネットの励磁磁極に対する回動トルクTs」に対応する回転角加速度αの絶対値を|α(Ts)|と表す。
ここで、|TL|<|Ts|であることから、|α(TL)|<|α(Ts)|の関係となる。そして、短期閾値αth1及び常用閾値αth2を含むストレス閾値は、|α(Ts)|よりも小さい値に設定される。詳しくは、短期閾値αth1は、|α(TL)|の105%以上、且つ、|α(Ts)|の95%以下に設定される。また、常用閾値αth2は、|α(TL)|の95%以下に設定される。すなわち、以下の関係が成立する。
|α(TL)|×1.05≦αth1≦|α(Ts)|×0.95
αth2≦|α(TL)|×0.95
このように、摺動部が摺動に至る加速度|α(TL)|が印加された状態の95%以下の値を常用閾値αth2に設定することで、回転ストレスの繰り返しによる保護対象部材の破損を確実に防止することができる。また、センサマグネットの固定トルクTsに対応する加速度|α(Ts)|が印加された状態の95%以下の値を短期閾値αth1に設定することで、1回の回転ストレスによる保護対象部材の破損を確実に防止することができる。さらに、摺動部が摺動に至る加速度|α(TL)|が印加された状態の105%以上の値を短期閾値αth1に設定することで、常用閾値αth2と短期閾値αth1とを適度に隔離し、警報が出力されない範囲で安全性を確保することができる。
ここで、95%及び105%という値は、一般的なばらつきや検出誤差のレベルを前提としたとき、ばらつきや誤差を考慮しても「100%より小さい」ことが保証される最大限の値、及び、「100%より大きい」ことが保証される最小限の値として採用される。つまり、例えば98%及び102%とすると、ばらつきや誤差が吸収されず、保護が十分とならない場合がある。一方、例えば90%及び110%とすると、通常の使用可能範囲に常用閾値αth2を設定することになり、制限が過剰となるおそれがある。そのため、95%及び105%という値に基づきストレス閾値を設定することで、過不足のない効率的な保護を実現することができる。
このように、モータ制御装置60の回転ストレス判定部65は、モータ10の回転角速度の絶対値|ω|又は回転角加速度の絶対値|α|がストレス閾値ωth、αthを超えたことに基づいて、保護対象部材が受ける回転ストレスの異常を判定する。これにより、回転ストレス判定部65は、実際に発生した回転ストレスの大きさや頻度に応じて、保護対象部材の交換が必要となるストレス異常に至ったことを適切に判定することができる。
特にEPSでは、車両の走行中に車輪が縁石に乗り上げた場合等、ラック軸95側から過大なトルクが急激にモータ10に逆入力される可能性がある。ただし、その可能性は、走行地域の道路状況や運転者の運転技術等によって千差万別であり、標準的な範囲を想定することが困難である。仮に、安全率を高く見込んで保護対象部材の強度を設計すると、多くの車両にとっては過剰品質となり、モータ10の体格や重量が増大し、コストアップを招くおそれがある。
それに対し、本実施形態では、回転評価量の絶対値|ω|、|α|を、通常の駆動制御によって実現される上限値を超える値に設定されるストレス閾値と比較することにより、回転ストレス異常を適切に判定することができる。したがって、過剰品質となることを回避しつつ、高い信頼性を確保することができる。
(第2実施形態)
第2実施形態のモータ102について、第1実施形態の図1、図7に対応する図11、図12を参照し、第1実施形態との相違点を中心に説明する。図11に示すように、第2実施形態のモータ102は、「摺動部」としてのばね部材37がシャフト35の外周面とロータコア32の内周面との間に配置されている。ばね部材37の構成は、例えば第1実施形態のジョイント85のばね部材870を軸方向に伸ばした構成に相当する。なお、回転伝達部であるジョイント85には摺動部は設けられない。
