JP7243352B2 - センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体 - Google Patents

センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体 Download PDF

Info

Publication number
JP7243352B2
JP7243352B2 JP2019054279A JP2019054279A JP7243352B2 JP 7243352 B2 JP7243352 B2 JP 7243352B2 JP 2019054279 A JP2019054279 A JP 2019054279A JP 2019054279 A JP2019054279 A JP 2019054279A JP 7243352 B2 JP7243352 B2 JP 7243352B2
Authority
JP
Japan
Prior art keywords
information
prediction
physical quantity
range
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019054279A
Other languages
English (en)
Other versions
JP2020153891A (ja
Inventor
力 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019054279A priority Critical patent/JP7243352B2/ja
Priority to US16/824,133 priority patent/US11121689B2/en
Priority to CN202310958543.3A priority patent/CN116972882A/zh
Priority to CN202010199432.5A priority patent/CN111721319B/zh
Publication of JP2020153891A publication Critical patent/JP2020153891A/ja
Application granted granted Critical
Publication of JP7243352B2 publication Critical patent/JP7243352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Description

本発明は、センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体に関する。
振動型のジャイロセンサー等の物理量センサーの故障を判定する技術が知られている。例えば、特許文献1に記載の技術は、角速度検出装置における振動子の漏れ信号に基づいて、角速度検出装置の故障を判定する。より具体的には、漏れ信号の振幅に応じて変化する積分回路の出力信号を監視し、当該出力信号が所定範囲内にある場合、異常なしの旨の信号を出力し、一方、当該出力信号が所定範囲外にある場合、異常ありの旨の信号を出力する。
特開2000-171257号公報
特許文献1に記載の技術では、異常なしと異常ありとの2種の信号を出力するだけであるため、角速度検出装置が故障するまでの状態を事前に検知することができないという課題がある。
本発明の一態様に係るセンサー故障検知システムは、駆動信号により駆動振動し、物理量に基づく検出信号を出力する振動素子片を含む物理量センサーの故障を予知するセンサー故障予知システムであって、前記駆動信号または前記検出信号の基準値に関する基準情報を記憶するメモリーと、前記駆動信号または前記検出信号の計測値に関する信号情報と前記基準情報とに基づいて、前記物理量センサーの故障に至るまでの段階的または連続的な状態に関する予知情報を出力するプロセッサーと、を有する。
本発明の一態様に係るセンサー故障予知方法は、駆動信号により駆動振動し、物理量に基づく検出信号を出力する振動素子片を含む物理量センサーから、前記駆動信号または前記検出信号の計測値に関する信号情報を取得し、前記信号情報と前記駆動信号または前記検出信号の基準値に関する基準情報とに基づいて、前記物理量センサーの故障に至るまでの段階的または連続的な状態に関する予知情報を出力する。
本発明の一態様に係る物理量センサーは、駆動信号により駆動振動し、物理量に基づく検出信号を出力する振動素子片と、前記駆動信号または前記検出信号の基準値に関する基準情報を記憶するメモリーと、前記駆動信号または前記検出信号の計測値に関する信号情報と前記基準情報とに基づいて、物理量センサーの故障に至るまでの段階的または連続的な状態に関する予知情報を出力するプロセッサーと、を有する。
実施形態に係るセンサー故障予知システムの概略構成を示す図である。 実施形態に係る物理量センサーの構成例を示す断面図である。 実施形態における物理量センサーが有する回路素子の構成を示すブロック図である。 物理量センサーにおけるパッケージ内の真空度と駆動電圧との関係を示すグラフである。 基準情報と判定結果との関係を示す判定テーブルの一例を示す図である。 基準情報と判定結果との関係を示す判定テーブルの他の例を示す図である。 実施形態に係るセンサー故障予知システムの動作の流れを示す図である。 電子機器の一例であるモバイル型またはノート型のパーソナルコンピューターの構成を概略的に示す斜視図である。 電子機器の一例であるスマートフォンの構成を概略的に示す平面図である。 電子機器の一例であるディジタルスチルカメラの構成を概略的に示す斜視図である。 移動体の一例である自動車を概略的に示す斜視図である。
以下、添付図面を参照しながら本発明に係る好適な実施形態を説明する。なお、図面において各部の寸法または縮尺は実際とは適宜異なり、理解を容易にするために模式的に示している部分もある。また、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られない。
A-1.センサー故障予知システムの概要
図1は、実施形態に係るセンサー故障予知システム100の概略構成を示す図である。図2は、実施形態に係る物理量センサーの構成例を示す断面図である。センサー故障予知システム100は、物理量センサー1の故障を予知するシステムである。センサー故障予知システム100は、物理量センサー1とプロセッサー101とメモリー102と入力装置103と表示装置104とを有する。これらは、バス105を介して、相互に通信可能に接続される。
物理量センサー1は、物理量の一例である角速度を検出するジャイロセンサーである。図1に示す例では、物理量センサー1は、振動素子片10を有する振動型のジャイロセンサーである。振動素子片10は、駆動信号DQにより駆動振動し、物理量の一例である角速度ωに基づく検出信号IQ1およびIQ2を出力する。振動素子片10には、回路素子30が電気的に接続される。回路素子30は、振動素子片10からのフィードバック信号DIを受けながら振動素子片10を駆動する駆動信号DQを出力する機能と、振動素子片10からの検出信号IQ1およびIQ2を検出する機能と、および、物理量センサー1の故障に至るまでの予知情報D2を出力する機能と、を有する。物理量センサー1は、予知情報D2を含む信号を外部に出力する。当該信号は、物理量センサー1で検出される物理量に関する検出情報等の他の情報が含まれてもよい。当該信号の出力は、例えば、外部からの信号SGを契機として行われる。なお、物理量センサー1については、後に詳述する。