また第2実施形態のモータ102では、ロータ31の励磁磁極33の回転位置に応じた磁束を発生する「センサマグネット」は、ロータ31に固定された励磁磁極33そのものである。つまり、第2実施形態では、ロータ磁気回路を形成する励磁磁極33がセンサマグネットの機能を兼ね、励磁磁極33の磁束を用いて回転位置が検出される。そして、センサマグネットとしての励磁磁極33が発生する磁束に基づき回転位置を検出する主角度センサ56がモータケース16の底部18におけるリアベアリング収容部19の径外側に設置されている。
また、第1実施形態と同様にシャフト35のリア側端部に固定されたセンサマグネット45は、励磁磁極33とは別に、ロータ31の励磁磁極33の回転位置に応じた磁束を発生する「補助センサマグネット」として用いられる。制御基板54に設けられた補助角度センサ55は、補助センサマグネット45が発生する磁束に基づき回転位置を検出する。さらに、主角度センサ56の検出角度θmと補助角度センサ55の検出角度θsとの差を所定の角度差閾値と比較判定する判定部57が制御基板54に実装されている。
ここで、第1実施形態と同様に「摺動部」としてのばね部材37が摺動開始する絶対値最小の回転角加速度を「α0」と表す。また、回転角加速度α0が印加されたとき、励磁磁極33に印加されるトルクの絶対値を|Ts(α0)|と表し、励磁磁極33の励磁磁極33自身に対する回動トルクの絶対値を|Ts|と表す。第2実施形態では、「センサマグネット」と励磁磁極33とは同一であり、センサマグネットの励磁磁極33に対する回動トルクの絶対値|Ts|は実質的に無限大となる。言い換えれば、センサマグネットの固定力は主磁気回路の破壊強度と見做すことができる。したがって、第1実施形態と同じ図7に示すように、|Ts(α0)|と|Ts|との間に、
|Ts(α0)|<|Ts|
の関係が常に成立する。これによる作用効果は、第1実施形態と同様である。
また、回転角加速度α0が印加されたとき、補助センサマグネット45に印加されるトルクの絶対値を|Ts1(α0)|と表し、補助センサマグネット45の励磁磁極33に対する回動トルクの絶対値を|Ts1|と表す。第2実施形態では、絶対値の大きな角加速度αが印加され、ばね部材37が摺動し始めると、シャフト35に固定された補助センサマグネット45は励磁磁極33に対して摺動する。したがって、図12に示すように、|Ts1(α0)|と|Ts1|との間に、
|Ts1(α0)|≧|Ts1|
の関係が成立する。
要するに、回転角加速度α0が印加されたとき、「センサマグネット」である励磁磁極33は励磁磁極33自身に対し回動しないが、補助センサマグネット45は励磁磁極33に対し回動する。そして、補助センサマグネット45が励磁磁極33に対し回動すると、主角度センサ56の検出角度θmと補助角度センサ55の検出角度θsとがずれるため、判定部57により、ずれが発生したことが検出され、警報が出力される。
このように第2実施形態では、二つの角度センサ55、56を冗長的に備えるため高い信頼性が得られる。なお、角度センサが一つの構成でも、モータ制御装置60の回転ストレス判定部65により回転ストレスが過大状態であることを判定可能であるものの、その判定は、あくまでストレス閾値に対する相対的な評価に基づくものである。したがって、使用環境等によってはストレス閾値の設定が信頼性に影響する可能性がある。
それに対し二つの角度センサ55、56を備える第2実施形態では、摺動部が摺動する回転角加速度α0が印加されたとき、主角度センサ56の検出角度θmと補助角度センサ55の検出角度θsとが実際にずれるため、過大なトルクが逆入力されたことを直接的に検出することができる。よって、過大な逆入力トルクに対するモータ10の保護に関し、より高い信頼性が得られる。
(その他の実施形態)
(a)第1実施形態におけるシャフト35に固定されたセンサマグネット45、及び、第2実施形態における励磁磁極そのものであるセンサマグネット33は、いずれも励磁磁極と一体に回動するように構成されている。このような構成に限らず、本発明のモータのセンサマグネットは、あるトルクが印加されたとき、励磁磁極に対して回動してもよい。その場合、励磁磁極に対する回動トルクの絶対値|Ts|が、摺動部が摺動開始する時にセンサマグネットに印加されるトルクの絶対値|Ts(α0)|より大きくなるように構成されればよい。
(b)本発明の摺動部は、径方向の間に介在されたばね部材に限らず、所定の限界値を超えるトルクが印加されたときに摺動するものであればよい。また、モータの回転伝達部は、上記実施形態のジョイント85の他、例えばベルトに回転を伝達するプーリ等で構成されてもよい。その場合、摺動部としてのばね部材870がジョイント85に収納された第1実施形態に対し、摺動部の構成がプーリに収納されてもよい。
(c)上記の第2実施形態は、シャフト35とロータコア32との間にばね部材37が設けられる構成と、二つの角度センサ55、56を冗長的に備える構成とが組み合わせている。これに対し、シャフト35とロータコア32との間にばね部材37が設けられ、且つ、センサマグネットとして励磁磁極33のみを備え、補助センサマグネットを備えない構成としてもよい。その場合、励磁磁極の磁束を用いて磁極の回転位置を検出するため、別部材としてのセンサマグネットは不要となる。
(d)上記とは逆に、第2実施形態以外の摺動部の構成を採用しつつ、センサマグネット及び補助センサマグネットに対応する二つの角度センサを備える構成としてもよい。
(e)図8に示すモータ制御装置60は、車両制御装置71とは独立に制御基板54上に構成され、内部の回転ストレス判定部65が回転ストレス異常を判定する。ただし、例えば判定処理例を実施するとき、制御基板54上の回路側で回転評価量が常用閾値を超えたことまでを判定して、その情報を車両制御装置71に通知し、車両制御装置71が換算値の算出や積算を行って異常を確定し警報を出力するようにしてもよい。その場合、車両制御装置が「回転ストレス判定部」の機能の一部を構成するものとして解釈される。また、「モータ制御装置」は、制御基板54上の回路及び車両制御装置の一部を含むものとして解釈される。
(f)上記実施形態では、ロータ31の回転角θを時間微分した回転角速度ω及び回転角加速度αが回転評価量として用いられる。この場合、通常のモータ駆動制御でフィードバック制御に用いる回転角θの情報を有効に利用することができる。ただし、回転角速度ωや回転角加速度αと相関する量が回転評価量として用いられてもよい。例えば車両制御装置71等からラック軸95の移動速度や加速度等の情報が取得され、回転評価量に換算されてもよい。
(g)本発明のモータは、EPS用の操舵アシストモータに限らず、負荷からトルクが逆入力される可能性のあるどのようなモータであってもよい。
以上、本発明はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
10(101、102) ・・・モータ、
21 ・・・ステータ、 31 ・・・ロータ、
33 ・・・励磁磁極、センサマグネット、
35 ・・・シャフト、 37 ・・・ばね部材(摺動部)、
45 ・・・センサマグネット、補助センサマグネット、
85 ・・・ジョイント(回転伝達部)、
850・・・外輪(摺動部)、 860・・・内輪(摺動部)、
870・・・ばね部材(摺動部)、
95 ・・・ラック軸(負荷)。