プロセッサー101は、センサー故障予知システム100の各部を制御する機能、および各種データを処理する機能を有する装置である。プロセッサー101は、例えば、CPU(Central Processing Unit)等のプロセッサーを含んで構成される。なお、プロセッサー101は、単一のプロセッサーで構成されてもよいし、複数のプロセッサーで構成されてもよい。また、プロセッサー101の機能の一部または全部を、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアで実現してもよい。
メモリー102は、プロセッサー101が実行するプログラムP0を含む各種プログラム、およびプロセッサー101が処理する各種データを記憶する装置である。メモリー102は、例えば、ハードディスクドライブまたは半導体メモリーを含んで構成される。なお、メモリー102の一部または全部は、センサー故障予知システム100の外部のメモリーまたはサーバー等に設けてもよい。
入力装置103は、ユーザーからの操作を受け付ける機器である。例えば、入力装置103は、タッチパッド、タッチパネルまたはマウス等のポインティングデバイスを含んで構成される。ここで、入力装置103は、タッチパネルを含んで構成される場合、表示装置104を兼ねてもよい。なお、入力装置103は、必要に応じて設ければよく、省略してもよい。
表示装置104は、プロセッサー101による制御のもとで各種の画像を表示する。表示装置104は、例えば、液晶表示パネルまたは有機EL(electro-luminescence)表示パネル等の各種の表示パネルを含む表示装置である。なお、表示装置104は、必要に応じて設ければよく、省略してもよい。
以上の概略構成のセンサー故障予知システム100では、プロセッサー101がプログラムP0を読み込んで実行することで制御部101aとして機能する。制御部101aは、物理量センサー1からの予知情報D2に基づいて所定の処理を行う。当該所定の処理は、センサー故障予知システム100が組み込まれる電子機器または移動体の種類に応じて適宜に決められる。例えば、制御部101aは、予知情報D2に基づく画像を表示装置104に表示させたり、予知情報D2に基づいて当該電子機器または当該移動体における物理量センサー1の検出結果による動作を停止させたりする。なお、当該所定の処理については、後述する電子機器および移動体の説明において具体例を挙げる。
A-2.物理量センサーの構成
図2は、実施形態に係る物理量センサー1の構成例を示す断面図である。以下、図1および図2に基づいて、物理量センサー1の構成例について説明する。以下では、説明の便宜上、互いに直交するX軸、Y軸およびZ軸を適宜に用いて説明を行う。図1および図2には、これらの軸を表す矢印が適宜に図示される。当該矢印の指し示す側が+側、その反対側が-側である。また、+X方向および-X方向のうちの一方または両方を単に「X方向」、+Y方向および-Y方向のうちの一方または両方を単に「Y方向」、+Z方向および-Z方向のうちの一方または両方を単に「Z方向」という。ここで、Z方向は、振動素子片10の厚さ方向である。-Z方向または+Z方向からみることを「平面視」という。
図1および図2に示す物理量センサー1は、Z軸まわりの角速度ωを検出する振動型のジャイロセンサーである。図2に示すように、物理量センサー1は、振動素子片10と支持部材20と回路素子30とパッケージ40とを有する。振動素子片10、支持部材20および回路素子30のそれぞれは、パッケージ40に収容される。ここで、振動素子片10は、支持部材20を介してパッケージ40に支持される。以下、物理量センサー1の各部を簡単に順次説明する。
図1および図2に示す振動素子片10は、圧電材料で構成されるセンサー素子片である。当該圧電材料としては、例えば、水晶、タンタル酸リチウムおよびニオブ酸リチウム等の圧電材料が挙げられる。これらの中でも、振動素子片10の構成材料としては、水晶を用いることが好ましい。この場合、他の圧電材料を用いる場合に比べて、振動素子片10の周波数温度特性を高めることができる。以下、振動素子片10を水晶で構成する場合を説明する。各図に示すX軸、Y軸およびZ軸は、振動素子片10を構成する水晶の結晶軸である電気軸、機械軸および光軸にそれぞれ対応する。なお、図1および図2では、振動素子片10の表面に設けられる電極の図示が省略される。
振動素子片10は、いわゆるダブルT型と呼ばれる構造を有する。具体的に説明すると、振動素子片10は、基部11と、基部11から+Y方向および-Y方向に延びる第1検出腕12aおよび第2検出腕12bと、基部11から+X方向および-X方向に延びる第1連結腕13aおよび第2連結腕13bと、第1連結腕13aから+Y方向および-Y方向に延びる第1駆動腕14aおよび第1駆動腕14bと、第2連結腕13bから+Y方向および-Y方向に延びる第2駆動腕15aおよび第2駆動腕15bと、を有する。なお、振動素子片10の各部の形状は、図1に示す形状に限定されない。例えば、振動素子片10の各腕には、Z方向に向けて開口する溝または孔が腕の延びる方向に沿って適宜に設けられてもよい。また、各腕の幅は、一定でもよい。
第1駆動腕14a、第1駆動腕14b、第2駆動腕15aおよび第2駆動腕15bには、図示しないが、これらの駆動腕のそれぞれをX方向に屈曲振動させる1対の駆動電極が設けられる。当該1対の駆動電極のうち、一方に駆動信号DQが入力され、他方からフィードバック信号DIが出力される。また、第1検出腕12aおよび第2検出腕12bには、図示しないが、これらの検出腕のそれぞれのX方向での屈曲振動に伴って生じる電荷を検出する1対の検出電極が設けられる。当該1対の検出電極のうち、一方から検出信号IQ1が出力され、他方から検出信号IQ2が出力される。また、基部11には、前述の1対の駆動電極および1対の検出電極に電気的に接続される複数の端子が設けられる。以上の駆動電極、検出電極および端子の構成材料としては、それぞれ、特に限定されないが、例えば、金(Au)、クロム(Cr)、チタン(Ti)等の金属材料が挙げられる。
以下、振動素子片10を用いる角速度ωの検出について簡単に説明すると、まず、図示しない1対の駆動電極の間に駆動信号DQにより交番電圧が印加される。そうすると、図1中矢印Aで示すように、第1駆動腕14aと第2駆動腕15aとがX方向に互いに反対側に屈曲振動するとともに、第1駆動腕14aおよび第2駆動腕15aと同相で、第1駆動腕14bと第2駆動腕15bとがX方向に互いに反対側に屈曲振動する。このとき、振動素子片10に角速度が加わらない場合、第1駆動腕14aおよび14bと第2駆動腕15aおよび15bとが振動素子片10の重心Gを通るYZ平面に対して面対称に振動するため、基部11、第1連結腕13a、第2連結腕13b、第1検出腕12aおよび第2検出腕12bは、ほとんど振動しない。
このように第1駆動腕14a、14b、第2駆動腕15aおよび15bが屈曲振動する状態で、振動素子片10にZ軸まわりの角速度ωが加わる場合、これらの駆動腕には、それぞれ、Y方向のコリオリ力が働く。このコリオリ力により、図1中矢印Bで示すように、第1連結腕13aと第2連結腕13bとがY方向に互いに反対側に屈曲振動する。これに伴い、この屈曲振動を打ち消すように、図1中矢印Cで示すように、第1検出腕12aおよび第2検出腕12bにおけるX方向の屈曲振動が検出振動として励振される。この検出振動によって1対の検出電極の間に生じる電荷が検出信号として出力される。当該検出信号に基づいて、角速度ωが求められる。以上のように、角速度ωを検出することができる。