Claims (6)

  1. ロータに固定されたシャフトの回転により、負荷(95)にトルクを出力するモータであって、当該モータの駆動を制御するモータ制御装置(60)が一体に構成されており、
    前記モータは、
    筒状のステータ(21)と、
    前記ステータの内側に回転可能に設けられ、励磁磁極(33)が固定されたロータ(31)と、
    外部の負荷にトルクを出力し、且つ前記負荷からトルクが逆入力される可能性がある回転伝達部(85)と、
    前記回転伝達部と前記ロータとを連結するシャフト(35)と、
    前記シャフトの前記回転伝達部とは反対側の端部に固定され、前記ロータの前記励磁磁極の回転位置に応じた磁束を発生するセンサマグネット(45)と、
    前記回転伝達部における前記負荷側と前記シャフトとの間で摺動し、前記負荷から逆入力されるトルクの伝達を制限する摺動部(870)と、
    を備え、
    前記回転伝達部は、前記シャフトのトルク出力側の端部に固定された内輪(860)、前記内輪と径方向に対向する外輪(850)、及び、前記外輪と前記内輪との間に設けられ径方向の弾性力によりトルクを伝達可能であり、且つ前記負荷から逆入力されるトルクの絶対値が所定の限界値を超えたとき前記摺動部として機能するばね部材(870)を含み、
    前記シャフト、前記ロータ、前記シャフトを軸支するベアリング(41、43)、前記シャフトの端部に固定された前記センサマグネット(45)、及び、前記シャフトの外周に当接するオイルシールを、前記シャフトの回転又は前記負荷へのトルク伝達に関わる保護対象部材と定義すると、
    前記モータ制御装置は、
    前記保護対象部材が前記負荷から逆入力されるトルクによって受ける回転ストレスに関し、
    前記モータの回転角速度(ω)又は回転角加速度(α)である回転評価量の絶対値が、通常の駆動制御によって実現される上限値を超える値に設定されるストレス閾値を超えたことに基づいて、前記回転ストレスが過大状態である回転ストレス異常を判定する回転ストレス判定部(65)を備え
    前記ストレス閾値は、短期閾値、及び、前記短期閾値より小さい値に設定される一つ以上の常用閾値を含む少なくとも二水準の値が設定され、
    前記回転ストレス判定部は、
    前記回転評価量の絶対値が前記短期閾値を1回超えたとき、短期ストレス異常であると判定し、
    前記回転評価量の絶対値が前記常用閾値を超えたとき、前記回転評価量の絶対値に基づく換算値を算出し、当該換算値の積算値が判定閾値を超えたとき、積算ストレス異常であると判定するモータ。
  2. 前記モータ制御装置は、前記回転ストレス判定部により前記回転ストレス異常であると判定されたとき、その情報を外部に通知する請求項に記載のモータ。
  3. 車両に搭載されるモータであって、
    前記モータ制御装置の前記回転ストレス判定部は、前記回転ストレス異常の情報を、車内LANを経由して車両制御装置(71)に通信する請求項に記載のモータ。
  4. 前記モータ制御装置の前記回転ストレス判定部は、前記回転評価量の絶対値が前記ストレス閾値を超えたとき、その値を内部の記憶装置(66)に記憶する請求項に記載のモータ。
  5. 前記記憶装置は、前記ストレス閾値を超えた前記回転評価量の絶対値の最大値のみを記憶する請求項に記載のモータ。
  6. 前記シャフトと前記ロータとが固定されており、前記センサマグネットが前記励磁磁極に対して回動しない構成において、
    回転角速度、回転角加速度及びトルクの符号は回転方向又はトルクの印加方向に応じて定義されるものとし、前記摺動部が摺動開始する絶対値最小の回転角加速度(α)が前記回転伝達部の前記外輪に印加されたとき、前記センサマグネットに印加されるトルクの絶対値を|Ts(α)|と表し、前記センサマグネットの前記励磁磁極に対する回動トルクの絶対値を|Ts|と表し、|Ts|は実質的に無限大となるとすると、
    |Ts(α)|と|Ts|との間に、
    |Ts(α)|<|Ts|
    の関係が成立する請求項1~5のいずれか一項に記載のモータ。
JP2018130041A 2018-07-09 2018-07-09 モータ Active JP7255099B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018130041A JP7255099B2 (ja) 2018-07-09 2018-07-09 モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130041A JP7255099B2 (ja) 2018-07-09 2018-07-09 モータ