図2に示すように、支持部材20は、TAB(Tape Automated Bonding)実装用の基板である。支持部材20は、フィルム21と複数の配線22とを有する。フィルム21は、ポリイミド等の樹脂材料で構成される絶縁性の基材である。フィルム21の中央部には、デバイスホール21aが設けられる。複数の配線22は、前述の振動素子片10における図示しない1対の駆動電極および1対の検出電極に対応して設けられる。複数の配線22は、フィルム21の一方の面上からデバイスホール21aを介してフィルム21の他方の面側に折り曲げられて延びる。以上の複数の配線22は、それぞれ、金属バンプ72を介して、前述の振動素子片10の基部11に対して接続される。この接続により、複数の配線22は、振動素子片10における図示しない1対の駆動電極および1対の検出電極に電気的に接続される状態で、振動素子片10を支持する。
図1に示すように、回路素子30は、プロセッサー31とメモリー32と駆動回路33と検出回路34と診断回路35と故障検出回路36とを有する集積回路である。なお、回路素子30の各回路については、後に詳述する。また、図示しないが、回路素子30には、前述のフィードバック信号DI、駆動信号DQ、検出信号IQ1およびIQ2等のための複数の端子が設けられる。
図2に示すように、パッケージ40は、振動素子片10、支持部材20および回路素子30を収容する容器である。パッケージ40は、ベース41とリッド42と接合部材43とを有する。ベース41とリッド42とは、接合部材43を介して互いに接合される。図2に示すように、ベース41とリッド42との間には、振動素子片10、支持部材20および回路素子30を収容する空間Sが形成される。空間Sは、例えば、10Pa以下の減圧状態である。なお、空間Sには、アルゴンまたは窒素等の不活性ガスが封入されてもよい。
ベース41は、凹部411を有する箱状の部材である。ベース41の平面視での外形は、略矩形である。ベース41の構成材料としては、特に限定されないが、例えば、酸化アルミニウム等の各種セラミックスが挙げられる。図2に示す例では、ベース41は、平板状の基板41aと枠状の3つの基板41b、41cおよび41dとを有し、これらが+Z方向に向けてこの順に積層される。図示しないが、ベース41を構成する複数の基板の間には、金属等で構成される配線が適宜に設けられる。なお、ベース41の形状またはベース41を構成する基板の数は、図2に示す例に限定されず、任意である。
凹部411は、基板41aの+Z方向側の面で構成される底面411aと、基板41bの+Z方向側の面で構成される段差面411bと、基板41cの+Z方向側の面で構成される段差面411cと、を有する。
底面411aには、回路素子30が基板41bの内側に収まる状態で固定部材51を介して固定される。固定部材51は、例えば、エポキシ樹脂またはアクリル樹脂等を含んで構成される接着剤である。段差面411bには、複数の内部端子61が設けられる。複数の内部端子61は、回路素子30の図示しない複数の端子に複数の配線71を介して電気的に接続される。複数の配線71のそれぞれは、例えば、ボンディングワイヤーで構成される。段差面411cには、複数の内部端子62が設けられる。複数の内部端子62は、前述の支持部材20の複数の配線22に対応して設けられる。複数の内部端子62には、支持部材20の複数の配線22が導電性の複数の固定部材52を介して固定される。この固定により、複数の内部端子62は、前述の振動素子片10における図示しない1対の駆動電極および1対の検出電極に電気的に接続される。複数の固定部材52のそれぞれは、例えば、半田、銀ペースト、導電性接着剤等で構成される。
複数の内部端子61および複数の内部端子62は、図示しないが、ベース41の内部に設けられる複数の配線に適宜に接続される。具体的には、当該複数の配線は、複数の内部端子61の一部と複数の内部端子62とを接続する複数の配線と、複数の内部端子61の残部とベース41の外面上の複数の外部端子63とを接続する複数の配線と、を含む。複数の外部端子63は、物理量センサー1を図示しない外部機器に実装する際に用いられる。内部端子61、62および外部端子63等は、それぞれ、例えば、タングステン(W)等のメタライズ層にニッケル(Ni)または金(Au)等の被膜をメッキ等により形成することで得られる金属膜で構成される。
リッド42は、平面視で略矩形の外形を有し、前述のベース41の凹部411の開口を塞ぐ板状の部材である。リッド42の構成材料としては、ベース41または接合部材43に対してシーム溶接可能な材料であればよく、例えば、コバール、42アロイ、ステンレス鋼等の金属が挙げられる。また、リッド42におけるベース41側の面には、例えば、ニッケル(Ni)等の被膜がメッキ等により適宜に設けられる。
接合部材43は、ベース41とリッド42との間に介在し、これらを接合する枠状の部材である。接合部材43は、一般に、シールリングとも称される。接合部材43は、例えば、コバール、42アロイ、ステンレス鋼等の金属で構成される。また、接合部材43の表面には、例えば、ニッケル(Ni)または金(Au)等の被膜がメッキ等により適宜に設けられる。以上の接合部材43は、ベース41に対して、銀ろう等を用いるろう付け等により気密的に接合される。また、接合部材43は、リッド42に対して、シーム溶接により気密的に接合される。これらの接合により、接合部材43を介してベース41とリッド42とが接合される。なお、接合部材43に代えて、ベース41に、タングステン(W)等のメタライズ層にニッケル(Ni)または金(Au)等の被膜をメッキ等により形成することで得られる金属膜を設けてもよい。
A-3.回路素子の詳細
図3は、実施形態における物理量センサー1が有する回路素子30の構成を示すブロック図である。図3に示すように、回路素子30は、プロセッサー31とメモリー32と駆動回路33と検出回路34と診断回路35と故障検出回路36とを有する。
プロセッサー31は、物理量センサー1の各部を制御する機能、および各種データを処理する機能を有する装置である。プロセッサー31は、例えば、CPU等のプロセッサーを含んで構成される。なお、プロセッサー31は、単一のプロセッサーで構成されてもよいし、複数のプロセッサーで構成されてもよい。また、プロセッサー31の機能の一部または全部を、DSP、ASIC、PLD、FPGA等のハードウェアで実現してもよい。
メモリー32は、プロセッサー31が実行するプログラムP1を含む各種プログラム、およびプロセッサー31が処理する判定テーブルT1および予知情報D2を含む各種データを記憶する装置である。メモリー32は、例えば、半導体メモリーを含んで構成される。判定テーブルT1には、基準情報D1が含まれる。なお、判定テーブルT1および予知情報D2については、後に詳述する。