Publications (2)

Publication Number Publication Date
JP2020010512A JP2020010512A (ja) 2020-01-16
JP7255099B2 true JP7255099B2 (ja) 2023-04-11

Family

ID=69152641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130041A Active JP7255099B2 (ja) 2018-07-09 2018-07-09 モータ

Country Status (1)

Country Link
JP (1) JP7255099B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115428603A (zh) * 2020-04-22 2022-12-02 株式会社富士 控制装置、安装系统及控制方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299294A (ja) 2002-03-29 2003-10-17 Honda Motor Co Ltd ブラシレスモータの取付構造
JP2007118805A (ja) 2005-10-28 2007-05-17 Toyota Motor Corp パワーステアリング装置
JP2008087715A (ja) 2006-10-04 2008-04-17 Toyota Motor Corp 車両の挙動制御装置
JP2010241165A (ja) 2009-04-01 2010-10-28 Toyota Motor Corp 電動パワーステアリング装置
JP2010254230A (ja) 2009-04-28 2010-11-11 Toyota Motor Corp 駆動力伝達装置
JP2011058572A (ja) 2009-09-10 2011-03-24 Oriental Motor Co Ltd ギヤードモータ用トルクリミッタおよび、トルクリミッタを備えたギヤードモータ
JP2012215415A (ja) 2011-03-31 2012-11-08 Oriental Motor Co Ltd アブソリュートエンコーダ装置及びモータ
JP2013018384A (ja) 2011-07-12 2013-01-31 Jtekt Corp ステアリング装置
JP2014511105A (ja) 2011-04-15 2014-05-01 エルジー イノテック カンパニー リミテッド モーターのセンシングマグネット結合構造
JP2014087176A (ja) 2012-10-24 2014-05-12 Toyota Industries Corp 駆動装置
JP2014121266A (ja) 2012-12-17 2014-06-30 Lg Innotek Co Ltd モータ
JP2016055678A (ja) 2014-09-05 2016-04-21 株式会社ジェイテクト ステアリング装置及び電動パワーステアリング装置
JP2016111889A (ja) 2014-12-10 2016-06-20 日本電産トーソク株式会社 ステッピングモータ
JP2016128772A (ja) 2015-01-09 2016-07-14 株式会社デンソー 回転角検出装置
JP2018093590A (ja) 2016-11-30 2018-06-14 Ntn株式会社 電動アクチュエータ用回転駆動源および電動アクチュエータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072135A (ja) * 1993-06-17 1995-01-06 Toyota Motor Corp 電動式パワーステアリング装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299294A (ja) 2002-03-29 2003-10-17 Honda Motor Co Ltd ブラシレスモータの取付構造
JP2007118805A (ja) 2005-10-28 2007-05-17 Toyota Motor Corp パワーステアリング装置
JP2008087715A (ja) 2006-10-04 2008-04-17 Toyota Motor Corp 車両の挙動制御装置
JP2010241165A (ja) 2009-04-01 2010-10-28 Toyota Motor Corp 電動パワーステアリング装置
JP2010254230A (ja) 2009-04-28 2010-11-11 Toyota Motor Corp 駆動力伝達装置
JP2011058572A (ja) 2009-09-10 2011-03-24 Oriental Motor Co Ltd ギヤードモータ用トルクリミッタおよび、トルクリミッタを備えたギヤードモータ
JP2012215415A (ja) 2011-03-31 2012-11-08 Oriental Motor Co Ltd アブソリュートエンコーダ装置及びモータ
JP2014511105A (ja) 2011-04-15 2014-05-01 エルジー イノテック カンパニー リミテッド モーターのセンシングマグネット結合構造
JP2013018384A (ja) 2011-07-12 2013-01-31 Jtekt Corp ステアリング装置
JP2014087176A (ja) 2012-10-24 2014-05-12 Toyota Industries Corp 駆動装置
JP2014121266A (ja) 2012-12-17 2014-06-30 Lg Innotek Co Ltd モータ
JP2016055678A (ja) 2014-09-05 2016-04-21 株式会社ジェイテクト ステアリング装置及び電動パワーステアリング装置
JP2016111889A (ja) 2014-12-10 2016-06-20 日本電産トーソク株式会社 ステッピングモータ
JP2016128772A (ja) 2015-01-09 2016-07-14 株式会社デンソー 回転角検出装置
JP2018093590A (ja) 2016-11-30 2018-06-14 Ntn株式会社 電動アクチュエータ用回転駆動源および電動アクチュエータ

Also Published As

Publication number Publication date
JP2020010512A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018163791A1 (ja) モータ制御装置
JP5481236B2 (ja) 電気自動車のモータ駆動システム
US7806225B2 (en) Steering system motor
US10414428B2 (en) Drive device and electric power steering apparatus
US11136064B2 (en) Rotation detection device and steering system
US10427709B2 (en) Electric motor and electric power steering apparatus having the same
US11685432B2 (en) Rotation detector and steering system
JP2017073909A (ja) 駆動装置
JP4492781B2 (ja) 回転機及び操舵システム
JP7255099B2 (ja) モータ
CN106195032B (zh) 联接器和具有该联接器的马达
US11171538B2 (en) Motor device
JP2012111335A (ja) 電動パワーステアリング装置、故障検出装置および故障検出方法
JP2005351848A (ja) 電動パワーステアリング装置
JP2012112778A (ja) 故障検出装置、故障検出方法および電動パワーステアリング装置
WO2019054089A1 (ja) モータ駆動装置、モータ、および電動パワーステアリング装置
JP2017051016A (ja) 車両用モータ駆動装置およびこれを搭載した車両
JP6275760B2 (ja) 電動機状態監視システム
WO2019054091A1 (ja) モータ駆動装置、モータ、電動パワーステアリング装置、モータ駆動方法、および記録媒体
JP2006151182A (ja) 回転角検出機構とそれを適用したパワーステアリング装置
JP2004345612A (ja) 車両用操舵装置
JP2021093878A (ja) モータ、及び、モータの状態判定装置
JP2005297789A (ja) 電動パワーステアリング装置
JP2009078765A (ja) 車両用操舵装置
KR20100083278A (ko) 모터 및 이를 구비한 전동식 조향장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220822

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R151 Written notification of patent or utility model registration

Ref document number: 7255099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151