駆動回路33は、振動素子片10からのフィードバック信号DIを受けながら振動素子片10を駆動する駆動信号DQを出力する回路である。駆動回路33は、増幅回路33aと駆動信号出力回路33bとゲイン制御回路33cと同期信号出力回路33dとを有する。増幅回路33aは、振動素子片10からのフィードバック信号DIを増幅するとともに電流信号から電圧信号に変換して出力する。増幅回路33aは、例えば、演算増幅器、帰還抵抗素子および帰還キャパシター等を含んで構成される。駆動信号出力回路33bは、増幅回路33aから出力される信号に基づいて、駆動信号DQを出力する。駆動信号出力回路33bは、例えば、駆動信号DQの波形が矩形波または正弦波である場合、コンパレーター等を含んで構成される。ゲイン制御回路(AGC)33cは、増幅回路33aから出力される信号に基づいて、駆動信号出力回路33bの駆動を制御することにより、駆動信号DQの振幅を制御する。ゲイン制御回路33cは、例えば、増幅回路33aからの信号を全波整流する全波整流器と、当該全波整流器の出力信号の積分処理を行う積分器とを含んで構成される。同期信号出力回路33dは、増幅回路33aから出力される信号に基づく同期信号を検出回路34および診断回路35のそれぞれに出力する。同期信号出力回路33dは、例えば、増幅回路33aから出力される正弦波の信号を2値化処理して矩形波の同期信号を生成するコンパレーターと、当該同期信号の位相調整を行う位相調整回路とを含んで構成される。
検出回路34は、振動素子片10からの検出信号IQ1およびIQ2を検出する回路である。検出回路34は、増幅回路34aと同期検波回路34bとフィルター部34cとAD変換回路34dとDSP部34eとを有する。増幅回路34aは、振動素子片10からの検出信号IQ1およびIQ2を差動増幅するとともに電荷信号から電圧信号に変換して出力する。同期検波回路34bは、駆動回路33からの同期信号に基づいて、増幅回路34aからの信号の同期検波を行う。フィルター部34cは、同期検波回路34bから出力される信号の不要信号成分を除去するローパスフィルターである。AD変換回路34dは、同期検波回路34bからの信号がフィルター部34cを介して入力され、入力される信号をアナログ信号からデジタル信号に変換する。DSP部34eは、AD変換回路34dからのデジタル信号に対してデジタルフィルター処理およびデジタル補正処理等のデジタル信号処理を行う。
診断回路35は、検出回路34を診断するための回路である。例えば、診断回路35は、検出回路34を診断するための疑似的な角速度信号等を生成し、検出回路34に供給するための動作を行う。そして、この疑似的な角速度信号等の検出結果に基づいて、検出回路34等が正常に動作しているか否かを判断する診断が行われる。なお、診断回路35は、必要に応じて設ければよく、省略してもよい。
故障検出回路36は、検出回路34に含まれる増幅回路34aの故障検出を行う回路である。例えば、故障検出回路36は、増幅回路34aにおいて差動増幅回路を構成する2つの増幅器の出力電圧に基づいて、当該出力電圧が判定電圧範囲内にあるか否かにより、増幅回路34aの故障検出を行う。なお、故障検出回路36は、必要に応じて設ければよく、省略してもよい。
以上の構成の回路素子30では、プロセッサー31がメモリー32からプログラムP1を読み込んで実行する。この実行により、プロセッサー31は、取得部31a、判定部31bおよび生成部31cとして機能する。
取得部31aは、駆動回路33から駆動信号DQの計測値に関する信号情報SDを取得する。本実施形態における当該計測値は、駆動信号DQの電圧値である。判定部31bは、メモリー32から基準情報D1を読み込み、信号情報SDと基準情報D1とに基づいて、物理量センサー1の故障に至るまでの状態を判定する。より具体的には、判定部31bは、メモリー32から判定テーブルT1を読み込み、信号情報SDと基準情報D1とを比較し、その比較結果に基づいて、物理量センサー1の故障に至るまでの段階的な状態を判定する。生成部31cは、判定部31bの判定結果に基づいて、予知情報D2を生成する。より具体的には、生成部31cは、メモリー32から判定テーブルT1を読み込み、判定テーブルT1と判定部31bの判定結果とに基づいて、物理量センサー1の故障に至るまでの段階的な状態に関する予知情報D2を生成する。
物理量センサー1は、前述のように、振動素子片10を収容するパッケージ40を有する。そして、予知情報D2は、パッケージ40内の真空度を要因とする故障の予知に関する情報を含む。パッケージ40内の真空度が何らかの原因で低下すると、物理量センサー1の特性も低下して、物理量センサー1がやがて故障となる。ここで、パッケージ40内の真空度の低下は、通常、緩慢である。このため、パッケージ40内の真空度を要因とする故障の予知に関する情報は、物理量センサー1の故障に至るまでの段階的または連続的な状態に関する予知情報D2に適する。
図4は、物理量センサー1におけるパッケージ40内の真空度と駆動信号DQの電圧値である駆動電圧との関係を示すグラフである。図4に示すように、パッケージ40内の真空度が低くなるほど、すなわち、パッケージ40の空間Sの圧力が大きくなるほど、駆動電圧が高くなる。ここで、前述の増幅回路33aからの電圧信号がゲイン制御回路33cの調整可能な範囲内である場合、駆動電圧が規定値またはその近傍で一定に保たれる。したがって、この場合、物理量センサー1の検出感度が所望の範囲内に維持される。一方、前述の増幅回路33aからの電圧信号がゲイン制御回路33cの調整可能な範囲内でない場合、駆動電圧が規定値からずれていく。したがって、この場合、物理量センサー1の検出感度が低下する。以上のことから、本実施形態では、駆動信号DQの計測値として、駆動電圧、すなわち駆動信号DQの電圧値を用いる。そして、判定部31bは、駆動信号DQの電圧値に関する信号情報SDと基準情報D1とに基づいて、物理量センサー1の故障に至るまでの状態を判定する。より具体的には、判定部31bは、以下のように判定テーブルT1を用いて、物理量センサー1の故障に至るまでの状態を判定する。
図5は、基準情報D1と判定結果との関係を示す判定テーブルT1の一例を示す図である。図6は、基準情報D1と判定結果との関係を示す判定テーブルT1の他の例を示す図である。判定部31bは、例えば、図5または図6に示す判定テーブルT1を用いて、物理量センサー1の故障に至るまでの状態を判定する。図5または図6に示す判定テーブルT1は、基準情報D1中の各基準値と判定結果との対応付けを示す情報である。なお、判定テーブルT1中の各数値範囲等は、図5および図6に示す例に限定されず、任意である。
図5に示す判定テーブルT1を用いる場合、判定部31bは、駆動電圧がV1以上V2未満である場合、正常レベルであると判定する。また、判定部31bは、駆動電圧がV1未満またはV3以上である場合、故障レベルであると判定する。また、判定部31bは、駆動電圧がV2以上V3未満である場合、故障の予知レベルであると判定する。ここで、V1は、規定値である基準値Vaよりも若干低い値であり、例えばVaに対して0.9倍程度の値である。V2は、基準値Vaよりも若干高い値であり、例えばVaに対して1.2倍程度の値である。V3は、V2よりも高い値であり、Vaに対して1.3倍程度の値である。
図6に示す判定テーブルT1を用いる場合、判定部31bは、駆動電圧が基準値Vaに対して1.0倍以上1.2倍未満である場合、正常レベルであると判定する。また、判定部31bは、駆動電圧が基準値Vaに対して0.8倍未満または1.4倍以上である場合、故障であると判定する。また、判定部31bは、駆動電圧が基準値Vaに対して0.9倍以上1.0倍未満または1.2倍以上1.3倍未満である場合、故障の予知レベル1であると判定する。また、判定部31bは、駆動電圧が基準値Vaに対して0.8倍以上0.9倍未満または1.3倍以上1.4倍未満である場合、故障の予知レベル1よりも故障の状態に近い予知レベル2であると判定する。ここで、0.9倍以上1.0倍未満または1.2倍以上1.3倍未満の範囲が基準値Vaに対する範囲を示す第1範囲であり、0.8倍以上0.9倍未満または1.3倍以上1.4倍未満の範囲が第1範囲とは異なる範囲で基準値Vaに対する範囲を示す第2範囲である。このように、図6に示す判定テーブルT1を用いる場合、基準情報D1は、第1範囲および第2範囲を含み、プロセッサー31は、駆動信号DQの計測値が第1範囲内である場合、第1予知情報である予知レベル1を出力し、駆動信号DQの計測値が第2範囲内である場合、第1予知情報とは異なる第2予知情報である予知レベル2を出力する。このため、物理量センサー1の故障に至る前の段階的な状態に関する予知情報D2を出力することができる。
また、基準情報D1または判定テーブルT1は、物理量センサー1の工場出荷前等に事前にメモリー32に記憶されてもよいし、物理量センサー1の使用時にユーザーによってメモリー32に記憶されてもよい。ただし、基準情報D1または判定テーブルT1は、メモリー32に予め記憶されることが好ましい。この場合、物理量センサー1の起動後に基準情報D1を作成する必要がない。この結果、物理量センサー1の起動直後に迅速に予知情報D2を出力することができる。
以上のような判定の結果に基づいて、生成部31cは、予知情報D2を生成する。すなわち、生成部31cは、判定部31bの判定結果が予知レベル、予知レベル1または予知レベル2である場合、予知情報D2を生成する。また、生成部31cは、判定部31bの判定結果が故障レベルである場合、物理量センサー1が故障状態であることを示す故障情報を生成する。なお、判定結果における故障レベルの程度によっては、当該故障情報は、「予知情報」であるともいえる。
以上の予知情報D2の生成および出力のタイミングは、特に限定されないが、少なくとも物理量センサー1の起動時を含むことが好ましい。すなわち、プロセッサー31は、物理量センサー1の起動時に駆動信号DQの信号情報を取得して予知情報D2を出力することが好ましい。この場合、物理量センサー1が故障した状態で使用されることを低減することができる。なお、予知情報D2の生成および出力は、物理量センサー1の動作中に常時連続的に行ってもよい。
図7は、実施形態に係るセンサー故障予知システム100の動作の流れを示す図である。図7に示すように、まず、取得部31aが駆動電圧に関する情報を取得し、判定部31bが駆動電圧と基準情報D1中の基準値とを比較して、物理量センサー1の状態を判定する(ステップS1)。その後、生成部31cは、判定結果が正常レベルか否かを判断する(ステップS2)。判定結果が正常レベルである場合、ステップS1に戻る。
判定結果が正常レベルでない場合、生成部31cは、判定結果が予知レベルであるか否かを判断する(ステップS3)。判定結果が予知レベルである場合、生成部31cは、予知情報D2を生成してメモリー32に記憶する(ステップS4)。その後、ステップS1に戻る。
判定結果が予知レベルでない場合、生成部31cは、判定結果が故障レベルか否かを判断する(ステップS5)。判定結果が故障レベルでない場合、ステップS1に戻る。一方、判定結果が故障レベルである場合、生成部31cは、故障情報を生成してメモリー32に記憶し(ステップS6)、その後、物理量センサー1の動作を終了する。
以上のセンサー故障予知システム100は、プロセッサー31とメモリー32とを有し、メモリー32には、振動素子片10を含む物理量センサー1における駆動信号DQの基準値に関する基準情報D1が記憶される。そして、プロセッサー31は、駆動信号DQの計測値に関する信号情報SDを取得し、信号情報SDと基準情報D1とに基づいて、物理量センサー1の故障に至るまでの段階的な状態に関する予知情報D2を出力する。以上のセンサー故障予知システム100では、物理量センサー1の故障に至るまでの段階的または連続的な状態に関する予知情報D2が出力されるので、物理量センサー1が故障するまでの状態を事前に検知することができる。
ここで、振動素子片10は、駆動信号DQにより駆動振動し、物理量に基づく検出信号IQ1およびIQ2を出力する。本実施形態では、物理量センサー1が振動素子片10のほか前述のプロセッサー31およびメモリー32を有する。このため、物理量センサー1が組み込まれる機器における処理を低減することができる。
B.電子機器
図8は、電子機器の一例であるモバイル型またはノート型のパーソナルコンピューター1100の構成を概略的に示す斜視図である。この図において、パーソナルコンピューター1100は、キーボード1102を備える本体部1104と、表示部1108を備える表示ユニット1106と、により構成される。表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持される。以上のパーソナルコンピューター1100には、前述の物理量センサー1およびセンサー故障予知システム100が内蔵される。
図9は、電子機器の一例であるスマートフォン1200の構成を概略的に示す平面図である。この図において、スマートフォン1200は、複数の操作ボタン1202、受話口1204および不図示の送話口を備え、操作ボタン1202と受話口1204との間には、表示部1208が配置されている。以上のスマートフォン1200には、前述の物理量センサー1およびセンサー故障予知システム100が内蔵される。
図10は、電子機器の一例であるディジタルスチルカメラ1300の構成を概略的に示す斜視図である。この図には、外部機器との接続についても簡易的に示される。ディジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)等の撮像素子により光電変換して撮像信号(画像信号)を生成する。
ディジタルスチルカメラ1300におけるケース1302の背面には、CCDによる撮像信号に基づいて表示を行う表示部1310が設けられる。表示部1310は、被写体を電子画像として表示するファインダーとして機能する。また、ケース1302の正面側(図中裏面側)には、光学レンズ(撮像光学系)およびCCD等を含む受光ユニット1304が設けられる。
撮影者が表示部1310に表示された被写体像を確認し、シャッタボタン1306を押下すると、その時点におけるCCDの撮像信号がメモリー1308に転送されて格納される。また、このディジタルスチルカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられる。そして、図示されるように、ビデオ信号出力端子1312にはテレビモニター1430が、データ通信用の入出力端子1314にはパーソナルコンピューター1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、メモリー1308に格納される撮像信号がテレビモニター1430またはパーソナルコンピューター1440に出力される。以上のディジタルスチルカメラ1300には、前述の物理量センサー1およびセンサー故障予知システム100が内蔵される。
以上の電子機器は、センサー故障予知システム100を有する。このため、予知情報D2に基づいて、物理量センサー1が故障する前に、事前に適切な処理を行うことができる。当該適切な処理としては、例えば、予知情報D2が予知レベルを示す場合、ディスプレイへの表示または音声等によりメンテナンスを促す処理等が挙げられる。ここで、故障情報が出力される場合、例えば、警告ランプを点灯させる処理等が行われる。なお、センサー故障予知システム100の一部または全部が電子機器の他の構成と一体でもよい。
なお、物理量センサー1を搭載する電子機器としては、前述のパーソナルコンピューター、スマートフォンおよびディジタルスチルカメラの他にも、例えば、スマートフォン以外の携帯電話機、タブレット端末、時計、車体姿勢検出装置、ポインティングデバイス、ヘッドマウントディスプレイ、インクジェットプリンター、ラップトップ型パーソナルコンピューター、テレビ、ビデオカメラ、ビデオテープレコーダー、ナビゲーション装置、ページャ、電子手帳、電子辞書、電卓、電子ゲーム機器、ゲームコントローラー、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS(Point of sale system)端末、電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡、魚群探知機、各種測定機器、計器類およびフライトシミュレータ等が挙げられる。
C.移動体
図11は、移動体の一例である自動車1500を概略的に示す斜視図である。この図において、自動車1500には、前述の物理量センサー1およびセンサー故障予知システム100が内蔵される。物理量センサー1は、キーレスエントリー、イモビライザー、ナビゲーションシステム、エアコン、アンチロックブレーキシステム(ABS:Antilock Brake System)、エアバック、タイヤプレッシャーモニタリングシステム(TPMS:Tire Pressure Monitoring System)、エンジンコントロール、ハイブリッド自動車や電気自動車の電池モニター、車体姿勢制御システム等の電子制御ユニット(ECU:Electronic Control Unit)1501に広く適用できる。なお、電子デバイスを搭載する移動体としては、自動車の他にも、例えば、車両、航空機、ロケットおよび船舶等が挙げられる。なお、センサー故障予知システム100の一部または全部が移動体の他の構成と一体でもよい。
以上の移動体は、センサー故障予知システム100を有する。このため、予知情報D2に基づいて、物理量センサー1が故障する前に、事前に適切な処理を行うことができる。移動体が自動車である場合における当該適切な処理としては、例えば、予知情報D2が予知レベル1を示す場合、自動車の電子制御ユニット1501内の警告灯を点灯させる処理、予知情報D2が予知レベル2を示す場合、カーナビ等のディスプレイへの表示または音声等によりメンテナンスを促す処理等が挙げられる。ここで、故障情報が出力される場合、例えば、警告ランプを点灯させる処理等が行われる。
また、移動体がドローン等の飛行体である場合、例えば、予知情報D2が予知レベル1を示す場合、警告灯を点灯させる処理のみが行われ、予知情報D2が予知レベル2を示す場合、警告灯を点灯させる処理に加えて操作条件を限定する処理が行われる。ここで、故障情報が出力される場合、例えば、故障ランプを点灯させて、飛行体の動作を禁止する処理が行われる。
D.変形例
以上、本発明のセンサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体について図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。また、本発明の各部の構成は、前述した実施形態の同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。また、本発明は、前述した各実施形態の任意の構成同士を組み合わせるようにしてもよい。
前述の実施形態では、駆動信号の電圧値である駆動電圧を用いて予知情報を生成する場合が例示されるが、当該例示に限定されず、例えば、計測値として駆動信号の電流値に基づく抵抗値を用いて、予知情報を生成してもよい。物理量センサーが振動素子片を収容するパッケージ内の真空度が何らかの原因で低下すると、その低下に伴って駆動信号の電流値に基づく抵抗値が上昇する。このため、基準値を電圧値とし、駆動信号の電流値に基づく抵抗値を計測値とすることで、パッケージ内の真空度を要因とする物理量センサーの故障の予知に関する予知情報を出力することができる。当該抵抗値は、例えば、振動素子片の等価回路における等価直列抵抗値、いわゆるCI(クリスタルインピーダンス)値である。なお、基準値は、適宜に設定される。
また、前述の実施形態では、駆動信号を用いて予知情報を生成する場合が例示されるが、当該例示に限定されず、例えば、検出信号を用いて予知情報を生成してもよい。例えば、物理量の有無にかかわらず検出信号に含まれる漏れ振動に基づく振動成分の値、いわゆるゼロ点信号の値も、物理量センサーの故障に至るまでの状態に応じて変化する。したがって、当該ゼロ点信号の値を用いて、予知情報を生成してもよい。なお、基準値は、適宜に設定される。
さらに、前述の実施形態では、予知情報が物理量センサーの故障に至るまでの段階的な情報である場合が例示されるが、当該例示に限定されず、予知情報が物理量センサーの故障に至るまでの連続的な情報であってもよい。この場合、例えば、駆動信号または検出信号の計測値と基準値との差または比に応じて予知情報を連続的に変化させる演算を行えばよい。
また、前述の実施形態では、物理量センサーに内蔵される回路素子が予知情報を生成する場合が例示されるが、当該例示に限定されず、例えば、物理量センサーの外部装置が物理量センサーから振動素子片の駆動信号または検出信号の計測値を取得して予知情報を生成してもよい。当該外部装置は、例えば、図1に示すプロセッサー101およびメモリー102を含む装置である。
さらに、前述の実施形態では、振動素子片が圧電体材料で構成される場合が例示されるが、振動素子片の構成材料は、当該例示に限定されず、例えば、シリコンまたは石英等の非圧電体材料でもよい。この場合、例えば、非圧電体材料で構成される基体上に圧電体素子を設ければよい。また、シリコンで振動素子片を構成する場合、エッチング等の公知の微細加工技術を用いて寸法精度の高い振動素子片を比較的安価に製造することができる。
また、前述の実施形態では、振動素子片の駆動方式として圧電駆動方式を用いる場合が例示されるが、振動素子片の駆動方式は、当該例示に限定されず、例えば、静電駆動方式または電磁駆動方式等でもよい。同様に、前述の実施形態では、振動素子片の検出方式として圧電検出方式を用いる場合が例示されるが、振動素子片の検出方式は、これに限定されず、例えば、静電容量検出方式、ピエゾ抵抗検出方式または電磁検出方式等でもよい。
さらに、前述の実施形態では、振動素子片がダブルT型のセンサー素子片である場合が例示されるが、振動素子片は、当該例示に限定されず、例えば、H音叉型または音叉型等の他のセンサー素子片でもよい。また、振動素子片をパッケージに支持する支持部材は、前述のTAB実装用の部材に限定されず、例えば、振動素子片と同一材料で一体に構成されてもよい。
また、前述の実施形態では、物理量センサーが角速度を検出するジャイロセンサーである場合が例示されるが、当該例示に限定されない。例えば、物理量センサーは、物理量として加速度を検出する加速度センサー等でもよい。
さらに、前述の実施形態では、ベースが箱状をなし、リッドが板状をなす構成が例示されるが、当該例示に限定されない。例えば、ベースが板状をなし、リッドが箱状またはハット状をなしてもよい。
1…物理量センサー、10…振動素子片、31…プロセッサー、32…メモリー、40…パッケージ、100…センサー故障予知システム、1100…パーソナルコンピューター、1200…スマートフォン、1300…ディジタルスチルカメラ、1440…パーソナルコンピューター、1500…自動車、D1…基準情報、D2…予知情報、DQ…駆動信号、IQ1…検出信号、IQ2…検出信号、Va…基準値。

Claims (10)

  1. 駆動信号により駆動振動し、物理量に基づく検出信号を出力する振動素子片を含む物理量センサーの故障を予知するセンサー故障予知システムであって、
    前記駆動信号または前記検出信号の基準値に関する基準情報を記憶するメモリーと、
    前記駆動信号または前記検出信号の計測値に関する信号情報と前記基準情報とに基づいて、前記物理量センサーの故障に至るまでの段階的または連続的な状態に関する予知情報を出力するプロセッサーと、を有し、
    前記基準情報は、前記基準値に対する範囲を示す第1範囲に関する情報と、前記第1範囲とは異なる範囲で前記基準値に対する範囲を示す第2範囲に関する情報と、を含み、
    前記プロセッサーは、前記計測値が前記第1範囲内である場合、故障の予知レベルを示す第1予知情報を前記予知情報として出力し、前記計測値が前記第2範囲内である場合、前記第1予知情報とは異なる予知レベルを示す第2予知情報を前記予知情報として出力する、
    センサー故障予知システム。
  2. 前記メモリーには、前記基準情報が予め記憶される、
    請求項1に記載のセンサー故障予知システム。
  3. 前記プロセッサーは、前記物理量センサーの起動時に前記予知情報を出力する、
    請求項1または2に記載のセンサー故障予知システム。
  4. 前記計測値は、前記駆動信号の電圧値である、
    請求項1からのいずれか1項に記載のセンサー故障予知システム。
  5. 前記計測値は、前記駆動信号の電流値に基づく抵抗値である、
    請求項1からのいずれか1項に記載のセンサー故障予知システム。
  6. 前記物理量センサーは、前記振動素子片を収容するパッケージを有し、
    前記予知情報は、前記パッケージ内の真空度を要因とする故障の予知に関する情報を含む、
    請求項1からのいずれか1項に記載のセンサー故障予知システム。
  7. 駆動信号により駆動振動し、物理量に基づく検出信号を出力する振動素子片を含む物理量センサーの故障を予知するセンサー故障予知方法であって、
    前記駆動信号または前記検出信号の計測値に関する信号情報を取得し、
    前記信号情報と前記駆動信号または前記検出信号の基準値に関する基準情報とに基づいて、前記物理量センサーの故障に至るまでの段階的または連続的な状態に関する予知情報を出力する場合において
    前記基準情報は、前記基準値に対する範囲を示す第1範囲に関する情報と、前記第1範囲とは異なる範囲で前記基準値に対する範囲を示す第2範囲に関する情報と、を含み、
    前記計測値が前記第1範囲内である場合、故障の予知レベルを示す第1予知情報を前記予知情報として出力し、前記計測値が前記第2範囲内である場合、前記第1予知情報とは異なる予知レベルを示す第2予知情報を前記予知情報として出力する、
    センサー故障予知方法。
  8. 駆動信号により駆動振動し、物理量に基づく検出信号を出力する振動素子片と、
    前記駆動信号または前記検出信号の基準値に関する基準情報を記憶するメモリーと、
    前記駆動信号または前記検出信号の計測値に関する信号情報と前記基準情報とに基づいて、物理量センサーの故障に至るまでの段階的または連続的な状態に関する予知情報を出力するプロセッサーと、を有
    前記基準情報は、前記基準値に対する範囲を示す第1範囲に関する情報と、前記第1範囲とは異なる範囲で前記基準値に対する範囲を示す第2範囲に関する情報と、を含み、
    前記プロセッサーは、前記計測値が前記第1範囲内である場合、故障の予知レベルを示す第1予知情報を前記予知情報として出力し、前記計測値が前記第2範囲内である場合、前記第1予知情報とは異なる予知レベルを示す第2予知情報を前記予知情報として出力する、
    物理量センサー。
  9. 請求項1からのいずれか1項に記載のセンサー故障予知システムを有する、
    電子機器。
  10. 請求項1からのいずれか1項に記載のセンサー故障予知システムを有する、
    移動体。
JP2019054279A 2019-03-22 2019-03-22 センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体 Active JP7243352B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019054279A JP7243352B2 (ja) 2019-03-22 2019-03-22 センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体
US16/824,133 US11121689B2 (en) 2019-03-22 2020-03-19 Sensor failure prediction system, sensor failure prediction method, physical quantity sensor, electronic apparatus, and vehicle
CN202310958543.3A CN116972882A (zh) 2019-03-22 2020-03-20 物理量传感器、电子设备以及移动体
CN202010199432.5A CN111721319B (zh) 2019-03-22 2020-03-20 传感器故障预知系统、传感器故障预知方法、物理量传感器、电子设备以及移动体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054279A JP7243352B2 (ja) 2019-03-22 2019-03-22 センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体

Publications (2)

Publication Number Publication Date
JP2020153891A JP2020153891A (ja) 2020-09-24
JP7243352B2 true JP7243352B2 (ja) 2023-03-22

Family

ID=72514891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054279A Active JP7243352B2 (ja) 2019-03-22 2019-03-22 センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体

Country Status (3)

Country Link
US (1) US11121689B2 (ja)
JP (1) JP7243352B2 (ja)
CN (2) CN111721319B (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505770A (ja) 2015-12-10 2019-02-28 パナソニック株式会社 Mems装置におけるシール破損の識別

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181042A (ja) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd 角速度センサの故障診断装置
JPH1055497A (ja) 1996-08-09 1998-02-24 Yazaki Corp 故障予知方法、及びこれを用いた制御ユニット並びに負荷制御システム
JP2000171257A (ja) 1998-12-04 2000-06-23 Toyota Motor Corp 角速度検出装置
JP4449110B2 (ja) * 1999-08-18 2010-04-14 パナソニック株式会社 角速度センサ
JP2007209624A (ja) * 2006-02-10 2007-08-23 Sankyo Kk 振動検出装置及び弾球遊技機
JP6326274B2 (ja) * 2014-04-25 2018-05-16 日立オートモティブシステムズ株式会社 角速度検出装置
JP6686282B2 (ja) 2015-03-16 2020-04-22 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体
CN105987691B (zh) 2015-03-16 2021-02-05 精工爱普生株式会社 电路装置、物理量检测装置、电子设备以及移动体
US10318370B2 (en) * 2016-03-25 2019-06-11 Seiko Epson Corporation Circuit device, physical quantity detection device, oscillator, electronic apparatus, vehicle, and method of detecting failure of master clock signal
JP6828544B2 (ja) * 2017-03-23 2021-02-10 セイコーエプソン株式会社 センサー素子制御装置、物理量センサー、電子機器、移動体及び物理量センサーの故障診断方法
KR20210041989A (ko) * 2019-10-08 2021-04-16 삼성전자주식회사 탐색을 수행하는 전자 장치 및 그 동작 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505770A (ja) 2015-12-10 2019-02-28 パナソニック株式会社 Mems装置におけるシール破損の識別

Also Published As

Publication number Publication date
CN116972882A (zh) 2023-10-31
CN111721319A (zh) 2020-09-29
US20200304084A1 (en) 2020-09-24
CN111721319B (zh) 2023-08-15
US11121689B2 (en) 2021-09-14
JP2020153891A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
US10784835B2 (en) Vibration device, electronic apparatus, and vehicle
US9329040B2 (en) Angular velocity sensor and method of manufacture
US9103674B2 (en) Sensor element, method for manufacturing sensor element, sensor device, and electronic apparatus
US20190199315A1 (en) Vibrator device, electronic apparatus and vehicle
JP7491439B2 (ja) 物理量検出回路、物理量センサー、電子機器、及び移動体物理量センサー
JP7243352B2 (ja) センサー故障予知システム、センサー故障予知方法、物理量センサー、電子機器および移動体
US9246470B2 (en) Vibrating element, vibrator, oscillator, electronic apparatus, and moving object
JP6264535B2 (ja) 振動素子製造用基板、振動素子の製造方法、物理量検出装置、電子機器、および移動体
JP2015169492A (ja) 電子デバイス、電子デバイスの信号検出方法、電子機器、および移動体
US12031822B2 (en) Physical quantity detection circuit, physical quantity sensor, electronic instrument, vehicle, and method for diagnosing failure of physical quantity sensor
JP2015099061A (ja) 物理検出装置の製造方法、振動素子、物理検出装置および電子機器
JP2017211255A (ja) 電子デバイス、電子デバイスの製造方法、物理量センサー、電子機器および移動体
JP6641874B2 (ja) 物理量検出装置、電子機器および移動体
JP2016133472A (ja) センサーデバイス、電子機器、および移動体
JP2016178588A (ja) 振動素子、振動子、電子機器および移動体
JP2015087251A (ja) 振動素子、物理量検出装置、電子機器、および移動体
JP2014032106A (ja) 振動片、振動子、ジャイロセンサー、電子機器、および移動体
JP6264842B2 (ja) 振動素子、振動子、発振器、電子機器および移動体
JP2016038306A (ja) センサー素子、センサーデバイス、電子機器および移動体
JP2015087279A (ja) 振動素子の感度検出方法、振動素子の感度調整方法、振動素子および電子機器
JP2020155680A (ja) 電子デバイスの製造方法、電子デバイス、電子機器および移動体
JP2019045405A (ja) 電子デバイス、電子機器および移動体
JP2017078678A (ja) 物理量検出振動片、物理量検出装置、電子機器および移動体
JP2015169648A (ja) 機能素子、電子デバイス、物理量検出装置、電子機器、および移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150